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Push-pull optimization of quantum controls
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Optimization of quantum controls to achieve a target process is centered around an objective function
comparing the realized process with the target. We propose an objective function that incorporates not only
the target operator but also a set of its orthogonal operators whose combined influence leads to an efficient
exploration of the parameter space, faster convergence, and extraction of superior solutions. The push-pull
optimization, as we call it, can be adopted in various quantum control scenarios. We describe adopting it for
gradient based and variational-principle based approaches. Numerical analysis of quantum registers with up
to seven qubits reveals significant benefits of the push-pull optimization. We describe applying the push-pull
optimization to prepare a long-lived singlet order in a two-qubit system using NMR techniques.
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I. INTRODUCTION

Optimal control theory finds applications in diverse fields
such as finance, science, and engineering [1,2]. Quantum
optimal control has also gained significant attention over
the past several years [3,4] and is routinely used in robust
steering of quantum dynamics such as in chemical kinet-
ics [5,6], spectroscopy [7–9], quantum computing [10,11],
and many more [12]. Here we focus on optimization of
quantum controls either to transfer from one state to an-
other, henceforth called state control, or to realize a target
unitary evolution, henceforth called gate control. Relevant
numerical techniques fall into several categories including
stochastic-search methods such as strongly modulating pulses
[13], gradient-based approaches such as gradient ascent pulse
engineering (GRAPE) [14,15] and gradient optimization of
analytical control [16], variational-principle-based Krotov
optimization [17–19], truncated basis approaches such as
chopped random basis optimization [20,21], genetic algorithm
enabled bang-bang controls [22,23], and machine-learning-
based approaches [24,25]. These control schemes have been
implemented on various quantum architectures such as NMR
[9,13,22,26], nitrogen-vacancy centers [27], ion traps [28],
superconducting qubits [29], magnetic resonance imaging
[30], and cold atoms [11].

An objective function evaluating the overlap of the realized
process with the target process is at the core of an opti-
mization algorithm and therefore should be chosen carefully
[31,32]. Here we propose a hybrid objective function that
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depends not only on the target operator, but also on a set of
orthogonal operators. One may think of control parameters as
being pulled by the target operator as well as pushed by the
orthogonal operators. Accordingly, we refer to this method
as push-pull optimization of quantum controls (PPOQC). We
describe adopting PPOQC for GRAPE and Krotov algorithms
and demonstrate its superior convergence over the standard
pull-only methods. We also experimentally demonstrate the
efficacy of PPOQC in a NMR quantum test bed by preparing
long-lived singlet order.

The article is organized as follows. In Sec. II we describe
the optimization problem and the push-pull approach, partic-
ularly focusing on a gradient-based algorithm as well as a
variational-principle-based algorithm. In Sec. III we provide
numerical analysis to compare push-pull with pull-only ap-
proaches. Here we also study the dependence of the push-pull
approach on various aspects such as system size, conjugate
gradients, and adaptive weights. In Sec. IV we describe the
NMR experiments to generate the long-lived singlet order in
a two-spin system directly from thermal equilibrium using a
pulse sequence designed by the push-pull Krotov algorithm.
We summarize in Sec. V.

II. OPTIMIZATION PROBLEM

Consider a quantum system with an internal or fixed
Hamiltonian H0 and a set of M control operators {Ak} lead-
ing to the full time-dependent Hamiltonian H (t ) = H0 +∑M

k=1 uk (t )Ak , where control amplitudes uk (t ) are amenable
to optimization. The propagator for a control sequence of du-
ration T is D exp[−i

∫ T
0 H (t ′)dt ′], where D is the Dyson time-

ordering operator. The standard approach to simplifying the
propagator is via piecewise-constant control amplitudes with
N segments each of duration τ [see Fig. 1(a)]. In this case,
the overall propagator is of the form U1:N = UNUN−1 · · ·U2U1,
where Uj = exp(−iHjτ ) is the propagator for the jth segment
and Hj = H0 + ∑M

k=1 u jkAk . Our task is to optimize the con-
trol sequence {u jk} depending on the following two kinds of
optimizations.
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FIG. 1. (a) Piecewise-constant control parameter ujk versus the
segment number j. (b) Infidelity 1 − F versus ujk .

