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Quantum blockchain using weighted hypergraph states
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Using the multiparty entanglement of quantum weighted hypergraph states, we built a protocol to build a
quantum blockchain. In this protocol, the information contained by the classical blocks is initialized at a single
qubit that acts as a vertex of the corresponding hypergraph and the entanglement of the hypergraph state serves
the purpose of the “chain.” The security and effectiveness of the protocol are then outlined. We further provide
a quantum circuit and implement it on IBM’s five-qubit computer with single- and two-qubit quantum gates as
components.
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I. INTRODUCTION

A. Classical blockchain technology

The classical blockchain is the most popular distributed
ledger technology (DLT) [1], used by the famous cryptocur-
rency network bitcoin [2]. The distributed ledger technology
eliminates the necessity of a third party settling any transac-
tions between two parties and keeps multiple records of one
transaction. This makes a transaction impossible to alter once
it is recorded and entered into the ledger. Blockchain is an
example of this technology and many cryptocurrencies, e.g.,
bitcoin, etherium, litecoin, ripple, are based on the blockchain
technology. This technology has found use in biomedical do-
mains [3], preventing fake news in social media [4], as well as
in public administration [5]. The blockchain technology aims
to preserve and secure information in worldwide-distributed
ledgers. It is essentially a trustless peer-to-peer network [2,6],
where time-stamped information (transactions in case of a
cryptocurrency) is drawn from a pool of transactions and
encrypted in a block by one of the nodes of the network.
This node is one of the few nodes (“miners” in case of
bitcoin) which is selected by a process called “proof of
work” [2]. The proof of work (PoW) algorithm is an NP
hard problem that requires to guess a value (nonce) and
solve a prescribed problem (generation of the cryptographic
hash function) which generates the “hash” for a particular
block [7]. Once a hash is successfully generated, as a security
measure the block is also given the hash of the previous
block. The peer that made the block transmits it to all the
nodes in the network. For bitcoin there is a publicly available
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ledger [8]. The nodes accept the block after verifying it based
on a mutually agreed upon consensus and acknowledge the
block by applying its hash to the next block of the chain. The
security of the classical blockchain thus lies on two major
key points. The computation complexity of the proof of work
(PoW) algorithm and addition of the previous hash function
in the next block formation. The PoW, being an NP hard
problem, takes a significant amount of computational power
and time to solve for a potential hacker Eve [9]. The inclusion
of the previous hash function makes the job of Eve more
difficult. If Eve wants to change one transaction, she has to
change the hash of the block in which that transaction is added
(say, block m). Then, to cover her track, she has to change the
hash of every block that is added to the chain after the mth
block. Figure 1 provides a graphical flowchart to explain the
classical blockchain workflow [10].

The recent advances of quantum computation [11]
have severely threatened the security of classical
blockchain [6,10,12]. As an example, we can consider
the Grover’s Search algorithm [13], which can provide a
quadratic speedup in the PoW process. Thus, if Eve possesses
a quantum computer, it gives her an unfair advantage over
the miners. Several protocols have been proposed making use
of quantum cryptographic and key distribution algorithms
to defend the quantum attacks on classical blockchain in
recent years [10,12,14]. The need to have a protocol for
the blockchain technology using quantum tools is thus
evident in recent times. Previously, using the temporal
Greenberger-Horne-Zeilinger (GHZ) states a theoretical
concept has been provided [6,15], where each block is made
up of n qubits. In this work, we outline a protocol to make a
quantum blockchain encoding information of each block in
a single qubit using the multiparty entanglement of quantum
weighted hypergraph states [16–18]. In this protocol, the
information contained by the classical blocks is initialized
at a single qubit that acts as a vertex of the corresponding
hypergraph and the entanglement of the hypergraph state
serves the purpose of the “chain.” We briefly describe the
hypergraph states and the weighted hypergraph states in the
following subsection. The protocol is outlined in Sec. II.
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FIG. 1. Flowchart representing workflow of the formation of the
classical blockchain.

Section III discusses the security and effectiveness of the
protocol. A quantum circuit to prepare quantum blockchain
explicated using IBM quantum experience with single-
and two-qubit quantum gates as components is provided
in Sec. IV along with fidelity analysis for a 2-blockchain
prepared in “ibmqx2” quantum processor. We conclude in
Sec. V with future directions.

