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The observation of high-order harmonic generation (HHG) from bulk crystals is stimulating substantial efforts
to understand the involved mechanisms and their analog to the intuitive three-step recollision model of gas-phase
HHG. Here we explore the roles of electronic band structure and Coulomb interactions in solid-state HHG
by studying the optical response of linear atomic chains and carbon nanotubes to intense ultrashort pulses.
Specifically, we simulate electron dynamics by solving the single-particle density matrix equation of motion in
the presence of intense ultrafast optical fields, incorporating tight-binding electronic states and a self-consistent
electron-electron interaction. At this level of description, linear atomic chains constitute an idealized yet realistic
one dimensional (1D) system in which to explore HHG that can advantageously be tuned to describe metals,
regular insulators, and topological insulators. Our chain model readily provides insight on the temporal evolution
of electronic states in reciprocal space, revealing the important role played by electron interactions in HHG, due
in part to the presence of collective optical resonances. This model further predicts that doped semiconductors
generate high harmonics more efficiently than their metallic and undoped counterparts. To complement this
idealized system we also show results for HHG in more realistic quasi-1D structures such as carbon nanotubes,
the behavior of which is found to be in good qualitative agreement with the atomic chains. Our findings apply
directly to extreme nonlinear optical phenomena in atoms on surfaces, carbon-based structures, linear arrays of
dopant atoms in semiconductors, and linear molecules, such as polycyclic aromatic hydrocarbon chains, and can
be straightforwardly extended to optimize existing platforms for HHG or identify new solid-state alternatives in
the context of nonlinear plasmonics.

DOI: 10.1103/PhysRevResearch.2.013313

I. INTRODUCTION

High-harmonic generation (HHG) is perhaps the most
striking example of a nonlinear optical process and its ability
to spectrally and temporally disperse intense laser light [1,2].
Initial reports of HHG from atomic gases [3] revealed a light
emission intensity plateau extending over many integer mul-
tiples of the fundamental exciting laser frequency and char-
acterized by an abrupt drop at a specific cutoff energy. Con-
cise theoretical explanations of the underlying physics were
developed shortly thereafter, culminating in the celebrated
three-step model of an atom interacting with a single cycle of
an intense impinging optical field: tunnel ionization triggered
by the driving electric field liberates an electron from the
atom that gains additional kinetic energy as it is driven away
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from and back toward the parent nucleus, ultimately emitting,
on recollision (through coherent interactions of the electron
wave function with itself), light at high-harmonic orders of the
fundamental frequency [4–6]. This extreme nonlinear optical
phenomenon is a source of coherent high-frequency electro-
magnetic radiation, which can be processed to produce at-
tosecond optical pulses, thus garnering significant attention as
the means to develop micron-scale extreme ultraviolet (XUV)
light sources [7] (i.e., the equivalent of table-top synchrotrons)
and perform quantum logic operations at optical clock rates
[8], while enabling visualization of electronic band structures
[9,10], monitoring electron-hole recollisions in real time [11],
resolving subfemtosecond processes governing chemical re-
actions [12], and recording electron dynamics in molecular
orbitals [13,14].

Despite the numerous fascinating advances in science and
technology that have resulted from atomic HHG, the expense
and delicacy of the associated experimental set-ups renders
their use hardly practical outside of specialized laboratory
facilities. In contrast, recent observations of HHG from solids
[15–17] are establishing new paths for attosecond science
and strong-field physics, potentially leading toward XUV
and attosecond light sources in compact solid-state devices.
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While the three-step recollision model [18] offers an intuitive
understanding of HHG from atoms in the gas phase, the
picture is less clear for solid-state HHG. Early theoretical
proposals considered a three-step-like model in which an
electron undergoes Bloch oscillations within an electronic
band (either valence or conduction after interband tunneling)
as a consequence of the change in direction of acceleration
after half an optical cycle of the driving electric field [19–21];
the excited electron subsequently scatters within its band
(i.e., intraband HHG) or recombines with the parent hole
or ion (i.e., interband HHG) to ultimately recollide with
the first- and second-nearest holes or ions. However, this
simplified description does not explain the role of electron-
electron correlations, and furthermore, available experiments
and numerical simulations often do not elucidate the specific
origin of generated harmonics (e.g., from interband or in-
traband charge-carrier motion); the generation of even-order
harmonics, the existence of atto-chirps, the formation of a
well-defined high-energy cutoff, and numerous aspects of the
electronic band structure still remain underexplored in the
context of solid-state HHG [22–25].