(i) Gate control (GC). Here the goal is to achieve an overall
propagator (gate) Ut that is independent of the initial state.
This is realized by maximizing the gate fidelity F (U1:N ,Ut ) =
|〈Ut |U1:N 〉|2 = |Tr{U †

t U1:N }|2.
(ii) State control (SC). Here the goal is to drive a given

initial state ρ0 to a desired target state ρt . This can be achieved
by maximizing the state fidelity F (ρ1:N , ρt ) = 〈ρt |ρ1:N 〉 =
Tr{ρtρ1:N }, where ρ1:N = U1:Nρ0U

†
1:N .

In practice, hardware limitations impose bounds on the
control parameters {u jk} and therefore it is desirable to min-
imize the overall control resource rk = ∑

j u2
jk . To this end,

we use the performance function J = F − ∑M
k=1 λkrk , where

λk are penalty constants.
PPOQC. Be it gate control or state control, for a d-

dimensional target operator, we can efficiently setup d − 1
orthogonal operators via the Gram-Schmidt orthogonalization
procedure [33]. The target operator pulls the control sequence
towards itself, whereas the orthogonal operators push it away
from them [see Fig. 1(b)]. We define the push fidelities as

Fo(U1:N , {Vl}) = 1

L

L∑
l=1

F (U1:N ,Vl ) for GC,

Fo(ρ1:N , {Rl}) = 1

L

L∑
l=1

F (ρ1:N , Rl ) for SC, (1)

where {Vl} and {Rl} are L � d − 1 orthogonal operators such
that F (Ut ,Vl ) = 0 and F (ρt , Rl ) = 0. Of course, d increases
exponentially with the system size, but as we will see later,
a small subset of L orthogonal operators can bring about
a substantial advantage. Also, note that for a given target
operator, the set of orthogonal operators is not unique and can
be generated randomly and efficiently in every iteration. We
define the push-pull performance function

JPP = F − αFo −
M∑

k=1

λkrk. (2)

The push weight α can be a constant or adaptively adjusted.
In the following, we describe incorporating PPOQC into two
popular optimal quantum control methods.

A. GRAPE optimization

Being a gradient-based approach, GRAPE optimization
involves an efficient calculation of the maximum-ascent

direction [14]. While it is sensitive to the initial guess and
looks for a local optimum, it is nevertheless simple, powerful,
and popular. The algorithm iteratively updates control param-
eters {u jk} in the direction of gradient g(i)

jk = ∂J (i)/∂u(i)
jk ,

g(i)
jk (Ut ) = 2τ Im{〈Pj |AkU1: j〉〈U1: j |Pj〉} for GC,

g(i)
jk (ρt ) = −iτ 〈ρ̃ j |[Ak, ρ1: j]〉 for SC, (3)

where i denotes the iteration number, Pj = U †
j+1:NUt , and

ρ̃ j = U †
j+1:NρtUj+1:N [14]. Collective updates u(i+1)

jk = u(i)
jk +

εg(i)
jk after iteration i on all the segments with a suitable step

size ε proceed with monotonic convergence.
Push-pull GRAPE (PP-GRAPE). Using Eq. (2), we recast

the gradients as

G(i)
jk (Ut , {Vl}) = g(i)

jk (Ut ) − α

L

L∑
l=1

g(i)
jk (Vl ) for GC,

G(i)
jk (ρt , {Rl}) = g(i)

jk (ρt ) − α

L

L∑
l=1

g(i)
jk (Rl ) for SC (4)

and the update rule as u(i+1)
jk = u(i)

jk + εG(i)
jk . The revised gradi-

ents form the basis of PP-GRAPE.

B. Krotov optimization

Based on the variational principle, this method aims for the
global optimum [34]. Here the performance function is maxi-
mized with the help of an appropriate Lagrange multiplier Bj .
One sets up a Lagrangian of the form [9]

L = F −
M∑

k=1

λkrk −
N∑

j=1

Re〈Bj | d

dt
+ iHj |U0: j〉, (5)

where the first two terms are the same as the performance
function J , and looks for a stationary point satisfying ∂L

∂F = 0,
∂L
∂u jk

= 0, and ∂L
∂Bj

= 0. The second differential equation leads

to u jk = 1
λk

Im〈Bj |AkU0: j〉 and the last differential equation
constrains evolution according to the Schrödinger equation
Ḃ(t ) = −iH (t )B(t ).