B. Quantum hypergraph states and weighted hypergraph states

The quantum hypergraph states are a group of highly
entangled multipartite quantum states that are constructed on
the mathematical hypergraph [16]. The quantum states are
localized on the vertices of the hypergraph, the edges of which
show connections with the other qubits which together rep-
resent a nonseparable many-body quantum state. We use the
entanglement of these states as a tool to replace the classical
ledger and hash functions and propose a protocol to make a
blockchain which is intrinsically quantum. Below, we present
a brief description of a hypergraph state following [16]. Given
a mathematical hypergraph with k hyperedge (i.e., a hyper-
edge connecting k qubits) and n vertices, a corresponding
quantum state can be prepared [16]. The number of vertices
of the hypergraph are equal to n, the number of qubits in the
quantum system. All of the n qubits are initiated in the state
|+〉 = |0〉+|1〉√

2
. A controlled-Z operation is then performed

for each k-hyperedge. Figure 2 represents a mathematical
hypergraph with five vertices, 1, 2, 3, 4, and, 5, a 3-hyperedge
connecting vertices 1, 2, and 3; and a 5-hyperedge connecting
all five vertices. This hypergraph represents a quantum state
that can be formed by using the circuit provided in Fig. 3.

From Figs. 2 and 3, it is evident that for each hyperedge, a
controlled-Z operation has been performed on the connecting
qubits. The output state of the circuit in Fig. 3 is the quantum
state corresponding to the hypergraph in Fig. 2, and is given
by

|ψ〉 = C2
(1,2,3,4,5)ZC2

(1,2,3)Z |+〉⊗5 .

The entanglement of a hypergraph state has been discussed
in [16,19,20] as well as many of its properties. As is well

FIG. 2. A mathematical hypergraph with five vertices, a 3-
hyperedge, and a 5-hyperedge.

known, local unitary operations carried through classical com-
munication (LOCC) does not alter the entanglement of the
state under consideration. These LOCC equivalent classes
need to be identified when considering the application of the
states for applications of the state for quantum communica-
tions and cryptographical protocols. A singular LOCC equiv-
alent class has been identified for a three-qubit hypergraph
state and 27 LOCC equivalent classes have been found for
four-qubit hypergraph states [19]. It has been also shown
in [19] that using local applications of unitary Pauli operations
on the kth qubit one can remove all the (N − 1) edges for the
special case where an n-qubit hypergraph state contains only
an n edge.

An equivalence between the real equally weighted (REW)
states and the hypergraph states was first drawn in [16].
In [18,21], the weighted hypergraph states were introduced
as a locally maximally entanglable (LME) state. As described
in [17,18], a weighted hypergraph state can be represented by
a hypergraph where each hyperedge carries a weight [17], i.e.,

|ψ〉 = 1√
2N

∑
x∈(0,1)N

eιπ f (x) |x〉 .

Here, |x〉 represents the computational basis state and f (x)
corresponds to any real number. For hypergraph states de-
scribed before, f (x) ∈ {0, 1} [17].

II. PROTOCOL TO MAKE QUANTUM BLOCKCHAIN

We present our protocol to prepare a decentralized, quan-
tum, and cost-effective blockchain. Our protocol replaces
the classical ledger-based network and cryptographic hash

FIG. 3. Circuit to prepare quantum hypergraph state correspond-
ing to the mathematical hypergraph as presented in Fig. 2. Each qubit
in the circuit is initiated in the state |+〉.
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functions with the entanglement of a weighted hypergraph
state, where the creation of block remains analogous to that
in the classical case. We use the “weights,” i.e., the phases
carried by the hyperedges of the weighted hypergraph states to
encode the classical information in the hypergraph state. The
protocol accommodates infinite number of quantum blocks
added by trustless peers. The peers use only local operations
and classical communications over a quantum secure channel
(using any quantum key distribution protocol of their choice)
to build the chain according to a mutually agreed upon
consensus. In this section we first present the protocol and
then discuss the security and effectiveness of the quantum
blockchain formed.