Further insight into the aforementioned open questions in
HHG from condensed-matter systems has been gathered by
analyzing one dimensional (1D) systems based on periodic
model potentials, where time-domain simulations of nonin-
teracting electrons driven by intense laser fields underscore
the importance of pulse carrier envelope phase and electronic
band structure [26]. Such model potentials also offer a con-
venient tool to explore the effects of ion-implantation or im-
purity engineering as doping mechanisms in semiconductors,
which can potentially enhance their HHG yield [27–29]. Par-
allel efforts to elucidate the link between electron dynamics
and HHG employ an alternative atomistic approach based
on one of the simplest models in solid-state physics: the
Su-Schrieffer-Heeger (SSH) chain [30–32], consisting of a
dimerized linear chain of atoms described in the tight-binding
approximation, with alternating hopping energies assigned
to each of the two neighboring atoms on side of any given
atom [Fig. 1(a)]. As we discuss below, the SSH model is a
convenient system to explore electronic band structure effects
in the optical response of materials, as appropriate choices of
hopping energies reveal metallic, insulating, or topologically
insulating behavior. To explore the effect of topology on
HHG, recent works [33,34] have employed the SSH tight-
binding model and its analog in more rigorous time-dependent
density functional theory (TDDFT) simulations of atomic
chains, predicting improved harmonic yields associated with
the topological insulator (TI) phases for sub-band-gap photon
energies that are robust under distortions, continuous phase
transitions, and choice of on-site potentials [35]. In a related
study [36], the transition from atomic-like systems to solid-
state bulk materials was analyzed in the context of HHG,
emphasizing the evolution in cutoff energy as the chain length
increases and concluding that a chain of six atoms constitutes
the optimal length for this transition to occur as a consequence
of changes in the state density.

Seeking to optimize HHG yields in condensed-matter
systems, we explore the synergy between electronic band
structure and optical resonances in finite SSH chains, which

constitute a convenient, computationally inexpensive model
that has already been demonstrated to qualitatively describe
HHG predicted in the more rigorous TDDFT simulations
of related 1D systems [33,34]. We augment the SSH tight-
binding Hamiltonian with a term accounting for electron-
electron interactions, incorporating a single-electron density
matrix description of the optical response and introducing
the effect of inelastic charge-carrier scattering through a phe-
nomenological damping rate; this prescription allows us to
systematically explore the dependence of HHG yield on the
spectral characteristics of the impinging optical pulse and
identify frequencies at which HHG is enhanced by optical res-
onances associated with the electronic band gap or collective
electron motion (i.e., plasmons) in SSH chains. We further
explore the effect of electrical doping on HHG by populating
the electronic bands with additional charge carriers; the added
charges can Pauli-block specific electronic transitions and in-
troduce collective resonances, thus facilitating explorations of
both. In order to verify the qualitative predictions based on the
SSH model in a more realistic condensed-matter platform, we
investigate HHG in finite carbon nanotubes (CNTs) of various
chiralities that produce similar electronic band features and
also display different electronic behavior (metallic, insulating,
and topologically insulating). Our findings elucidate the roles
of these features intrinsic to different solid-state systems,
providing a road map for the identification and engineering of
next-generation solid-state nonlinear optical devices capable
of producing XUV light and/or attosecond pulses.

II. ELECTRON DYNAMICS

In our SSH model, spin-degenerate electrons occupy the
orbitals |l〉 located at atomic sites xl = la uniformly spaced
with the lattice constant a. Single-electron states |ϕ j〉 with as-
sociated energy eigenvalues h̄ε j satisfying h̄ε j |ϕ j〉 = H0 |ϕ j〉
are then obtained by expanding in the site basis according to
|ϕ j〉 = ∑

l a jl |l〉, where a jl are real-valued expansion coeffi-
cients. Following the formalism introduced elsewhere to sim-
ulate the optical response of graphene nanoislands [37,38], the
electron dynamics is described by the single-particle density
matrix ρ = ∑

ll ′ ρll ′ |l〉 〈l ′| constructed from time-dependent
matrix elements ρll ′ and governed by the equation of motion