At every iteration i, the Krotov algorithm evaluates the con-
trol sequence {u(i)

jk } as well as its cosequence {ũ(i)
jk }. Starting

with a random guess {u(0)
jk } = {ũ(0)

jk }, forward propagation of

the sequence {u(0)
jk } gives U1: j and backward propagation of the

cosequence {ũ(0)
jk } from the boundary BN = ∂F/∂U1:N leads to

Bj . Specifically,

BN = 〈Ut |U0:N 〉Ut for GC,

BN = ρtU0:Nρ0 + κU0:N for SC. (6)

Here U0:N = U0U1:N , U0 = 1, and κ is a positive constant
that ensures the positivity of fidelity. Backpropagating the
cosequence, we obtain

Bj = Ũ †
j+1 · · · Ũ †

N−1Ũ
†
N BN , (7)
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FIG. 2. Performance analysis on a two-qubit system for GRAPE GC (first column), GRAPE SC (second column), Krotov GC (third
column), and Krotov SC (fourth column). (a)–(d) Infidelity 1 − F of two-qubit controls versus iteration number (i) and number (L) of
orthogonal operators for GRAPE and Krotov as indicated. Black lines represent mean infidelities. (e)–(h) Mean infidelity versus i. Curves
for L = 0 (red) and for L leading to the maximum final fidelity (green) are highlighted. (i)–(l) Mean final infidelity (left axis) and relative
computing time (right axis) versus L. Error bars represent one standard deviation. (m)–(p) Probability versus advantage factor.

where Ũj = exp(−iH̃τ ) and H̃j = H0 + ∑M
k=1 ũ jkAk . Now

the sequence {u(i)
jk } is updated according to

u(i)
jk = (1 − δ)ũ(i−1)

jk + δ

λk
Im

〈
B(i−1)

j

∣∣AkU
(i)
0: j−1

〉
(8)

and the propagator U (i)
0: j is evaluated. Iterating the last two

steps delivers propagators U (i)
0:1,U (i)

0:2, . . . ,U (i)
0:N . The terminal

Lagrange multiplier B(i)
N is evaluated using Eq. (6). To set up

the cosequence {ũ(i)
jk } we first evaluate the terminal control ũNk

using

ũ(i)
jk = (1 − η)u(i)

jk + η

λk
Im

〈
B(i)

j

∣∣AkU
(i)
0: j

〉
, (9)

with j = N . The Lagrange multiplier B(i)
N−1 = Ũ †

N B(i)
N is now

evaluated by backpropagating with the updated amplitude
ũ(i)

Nk . Iterating the last two steps updates the whole cosequence
{ũ(i)

jk }. The algorithm is continued until the desired fidelity is
reached.

Push-pull Krotov (PP-Krotov). Here we use L additional
cosequences {ṽ(i)

jkl} corresponding to orthogonal operators {Vl}
or {Rl}. Terminal Lagrange multipliers {CNl} are obtained
using equations similar to Eq. (6): CNl = 〈Vl |U0:N 〉Vl for
GC and CNl = RlU0:Nρ0 + κU0:N for SC. The revised update

rule is

u(i)
jk = (1 − δ)ũ(i−1)

jk + δ

λk
Im

〈
B(i−1)

j

∣∣AkU
(i)
0: j−1

〉

+ αδ

L

L∑
l=1

[
ṽ jkl − 1

λk

〈
C(i−1)

jl

∣∣AkU
(i)
0: j−1

〉]
, (10)

where ṽ
(i)
jkl = αη

L [u(i)
jk − 1

λk

∑L
l=1 Im〈C(i)

jl |AkU
(i)
0: j〉] and α is the

push weight as in Eq. (2).

III. NUMERICAL ANALYSIS

The results of PPOQC analysis in a model two-qubit Ising-
coupled system are summarized in Fig. 2. For GC, we use
the controlled-NOT (CNOT) gate as the target, while for SC,
the task is a transfer from the |00〉 state to the singlet state
|S0〉 = (|01〉 − |10〉)/

√
2. In each case, we use a fixed set

of 100 random guess sequences. The PP-GRAPE and PP-
Krotov algorithms are run for various sizes of orthogonal
sets (L ∈ [1, 15] with push weight α = 0.2) and compared
with the pull-only (L = 0) results [Figs. 2(a)–2(d)]. PPOQC
outperforms the pull-only algorithms in terms of the mean
final fidelity in all cases [Figs. 2(e)–2(h)]. More importantly,
while the pull-only fidelities tend to saturate by settling into
local minima, the push-pull trials appear to explore larger
parameter space and thereby extract solutions with better
fidelities. While the computational time for PP-GRAPE is
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FIG. 3. Infidelities for 40 random guesses (thin lines) and their
mean (thick lines) versus iteration number i with Krotov (red)
and with PP-Krotov (blue) (L = 1 and α = 0.2) for QFT on qubit
registers of varying sizes (n as indicated).