(i) Encoding the classical information of the blocks in
qubits. In the proposed quantum block chain, we consider
each classical block to be represented by a binary string,
which will have a decimal equivalent p. The peer that made
the block first initiates his qubit at state |ψ〉 = |0〉+|1〉√

2
, and

introduces the p value in the relative phase of the system as

|ψ1〉 = S(p) |ψ〉 = 1√
2

[
1 0
0 eιθp

]
|ψ〉 = |0〉 + eιθp |1〉√

2
,

where θp ∈ (0, π
2 ) is a function of p, f (p), any bijective

function chosen by and known to only the peer who creates
the block, and

∑
i θpi < π

2 ∀ i. Here, i represents the number
of the block added to the chain. Qubit |ψ1〉 now carries the
information of the classical block. Ensuring the conditions
on θp is crucial in this protocol as these conditions ensure
the entanglement of the state prepared. The peers can address
this issue by using a mutually agreed upon consensus, which
ensures that these conditions are met.

(ii) Consensus. The mutually agreed upon consensus be-
tween the peers is a very crucial part of this protocol. The con-
sensus to be followed for the efficient work of this algorithm
should be such that each 0 < θpi < π

2 as well as
∑

i θpi <
π
2 ∀ i. First, we provide an example of such a consensus.

According to this consensus, the peers agree to encode the
classical information of the blocks they are forming in their
qubit in a way so that the relative phase of the ith qubit,
prepared by the ith peer, is given as

θpi = 1

2(i−1)
θp1 ,

where θp1 is the phase initiated by the first peer in his qubit.
We consider the infinite sum

∞∑
i=1

θpi =
∞∑

i=1

1

2i−1
θp1 .

The infinite series
∑∞

i=1
1

2i−1 is a geometric progression series
of constant ratio 1

2 and initial number θp1 that converges
to 2θp1. Thus, to ensure that

∑∞
i=1 θpi < π

2 , the phase θp1
initiated by the first peer in his qubit should be fixed at a value
less than π

4 .
One can formulate infinitely many such infinite series. We

consider the infinite series
∞∑

i=1

θpi =
∞∑

i=1

1

ni−1
θp1 ,

where n ∈ N/{1}, and N is the set of all positive integers. The
infinite series converges to ( n

n−1 )θp1 , and is upper bounded
by 2θp1 . Thus, the peers can choose any such infinite series
to build up their quantum ledger with an appropriate choice
of θp1 .

The consensus provided here is an example. Any such
consensus that ensures the conditions on the relative phase θpi

are met is agreeable with the protocol.
To address the question of trust amongst peers, a verifica-

tion step is required to check if the phase encoded in each
block is per the consensus. This step demands the first peer
to openly broadcast θp1 to all other peers using the quantum
secure channel established between them.

(iii) Formation of the quantum blockchain. The multiparty
entanglement of the weighted hypergraph states is used to
form the quantum blockchain, replacing the classical ledger
database. The chain of n blocks is a quantum weighted
hypergraph of n qubits having each qubit encoded with the
information of a classical block as above. Once the classical
information of a block is encoded in a qubit, the peer sends a
copy of the state to all other peers in the network. Since (s)he
exactly knows the state of the qubit, this does not violate the
no-cloning theorem. Each of the peers verifies the qubit based
on the consensus and adds it to their local copy of the chain
making use of multiple controlled-Z gates, and thus forming
an n-qubit weighted hypergraph. If a peer is going to add
the nth block to the chain, (s)he uses C(n−1)Z gate to add it
to the previously made (n − 1)-blockchain, which effectively
is a (n − 1)-qubit weighted hypergraph state. The peers then
remove the previous (n − 1) edge from the n-qubit hypergraph
using a local Pauli-X gate on the nth qubit. The removal of the
(n − 1) edge is not mandatory to form the quantum ledger, yet
useful to enhance security of the protocol. Further discussions
on the security of the protocol against potential attacks are
provided in Sec. III.

(iv) Verification of the blocks. To check if the blocks are
added according to the consensus, and maintain the entan-
glement of the weighted hypergraph state formed a step of
verification of each block is needed prior adding them in the
chain. According to the proposed consensus, (a) the peer who
creates the first block openly broadcasts the relative phase θp1

initiated in his/her qubit, (b) the peers prepare their qubits
by encoding the classical information of their blocks in the
relative phase of their respective qubits following a geometric
progression series of the form ( 1

ni−1 )θp1 , where n ∈ N/{1}, N
being the set of all positive integers, and i is number of the
block being added to the chain. The constant ratio of the
geometric progression series 1

n is known to all the peers.
Effectively, the relative phase of each qubit is known to

each peer building the chain. The peer who creates the mth
block prepares his/her qubit as

|ψm〉 = |0〉 + eιθpm |1〉√
2

,

where the relative phase should be θpm = ( 1
nm−1 )θp1 . (S)he

sends one copy of the state to each peer in the system. The
peers, upon receiving the qubit, measure it in a basis |±θm〉 =
|0〉±eιθpm |1〉√

2
. If the measurement outcome is 1, then they add the

state in their local copy using the m − 1 controlled-Z gate.
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FIG. 4. Circuit diagram for quantum blockchain with two blocks.
Here, R(θp) represents the phase gate. The output is a weighted graph
state with two qubits.