ρ̇ = − i

h̄
[H0 − eφ, ρ] − γ

2
(ρ − ρ0), (1)

where ρ0 denotes the equilibrium density matrix to which
the system relaxes at a phenomenological rate h̄γ = 50 meV
(i.e., a relaxation time τ = γ −1 ∼ 13.2 fs) and φ = φext +
φind is the electrostatic potential, which includes contribu-
tions from both the impinging light electric field, φext

l =
−xl E (t ), and the electron-electron (e-e) interaction, φind

l =∑
l ′ vll ′ρ

ind
l ′ ; the latter quantity renders the equation of mo-

tion self-consistent through its dependence on the induced
charge ρ ind

l = −2e(ρll − ρ0
ll ) (the factor of 2 accounts for

spin degeneracy) mediated by the spatial dependence of the
Coulomb interaction vll ′ between atoms l and l ′, for which
we choose parameters associated with carbon 2p orbitals
[37]. In Fig. 1(b) we plot the employed Coulomb interac-
tion compared to that of a pointlike charge. The equilib-
rium density matrix is constructed in the state representation
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FIG. 1. Characterizing the linear and nonlinear optical response of SSH chains. (a) Schematic representation of a SSH chain composed
of atoms A and B in the unit cell, with intracell (intercell) hopping t1 (t2), and uniform interatomic spacing a. (b) Coulomb interaction
of the SSH chain v(x) compared to 1/x. [(c)–(e)] Band structure of SSH chains containing N = 50 atoms, fixing the intercell hopping to
t2 = −2.8 eV and varying the intracell hopping t1; depending on the choice of t1 the system is (c) metallic (t1 = t2 = −2.8 eV, black curves),
(d) insulating (t1 = −3.3 eV, red curves), and (e) a topological insulator (TI) (t1 = −2.3 eV, blue curves). [(f)–(h)] Linear absorption cross
section normalized to the effective chain area Na2 with electron-electron interactions switched on (e-e on) and off (e-e off) for the metal
(f), the insulator (g), and the TI (h). [(i)–(k)] Harmonic generation, quantified through the dipole acceleration | p̈(ω)|2 = |ω2 p(ω)|2 (where
p(ω) denotes the ω component of the induced dipole), produced by pulses of 1013 W/m2 peak intensity, 100 fs FWHM duration, and carrier
frequency ω0, with the latter quantities in each panel indicated by the color-coded legends and arrows in (f)–(h). The heavily-shaded curves
represent high-harmonic spectra when e-e interactions are taken into account, while lighter-colored curves are obtained from simulations that
neglect e-e interactions. [(l)–(n)] Same as (i)–(k) but for a fixed pulse carrier energy of 0.2 eV, away from the resonances appearing in (f)–(h).

according to ρ0
j j′ = δ j j′ f j , where f j is the occupation factor of

state |ϕ j〉 and transformed to site representation through ρll ′ =∑
j j′ a jla j′l ′ρ j j′ . In practice, the occupation factors f j of the

atomic chain are determined by sequentially filling the lowest-
energy states with a maximum of two spin-degenerate elec-
trons per state (maintaining equal occupation factors for de-
generate states) until the total of 2

∑
j f j = N + Q electrons is

completed, where N is the number of atoms and Q the doping
charge that in principle can take positive or negative values.
This procedure neglects temperature effects, which could

otherwise be included simply by populating states ac-
cording to a Fermi-Dirac distribution f j = {1 + exp[(h̄ε j −
μ)/kBT ]}−1 with a designated chemical potential μ and tem-
perature T .

Incidentally, linear response theory [obtained by replacing
the [φ, ρ] term by [φ, ρ0] in Eq. (1)] yields a solution to
Eq. (1) for a monochromatic external electric field E exte−iωt +
c.c. of frequency ω in the form of the harmonic density ma-
trix component ρ (1)e−iωt ; the induced charge density ρ ind

l =
−2eρ (1)

ll (with a factor of 2 for spin degeneracy) is then
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self-consistently computed in the so-called random-phase
approximation (RPA) [39,40] as ρ ind = χ (0)φ, where

χ
(0)
ll ′ = 2e

h̄

∑
j j′

( f j′ − f j )
a jl a j′l a jl ′a j′l ′

ω + iγ /2 − (ε j − ε j′ )
(2)

is the noninteracting RPA susceptibility. The poles of χ (0) are
related to individual electron-hole (e-h) pair excitations, so
that omission of the induced charge by taking φ → φext yields
a response comprised of Lorentzian peaks at the energies
h̄(ε j − ε j′ ); including the self-consistent potential, we isolate
the induced charge as ρ ind = χφext, where the response func-
tion χ = χ (0)[1 − χ (0)v]−1 introduces new poles associated
with collective charge carrier excitations through the Coulomb
interaction. For simplicity, we neglect exchange interaction
and spin effects.