weakly dependent on L, we find a slow but linear increase
in the case of PP-Krotov [Figs. 2(i)–2(l)]. To quantify the ad-
vantage of PPOQC over the standard algorithms, we define
the advantage factor [1 − F (L = 0)]/[1 − F (Lbest )], where
Lbest corresponds to the one with maximum mean of final
fidelity [Figs. 2(m)–2(p)]. In all cases PPOQC (L � 1) results
in convergences superior to the standard pull-only (L = 0)
algorithms. In particular, PP-Grape SC and PP-Krotov GC
reach advantage factors up to 64, while PP-Krotov SC reaches
up to 16. Only in PP-Grape GC, is the advantage factor a
modest 2.

To analyze the performance of PPOQC in larger systems,
we implement a quantum Fourier transform (QFT), which
is central to several important quantum algorithms [9]. We
implement the entire n-qubit QFT circuit, consisting of n
local and O(n2) conditional gates, into a single PP-Krotov GC
sequence. The results, with registers up to seven qubits, shown
in Fig. 3 ensure that the PPOQC advantage persists even in
larger systems.

The push-pull technique can also be combined with other
convergence improvement techniques such as a conjugate
gradient [35], which is illustrated by the best performance
of the conjugate PP-GRAPE in Fig. 4(a). Moreover, in the
pull-only algorithms, the step size ε may be optimized to
ensure the best convergence. Similarly, in PPOQC, one can
simultaneously optimize both the step size ε and the push
weight α to realize the best convergence rate. This is illus-
trated in Fig. 4(b). Notice that we now obtain an order of
magnitude improvement in the infidelity compared to the pull-
only algorithm. Further discussion and numerical analysis are
provided in the Appendixes.

IV. NMR EXPERIMENTS

We now study the efficacy of PPOQC via an important
application in NMR spectroscopy, i.e., preparation of a long-
lived state (LLS). Carravetta et al. demonstrated that the

FIG. 4. Mean infidelities (thick lines) of GRAPE sequences im-
plementing a two-qubit CNOT gate. (a) Performance with/without
conjugate gradients. (b) Pull-only method (L = 0) with adoptive step
size ε (red) and push-pull method (L = 15) with simultaneously
adopted step size and push weight α (blue).

singlet order of a homonuclear spin pair outlives the usual life-
times imposed by a spin-lattice relaxation time constant (T1)
[36,37]. Prompted by numerous applications in spectroscopy
and imaging, several efficient ways of preparing an LLS have
been explored [38]. In the following, we utilize PP-Krotov SC
optimization for this purpose.

We prepare an LLS on two protons of 2,3,6-trichlorophenol
(TCP) [see Fig. 5(a)]. The sample consists of 7 mg of TCP
dissolved in 0.6 ml of deuterated dimethyl sulfoxide. The
experiments are carried out on a Bruker 500-MHz NMR spec-
trometer at an ambient temperature of 300 K. The standard
NMR spectrum of TCP shown in Fig. 5(a) indicates resonance
offset frequencies ±�ν/2 to be ±63.8 Hz and the scalar cou-
pling constant J = 8.8 Hz. The internal Hamiltonian of the
system, in a frame rotating about the direction of the Zeeman
field at an average Larmor frequency, is H0 = −π�νIA

z +
π�νIB

z + 2πJ IA
z IB

z , where IA
z and IB

z are the z compo-
nents of the spin angular momentum operators IA and IB,
respectively.