For any other measurement outcome, the protocol is aborted,
and the peer is identified as untrustworthy. Inclusion of this
verification step in the protocol ensures that the proposed
quantum blockchain can be built by completely trustless
peers. It also frees the protocol from the need of any “proof of
work” or “proof of stake” to select the peers who can build the
chain.

(v) Example. We provide the construction of a general n-
blockchain as an example.

(a) In this example, we consider the blocks to be rep-
resented by decimal numbers p1, p2, p3, ..., pn. After
encoding, the qubits representing the blocks are

|ψ1〉 = |0〉 + eιθp1 |1〉√
2

, |ψ2〉 = |0〉 + eιθp2 |1〉√
2

,

|ψ3〉 = |0〉 + eιθp3 |1〉√
2

, . . . , |ψn〉 = |0〉 + eιθpn |1〉√
2

,

... up to infinity, where θpi = ( 1
ni−1 )θp1 ; n ∈ N/{1}, N being

the set of all positive integers, and i is number of the block
being added to the chain.

(b) Peer 1 prepares the first qubit in state |ψ1〉, broad-
casts the value of θp1 as well as shares copies of his state
with each peer in the network via a secure quantum channel
for verification. As mentioned earlier, peer 1 exactly knows
the state thus making multiple copies of it will not violate
the no-cloning theorem.

(c) The other peers in the system measure the qubit in

a basis |±θ1〉 = |0〉±eιθp1 |1〉√
2

. If measurement outcome turns
out to be 1, they prepare their own local qubit in the same
state.

(d) The peer who adds the second block initiates his
qubit in |ψ2〉 and shares n copies of it to all the peers.
Everyone upon verifying the authenticity of the qubit en-
tangles it with the first qubit using controlled-Z gate, with
the target on the second qubit as shown in Fig. 4. The
blockchain with two blocks is given by

|ψ12〉 = C1,2Z (|ψ1〉 ⊗ |ψ2〉)

= 1
2 (|00〉 + eιθp2 |01〉 + eιθp1 |10〉 − eι(θp1 +θp2 ) |11〉)

representing a two-qubit entangled weighted graph state.
(e) Peer 3 prepares his qubit at |ψ3〉 and shares copies

of it to everyone in the network. After the verification of
the authenticity of the qubit, the qubit is then entangled
with state prepared by peer 1 and peer 2 using a C2Z gate,
with two controls on qubits 1 and 2, and target on the third
qubit. The simplistic circuit diagram is shown in Fig. 5.

FIG. 5. Simplistic circuit diagram to prepare quantum
blockchain with three blocks.

The chain now can be represented as

C2
12,3Z (|ψ12〉 ⊗ |ψ3〉)

= 1

2
√

2
(|000〉 + eιθp3 |001〉

+ eιθp2 |010〉 + eι(θp2 +θp3 ) |011〉
+ eιθp1 |100〉 + eι(θp1 +θp3 ) |101〉
− eι(θp1 +θp2 ) |110〉 + eι(θp1 +θp2 +θp3 ) |111〉).

As one can see, |ψ123〉 is a three-qubit entangled weighted
hypergraph state that can be represented by the hypergraph
in Fig. 6. To make this state more secure, the peers can
operate unitary Pauli operations (in this case Pauli-X gate)
locally on this qubit (qubit 3), thus making the state an en-
tangled 3-edge hypergraph as depicted in Fig. 7. According
to [19], the hypergraph in Fig. 6 and the hypergraph state in
Fig. 7 are LOCC equivalent. The application of the Pauli-x
gate on the third qubit thus does not affect the entanglement
of the state, but the state of the system changes to

|ψ123〉 = X3C
2
12,3Z (|ψ12〉 ⊗ |ψ3〉)

= 1

2
√

2
(eιθp3 |000〉 + |001〉 + eι(θp2 +θp3 ) |010〉

+ eιθp2 |011〉 + eι(θp1 +θp3 ) |100〉 + eιθp1 |101〉
+ eι(θp1 +θp2 +θp3 ) |110〉 − eι(θp1 +θp2 ) |111〉),

creating a single 3-edge three-qubit hypergraph.
(f) The blockchain after addition of the nth block can

thus be represented as a weighted hypergraph with a single
n edge; further blocks can be added to the chain following
the protocol.