Going beyond linear response, we solve the equation of
motion through either of two complementary approaches that
allow us to investigate the nonlinear optical response in differ-
ent regimes. In the first method we resort to direct numerical
integration of Eq. (1) in the time domain (TD) to obtain the
induced dipole moment

p(t ) = −2e
∑

l

ρ ind
l xl

produced by various types of external fields E (t ) [e.g., contin-
uous wave (cw) illumination or ultrashort pulses], from which
Fourier transformation of p(t ) reveals its spectral decomposi-
tion and characterizes the optical response. The TD approach
does not impose any limit on the strength or type of impinging
field, thus enabling the study of the intensity-dependent opti-
cal response, including simultaneously the effects of saturable
absorption and high-order harmonic generation. As we are
primarily interested in the latter phenomenon, we quantify the
radiation emitted from the SSH chain by the squared modulus
of its dipole acceleration | p̈(ω)|2 = |ω2 p(ω)|2 [33,34,36,41],
which is proportional to the far-field power spectrum of the
emitted light.

In the second approach, we assume monochromatic illumi-
nation (as in the RPA) and perturbatively expand the density
matrix entering Eq. (1) according to

ρ =
∞∑

n=0

n∑
s=−n

ρnse−isωt ,

where n = 0, 1, 2, . . . denotes the perturbation order and s the
harmonic index, such that ρns is defined only when |s| � n.
Using a procedure introduced in Ref. [38] to generalize the
RPA to nonlinear processes, we isolate the diagonal density
matrix elements as

ρns
ll = −1

2e

∑
l ′

χ
(0),s
ll ′ φns

l ′ +
∑

j j′
a jl a j′lη

ns
j j′ , (3)

where χ
(0),s
ll ′ is given by Eq. (2) with the substitution ω → sω,

φns
l = φext

l δn,1(δs,−1 + δs,1) − 2e
∑

l ′
vll ′ρ

ns
l ′l ′ ,

is the contribution to the harmonic s of the total potential at
order n, and

ηns
j j′ = − e

h̄

n−1∑
n′=1

n′∑
s′=−n′

∑
ll ′

(
φn′s′

l − φn′s′
l ′

)
a jl a j′l ′

sω + iγ /2 − (ε j − ε j′ )
ρn−n′,s−s′

ll ′

acts as a nonlinear source term constructed from lower per-
turbation orders. This prescription allows us to obtain the
polarizabilities

α(n)
sω = − 2e

(E0)n

∑
l

ρns
ll xl (4)

from the self-consistent solution of Eq. (3). Here we use it
to calculate the linear polarizability α(1)

ω and the nonlinear
polarizability α(3)

ω (i.e., the leading nonlinear contribution to
the response at the fundamental frequency, which is associated
with the Kerr nonlinearity and two-photon absorption).

III. SU-SCHRIEFFER-HEEGER MODEL

Originally introduced to describe pz electrons in CH
monomer chains (polyacetylene), the SSH model describes a
1D dimerized chain of N atoms through a tight-binding (TB)
Hamiltonian [30] and constitutes a simple yet powerful tool
to explore nontrivial topological electronic band structure. We
consider an SSH chain that contains N/2 unit cells with two
sites per cell occupied by one atom from either sublattice A
or B [Fig. 1(a)]. Also, we denote the intracell and intercell
hoppings as t1 and t2, respectively. The TB Hamiltonian
describing the chain is [42]

H0 = t1

N/2∑
l=1

(|l, B〉 〈l, A| + H.c.)