The thermal equilibrium state at the high-field and high-
temperature approximation is of the form ρ0 = IA

z + IB
z (up

to an identity term representing the background population).
The goal is to design an rf sequence {ux(t ), uy(t )} introducing
a time-dependent Hamiltonian

H (t ) = H0 + ux(t )
(
IA
x + IB

x

) + uy(t )
(
IA
y + IB

y

)
that efficiently transfers ρ0 into zero-quantum singlet-triplet
order ρS = −IA · IB. Under an rf spin lock the triplet order
decays rapidly while the singlet order ρLLS remains long lived.
The PP-Krotov SC pulse sequence shown in Fig. 5(b) consists
of 1000 segments in a total duration of 45 ms, which is 30%
shorter than the standard sequence that requires 1

2J + 3
4�ν

=
63 ms [37]. The fidelity profile shown in Fig. 5(c) indicates the
robustness of the sequence against a 10% rf inhomogeneity

013314-4



PUSH-PULL OPTIMIZATION OF QUANTUM CONTROLS PHYSICAL REVIEW RESEARCH 2, 013314 (2020)

FIG. 5. (a) Thermal and LLS spectra of TCP (molecule in inset).
(b) PP-Krotov SC sequence (L = 5) preparing LLS directly from the
thermal state. (c) LLS fidelity evolution during the sequence in (b) at
different rf inhomogeneity levels. (d) The T1 values measured by
the inversion recovery experiment and the TLLS measured by storage
under spin lock.

distribution with an average final fidelity above 95%. The LLS
spectrum shown in Fig. 5(a) is characteristic of the singlet
state ρS . Figure 5(d) shows the experimental results of LLS
storage under 1-kHz WALTZ-16 spin lock. It confirms the
long lifetime TLLS of about 24.5 s or about 4.5 times T A

1 and
T B

1 measured by inversion recovery experiments. A compari-
son with the standard method (as in Ref. [37]) revealed 27%
higher singlet order, further indicating the superiority of the
PP-Krotov SC sequence.

V. CONCLUSION

At the heart of optimization algorithms lies a performance
function that evaluates a process in relation to a target. Using
a hybrid objective function that simultaneously takes into ac-
count a given target operator and a set of orthogonal operators,

we devised the push-pull optimization of quantum controls.
The combined influences of these operators not only results
in a faster convergence of the optimization algorithm, but also
effects a better exploration of the parameter space and thereby
generates better solutions. Although the orthogonal set grows
exponentially with the system size, it is not necessary to
include an exhaustive set. Even a small set of orthogonal
operators, generated randomly during the iterations, can bring
about a significant improvement in convergence.

While the push-pull approach can be implemented in
a wide variety of quantum control routines, we described
adopting it in gradient-based and variational-principle-based
optimizations. We observed considerable improvements in
the convergence rates, without overburdening computational
costs. The numerical analysis with up to seven qubits con-
firmed that the push-pull method retained superiority even in
larger systems. Combining the push-pull method with conju-
gate gradients also resulted in better performance. Numerical
analysis revealed further improvement with the adoptive step
sizes and adoptive push weights.

Finally, using NMR methods, we experimentally verified
the robustness of a push-pull Krotov control sequence prepar-
ing a long-lived singlet order. Further work in this direction
should include optimizing the functional forms of orthogonal
gradients and generalization to open quantum controls.
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APPENDIX A: RAPID PARAMETER SEARCH
IN THE PUSH-PULL APPROACH

To gain insight into the superiority of the push-pull ap-
proach over the pull-only approach, we observed how the
gradients evolve over time. Figure 6 displays the evolution
of gradients versus control amplitudes over several iterations.
The simulations are carried out for a two-qubit CNOT gate
with both pull-only and push-pull GRAPE algorithms. The
push-pull algorithm ultimately converged to a better fidelity
(0.993) than the pull-only algorithm (0.981). Notice that the
push-pull gradients show more rapid changes than the pull-
only algorithm, indicating a more robust parameter search in
action. This behavior appears to be the crucial factor for the
faster convergence of the push-pull approach.

APPENDIX B: PUSH WEIGHT

Figure 7 displays infidelities of PP-GRAPE and PP-Krotov
algorithms versus the push α. We note that, on the pos-
itive side, the infidelity is generally superior to the pull-
only algorithm (α = 0). In each case, there exists an optimal
push weight roughly in the range α ∈ [0.1, 0.3] at which the
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GRAPE GC

-1 0 1
10 -3

10 -2

10 -1

GRAPE SC
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Krotov GC
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Krotov SC

FIG. 7. Infidelity versus the push weight α for L = 6. Error
bars indicate one standard deviation. The black point at α = 0
corresponds to the standard pull-only algorithms. The green and red
regions indicate, respectively, superior and inferior performances of
PPOQC with respect to the pull-only algorithm.

PPOQC works best. It is interesting to see that some negative
regions also display superior performances.
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