FIG. 6. The weighted hypergraph state that represents the quan-
tum 3-blockchain.
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FIG. 7. The three-qubit weighted hypergraph state representing
the quantum 3-blockchain after removal of the 2-edge by the local
Pauli operations.

We provide a flowchart representing the protocol herewith
(Fig. 8).

III. SECURITY AND EFFECTIVENESS OF THE
QUANTUM BLOCKCHAIN

In our protocol, the entanglement of the weighted hyper-
graph state acts as the chain as well as ensures the security
of the blockchain. It deals with the security of the blockchain
only after a block is added to the chain by a peer. The authen-
ticity of the blocks is checked by the verification step provided
by in Sec. II, which also takes care of the untrustworthy peer
scenario. If a block fails to meet the verification criterion,
the corresponding peer who made the block is marked as
untrustworthy. Below, we discuss the security of information
after adding a block to the chain against potential attacks on
the blockchain from the outside.

In the classical case, each block is assigned to two crypto-
graphic hash functions, one belonging to the previous block
and other designated to the current block. Thus, if an attacker
Eve tampers with a particular block m in the chain, she will
need to change the hash belonging to all subsequent blocks
that has been added to the chain after block m. The probability
of her catching up is significantly low if she uses a classical
computer, although is high if she uses a quantum computer. In
our protocol, the blockchain is represented by an entangled
state, where the information is stored in the phases of the

FIG. 8. Flowchart describing the workflow of the proposed quan-
tum blockchain.

corresponding qubits and there are n copies of the same
state shared amongst n peers. In our protocol, there is no
publicly shared “hash function” or any shared ledger-based
database; only the relative phase of the first qubit θp1 is shared
amongst the peers with the help of a quantum secure channel
established between them. Thus, if Eve wants to tamper one
particular after it is added to the chain, she needs to perform
a measurement on that particular qubit of the chain. The
chain being a entangled state, any measurement on any of the
qubits will lead to a collapse of the entire local copy she was
attacking, negating her efforts.

We consider another case where Eve wants to change a
transaction that has been included in the mth block with
corresponding phase factor θpm , she then needs to adjust the
relative phase of the mth qubit to θq. In order to do so, she
needs to operate a unitary operation on the mth qubit, to add
a relative phase (θq − θ pm) to the corresponding qubit. The
consensus of the quantum blockchain prevents Eve in doing
so, as the relative phase of each qubit is predefined and can be
checked by performing a simple measurement on the correct
basis on that particular qubit anytime. The peer whose local
copy of the chain has been compromised can identify the
compromise and rebuild his/her blockchain as (s)he knows
the exact quantum state without violating no-cloning theorem.

Moreover, weighted hypergraph states are a class of
states that fall under the locally maximally entanglable
(LME) [17,21] class of states. Hence, the peers can apply
local unitary operations on the states to change it to a different
state of the same SLOCC class which can also increase
the entanglement in the system. Quantum operations being
reversible, this will not affect a trusted party to retrieve the
information, although it will prevent any attacker who does
not know what operations have been performed on the state.

The key effectiveness of the quantum blockchain proposed
lies in the fact that each qubit in this protocol represents a
block. Previously in [6], another protocol of creating quantum
blockchain was shown using temporal GHZ states, where each
block is an n-qubit state. Our protocol is more cost effective
as it uses a single qubit to represent a block.

As each peer shares a local copy of the prepared state at
each step, the distributive nature of the blockchain technology
is maintained whereas the need of cryptographic hash function
and commonly shared ledger is eradicated. The function f (pn)
that converts the classical information to the relative phase of
the corresponding qubit is chosen by and known only to the
peer who creates the nth block, which adds another layer of
security to the stored information. The stored information is
also retrievable as each quantum operation is reversible and
f (p) is a bijective function.

In the next section, we present an example of a quantum
3-blockchain prepared in IBM five-qubit computer.

FIG. 9. Circuit for quantum 2-blockchain prepared in IBM quan-
tum experience.
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FIG. 10. Real (Real[rho]) and Imaginary (imag[rho]) parts of the theoretical density matrix representing the quantum 2-blockchain.