+ t2

N/2−1∑
l=1

(|l + 1, A〉 〈l, B| + H.c.), (5)

which, expressed in a purely spatial representation, takes the
form of a tridiagonal N × N matrix containing zeros along the
diagonal and hoppings just above and below:

H0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 t1 0 0 . . . 0 0
t1 0 t2 0 . . . 0 0
0 t2 0 t1 . . . 0 0
0 0 t1 0 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . 0 t1
0 0 0 0 . . . t1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

The choice of hopping parameters determines the phase of
the chain [42]: The band structure becomes metallic when
|t1| = |t2|, insulating if |t1| > |t2|, and a TI (i.e., insulating
in the bulk and with a edge states in the gap) when |t1| <

|t2| [42]. Throughout this study we consider a chain with
N = 50 atoms located at the sites xl = la and having fixed
intercell hopping t2 = t0, choosing values a = 0.1421 nm
and t0 = −2.8 eV inspired by graphene. From the metallic
chain (t1 = t2 = t0), we perturb t1 = t0 + 0.5 eV to enter an
insulating phase, whereas t1 = t0 − 0.5 eV yields the band
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structure of a TI. Diagonalization of H0 reveals single-electron
states characterized by the coefficients ajl (i.e., the amount of
wave function | j〉 within the orbital at xl ) and energies h̄ε j ;
we plot the electronic energies h̄ε j obtained for each of the
three phases in Figs. 1(c)–1(e). With the chosen parameters,
a band gap of energy Eg = 1.17 eV emerges when |t1| �= |t2|,
with two quasidegenerate states appearing in the middle of
the band gap when |t1| < |t2| [Fig. 1(d)], corresponding to the
edge states of the chain and giving the insulator its topological
character.

IV. SELF-CONSISTENT INTERACTIONS IN THE OPTICAL
RESPONSE OF SSH CHAINS

Optical resonances, and plasmons in particular, are widely
exploited in nano-optics to intensify local electromagnetic
fields for a variety of applications, some of which involve
the enhancement of nonlinear optical processes [43,44]. Here
we explore the ability of optical resonances in the three
phases of the SSH model to drive HHG. In Figs. 1(f)–1(h)
we identify through the linear absorption cross section the
available optical resonances in the metallic, insulating, and TI
phases, both in situations when the self-consistent electron-
electron (e-e) interaction is omitted and included. Neglecting
e-e interactions, peaks in the absorption spectrum are associ-
ated with the energies of individual single-electron transitions
(see discussion in Sec. I), with amplitudes determined by
their transition dipole moments. In contrast, if we include e-e
interactions, the dominant transitions undergo large spectral
blueshifts in all three phases. In Figs. 1(f)–1(h) we show the
absorption cross section of the SSH chains, which we calcu-
late through the optical theorem as σabs = 4π (ω/c)Im{α(1)

ω }.
We normalize the cross section to roughly the geometrical
in-plane projection of the chain, Na2. Incidentally, the edge
states of the TI [Fig. 1(h)] give rise to a low-energy resonance
that does not appear for the insulator.

Given their importance in the linear response, it is expected
that self-consistent e-e interactions also play a leading role
in the nonlinear response. Figures 1(i)–1(n) show normalized
high-harmonic spectra (quantified via dipole accelerations)
produced by Gaussian pulses of 1013 W/m2 peak intensity and
100 fs full-width-at-half-maximum (FWHM) duration with

central frequencies ω0 (i) targeting the dominant resonances
in the linear spectra [Figs. 1(i)–1(k); see color-coded arrows
indicating the energy of h̄ω0] and (ii) off-resonance, with a
frequency arbitrarily fixed to 0.2 eV (i.e., away from optical
resonances) in all cases [Figs. 1(l)–1(n)]. Resonant excitation
of the metallic chain yields lower HHG when e-e interactions
are included, presumably because charge screening in the
metal damps the electron motion, while this effect is less
important in the gapped systems. The number of observable
harmonics is typically larger for lower-energy excitation and
associated with more efficient interband generation, where
the maximum cutoff energy in the noninteracting case is
indicated by the largest available single-electron transition
energy. Incidentally, the height of the first harmonic can vary
widely from on-resonant to off-resonant conditions (e.g., by a
factor up to 104 in metallic chains).

The simulations of the optical response presented in
Figs. 1(f)–1(n) reveal dramatically different HHG yields when
including or omitting electron-electron interactions, indicat-
ing the importance of dynamical charge screening in all three
material phases. Additionally, collective optical resonances
manifesting from e-e interactions can concentrate electromag-
netic fields in the SSH chain, thus reducing the intensity
threshold required to trigger HHG [20,45].

Plasmons are associated with the motion of free electrons
and thus do not emerge in pristine semiconducting materials.
However, in the 50-atom SSH chains that we consider here,
the addition of only a few electron charges is sufficient to
dramatically change the optical response; this phenomenon
is explored in Fig. 2, where we study the linear response in
the RPA as a function of the doping charge Q in all three
SSH phases. Note that the charge is added in such a way
that the free electrons equally populate available degenerate
states. In contrast to the almost negligible electrical tuning
for the metallic chain [Fig. 2(a)], the insulating chains present
overall a blueshift with increasing charge carrier density in
the low-energy spectral features, which tend to coalesce into a
prominent peak associated with intense optical absorption and
a concentration of electromagnetic energy within the material.

In particular, at Q = 2 in Fig. 2(b) we observe a sharp
feature that corresponds to the filling of the lowest unoccupied
molecular orbital (LUMO); that is, the insulator gets free

FIG. 2. Effect of doping in the linear response of SSH chains. Normalized absorption cross section as a function of frequency (vertical
axis) and additional charge carriers Q (horizontal axis) for the (a) metallic, (b) insulating, and (c) topologically insulating chains considered in
Fig. 1.
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carriers in the conduction band and starts behaving as a metal
(we note that a Q = 2 doping corresponds to a Fermi level
EF ∼ 0.81 eV, which corresponds to the highest filled state
in a one-electron picture, which is larger than the energy
of the LUMO, ELUMO = Eg/2 = 0.59 eV). For this reason,

for Q > 2 the main resonant feature begins to stabilize and
by Q = 5 (EF ∼ 1.11 eV) it has coalesced in a prominent
dipolar plasmon mode of frequency similar to that of the
metallic chain because of the similar value of the density of
states at the Fermi level in both cases. In contrast, for the TI

FIG. 3. Intensity-dependent nonlinear absorption in SSH chains. [(a)–(c)] Normalized absorption cross section σabs/Na2 simulated in the
time domain for monochromatic cw illumination of increasing intensity near the optical resonances of undoped (a) metallic, (b) insulating,
and (c) topologically insulating SSH chains. [(d)–(f)] Perturbative solutions of the third-order polarizabilities associated with the optical Kerr
nonlinearity α(3)

ω , presented in atomic units for the corresponding SSH chains in (a)–(c), with real and imaginary parts indicated by green and
orange curves, respectively. [(g)–(l)] Same as (a)–(f) but for SSH chains doped with two additional electrons (Q = 2). [(m)–(r)] Same as (g)–(l)
but for SSH chains doped with five additional electrons (Q = 5).

013313-6



STRONG-FIELD-DRIVEN DYNAMICS AND … PHYSICAL REVIEW RESEARCH 2, 013313 (2020)

chain [Fig. 1(j)] we observe that quasidegenerate edge states
in the middle of the band gap produce a slight redshift of
the main resonance and damp the strength of the absorption
cross section, particularly at the LUMO energy (Q = 2 or
EF ∼ 0.63 eV). At Q = 4 the main resonance starts growing
and by Q = 5 the response is dominated by the plasmon,
just like in the insulating chain. The weaker spectral features
appearing at higher energies for the insulator and the TI
originate from electron-hole transitions across the band gap,
with additional peaks appearing for the TI due to transitions
from edge states to the conduction band. These single-particle
transitions are dressed by the Coulomb interaction, and thus
do not exactly coincide with the bare electron-hole transition
energies appearing in the poles of Eq. (2) [46].

V. INTENSITY-DEPENDENT ABSORPTION

The realization of HHG in solid-state systems necessitates
optical pulses with peak intensities that cannot be sustained
for long duration, lest the material be destroyed in the process.
However, the interaction of extended pulses or cw fields
with matter is appealing for technological applications relying
on saturable absorption, an extreme nonlinear optical phe-
nomenon that arises in all photonic materials and, like HHG,
cannot be described in a perturbative framework.