IV. QUANTUM BLOCKCHAIN PREPARED IN IBM
FIVE-QUBIT QUANTUM COMPUTER

In this section we present two quantum blockchains with
two and three blocks prepared in IBM Quantum Experi-
ence. Although IBM Quantum Experience is a cloud-based
platform and this protocol is based on a distributive ledger
technology, we present the construction of the blockchains
in the IBM quantum computer as a proof of concept. To
construct the quantum blockchain, we have mutually agreed
upon a general consensus that the function f (pi ) that converts
the decimal number pi containing the binary bit information of
the block i (here index i represents the chronological number
of the block) to θpi , the weight of the weighted hypergraph
state as described in Sec. II is selected individually by peer
i (the peer who creates the ith block) in such a way that
θpi = 1

2i−1 θp1 . The conditions on θpi described in Sec. II are
met by enforcing this condition.

A. Quantum 2-blockchain

We consider the phase added to the first block to be
θp1 = π

8 , and it is being broadcasted to all the peers in the
network. So, the relative phase added to the second block is
θp2 = π

16 . The circuit prepared in IBM quantum experience
representing the quantum 2-blockchain is given in Fig. 9. The
circuit has been designed on “ibmqx2” quantum processor.
The verification of the quantum state sent by the first and
second peers can be done by initiating the state on an ancilla

and measuring it on the suitable basis, which we did not show
here. The density matrix for theoretical quantum blockchain
with 2-blocks is plotted in Fig. 10, whereas Fig. 11 represents
the reconstructed density matrix obtained after running the
circuit in “ibmqx2” quantum processor with 8192 shots. The
state fidelity of the results is found be 0.9548 (up to 4 decimal
places).

B. Quantum 3-blockchain

The phase of the third block will be θp3 = π
32 as per the

consensus and prepare the circuit in IBM quantum experience
making use of the available gates. The corresponding circuit
diagram is presented in Fig. 12. Here, we have used four
qubits to make a 3-blockchain, using the last qubit as an
ancilla to create the C2Z gate using two CX gates and one
CZ gate [22]. Running this circuit in IBM “quasm simulator,”
we found the state fidelity between the original density matrix
and the reconstructed matrix postmeasurement to be 0.9948.
To prepare a C(n−1)Z gate using only C2X gate and CZ gate,
one needs to use 2(n − 1) qubits [(n − 1) control qubits,
(n − 2) ancillas, and 1 target qubit] [22]. It is thus possible to
make a quantum n-blockchain with 2(n − 1) qubits using IBM
Quantum Experience. One can prepare a quantum blockchain
with 8 blocks using the publicly accessible 14-qubit processor
of IBM (7 control qubits, 6 ancillas to prepare the C7Z gate,
and one target qubit) using the method prescribed here at this
very moment.

FIG. 11. Real (Real[rho]) and Imaginary (imag[rho]) part of the reconstructed density matrix after running the circuit in Fig. 9 representing
the quantum 2-blockchain in “ibmqx2” quantum processor with 8192 shots.
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FIG. 12. Circuit for 3-blockchain as prepared in IBM quantum
experience.

V. CONCLUSION

In summary, a protocol to prepare a quantum blockchain
has been presented using weighted hypergraph states where
the classical ledger-based network and cryptographic hash
functions have been replaced with the entanglement of the
weighted hypergraph state. The security and effectiveness of
the protocol have been discussed against an attacker pos-
sessing a quantum computer. A prescription to prepare a
quantum blockchain using publicly accessible IBM quantum
computer. A quantum 2-blockchain prepared in IBM five-
qubit processor “ibmqx2” is presented as a proof of concept,

which has a fidelity of 0.9548. We hope that this protocol
finds significant applications in various fields as the classical
blockchain technology is threatened by the recent quantum
advancements. Quantum money [23,24] and attacks against
it [25,26] have been a point of interest of quantum infor-
mation research since it was first proposed by Wisner [23].
Previously, the idea of a quantum check scheme has been
proposed by Moulick and Panigrahi [27], which is uncondi-
tionally secure. This proposed quantum money transaction via
quantum check has been realized experimentally in a quantum
computer using IBM quantum experience [28]. The idea of
a quantum blockchain provides a secured quantum ledger to
keep unalterable records of such quantum as well as several
classical transactions. This is a step forward to the direction
of establishing a secure and completely quantum currency
transaction system.
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