The enhanced light-matter interaction provided by optical
resonances produces a more measurable absorption signal
that facilitates detection of changes in the dielectric envi-
ronment or the impinging light intensity; the latter effect is
intensified by the concentration of electromagnetic energy in
the material, which in turn can enhance its nonlinear opti-
cal response. Following this approach for HHG, we explore
the nonlinear response associated with optical resonances
of SSH chains by considering their interaction with intense
impinging cw light, characterizing the optical response by
the induced dipole moment at the fundamental frequency.
Specifically, we extract the effective polarizability αω by com-
puting the induced dipole p(t ) in response to a monochromatic

field E (t ) = E0e−iωt + c.c. of intensity Iext = (c/2π )|E0|2.
We then Fourier transform p(t ) over a single optical cycle to
obtain

αω = ω

2πE0

∫ t∞

t∞−2π/ω

p(t )eiωt dt,

where t∞ 	 τ corresponds to a time at which the system has
entered a steady-state regime.

In Fig. 3 we study the dependence on pulse intensity of the
main resonances in the absorption spectra (upper rows) of the
different SSH chains in relation to their corresponding Kerr
polarizabilities α(3)

ω , that is, with perturbation order n = 3 and
harmonic index s = 1 (lower rows), for three different dop-
ings: undoped [Figs. 3(a)–3(f)], LUMO doping (i.e., with two
additional electrons, Q = 2) [Figs. 3(g)–3(l)], and plasmonic-
regime doping (i.e., with five additional electrons, Q = 5).

Independent of doping, the absorption cross section of
metallic chains remains relatively unchanged by increasing
the optical intensity, an observation compatible with their
consistently smaller nonlinear polarizabilities. In contrast,
the effective polarizabilities of the insulating phases offer
a larger nonlinear response, where in particular Figs. 3(c),
3(h), and 3(n) present strong saturation and also shifting of
the peak energy, which eventually should transition toward a
bistable regime. This behavior is corroborated by the large
associated Kerr polarizabilities [Figs. 3(f), 3(k), and 3(q),
respectively], with the real part determining the peak shift
strength and direction (e.g., redshift vs blueshift), while the
imaginary part governs its saturation. Within the range of
parameters considered here, we conclude that the TI is the
most nonlinear material without doping, presumably because
of the localized spatial and spectral character of the edge states
(i.e., intrinsic anharmonicity), while the population of its edge
states and subsequent Pauli blocking through doping renders
its nonlinearity comparable to that of the insulator. The strong
nonlinearity of the two types of doped insulators compared
with the metallic chain can be understood in terms of a sparse
Fermi sea, where interactions are poorly screened.

FIG. 4. High-harmonic generation in undoped SSH chains. [(a)–(c)] Normalized squared modulus of the induced dipole acceleration
| p̈(ω)|2 = |ω2 p(ω)|2 in undoped SSH chains as a function of the output frequency ω, as generated by a Gaussian pulse of peak intensity
1013 W/m2, 100 fs FWHM duration, and central frequency ωin for the (a) metal, (b) insulator, and (c) topological insulator 50-atom SSH
chains. The inset above each panel shows the respective linear absorption of the chain, while the vertical dashed lines mark the band gap
energy Eg and its half-value Eg/2.
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VI. HIGH-HARMONIC GENERATION IN SSH CHAINS

We further study the optical response of SSH chains to
strong ultrashort laser pulses. In Figs. 4 and 5 we plot the
squared modulus of the induced dipole acceleration | p̈(ω)|2 =
|ω2 p(ω)|2 normalized to that of the maximum dipole accelera-
tion | p̈max|2 for each input frequency ωin considering Gaussian
pulses of 100 fs FWHM duration and peak intensity I = 1013

W/m2, with the horizontal pulse carrier frequency given on
the horizontal axes and the frequency component of | p̈(ω)|2
indicated on the vertical axes; each contour plot of the HHG
emission is supplemented by the associated linear optical
response of the system under consideration (upper panels).
In the insulating phases we use white vertical dashed lines to

indicate the electronic band gap energy Eg and Eg/2, with the
latter quantity indicating the edge-state-to-LUMO transition
energy for the TI.

In Fig. 4 we consider undoped SSH chains, which present
prominent features along the ω = sωin curves, where s is an
odd integer (i.e., harmonic generation for s > 1). In all cases
we observe that strong HHG is produced where the optical
resonances intersect with the impinging light frequency, par-
ticularly in the low-energy feature observed in the absorption
spectrum of the TI [see Fig. 4(c)] lying below its band gap
and associated with its topologically protected states, for
which more high-order harmonics can couple to interband
transitions.

FIG. 5. High-harmonic generation in doped SSH chains. Same as Fig. 4 when the chain is doped with either two [(a)–(c)] or five [(e)–(g)]
electrons. Panels (d) and (h) show the normalized induced dipole at the resonances pointed by the arrows in the linear response for the metal
(black), the insulator (red), and the topological insulator (blue) in (a)–(c) and (e)–(g), respectively.
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In Fig. 5 we study HHG in LUMO-doped [Figs. 5(a)–5(d)]
and plasmonic-regime-doped [Figs. 5(e)–5(h)] chains. The
general trends for HHG are similar to those observed for Kerr
polarizabilities in Fig. 3 and discussed in the previous section.
As in the case of monochromatic excitation, we once again
observe that the metal nonlinear response remains relatively
unaffected by doping, while the insulator and the TI present
higher HHG yields. In Figs. 5(d) and 5(h) we compare | p̈(ω)|2
at the dominant optical resonance of each SSH [a frequency
denoted ω0, see arrows in the upper panels of Figs. 5(a)–5(c)
and 5(e)–5(g)]. For Q = 2 [Fig. 5(d)] the insulator presents
the best harmonic yield, producing sizable peaks up to ∼25ω0,
with harmonics exhibiting a slight blueshift that is a signature
of the pulse self-interaction mediated by optically-excited out-
of-equilibrium electrons [47]. In contrast, at Q = 5 doping the
insulator and TI produce very similar HHG yields that extend
up to ∼21ω0, with the harmonics produced by the insulator
slightly redshifted for ω > 9ω0. Both types of insulators
display a harmonic yield much stronger than the metal. As
already discussed in the previous section, the strong HHG of
the doped insulators can be ascribed to weak screening in a
low-density electron gas.

VII. BEYOND THE SSH MODEL: HIGH-HARMONIC
GENERATION IN CARBON NANOTUBES

To validate the predictive capabilities of the SSH model,
we turn now to a more realistic 1D system in which to
study HHG. Carbon nanotubes (CNTs) constitute a material
platform that can behave as a metal, insulator, or TI, de-
pending on chirality, and, furthermore, like graphene, their
electronic properties can be reasonably well described by a
tight-binding Hamiltonian. CNTs themselves hold great po-
tential for diverse applications [48] because of their excellent
mechanical, electronic, and optical properties, exemplified
through the recent demonstration of a functioning CNT-based
transistor [49]. In the field of nano-optics, recent experimental
studies have explored the low-energy plasmons supported by
CNTs when they are electrically doped [50–52], similarly
to the collective excitations in highly doped graphene [53],
motivating their application for nanophotonic devices and
nonlinear plasmonic elements [46]. From a theoretical per-
spective, plasmons in CNTs have been extensively studied
using both ab initio methods [54,55] and also semiclassical
approaches [56–58] based on the RPA [39] to calculate their
optical conductivities. Incidentally, it has been experimentally
proven that electrons in CNTs behave as Luttinger liquids
[59,60], which have special relevance at low temperatures and
are qualitatively corroborated by our methods.

CNTs are constructed by wrapping a graphene layer into
a cylindrical surface; a carbon atom at the origin is then
identified with one at the graphene lattice position na1 + ma2,
where a1 and a2 are the conventional graphene lattice vec-
tors, while the pair of integers (n, m) determine the chirality
of the tube. The resulting CNT diameter (in nm) is [61]
d ≈ 78.3 × 10−3

√
n2 + m2 + nm. We can additionally clas-

sify CNTs depending on their topology, which incidentally is
determined by n and m: When n = m the CNT is metallic; if
n = m + 1, then we have an insulator; and otherwise the CNT
is a TI [62,63]. To explore 1D-like structures more similar to

FIG. 6. Band structure of CNTs. Single-electron energies for
CNTs with chiralities (3,3), (4,3), and (5,1), corresponding to a metal
(black squares), insulator (red diamonds), and topological insulator
(blue circles), respectively. The inset shows the region near zero
energy (indicated by the dashed horizontal line) in more detail.

SSH chains, we choose extremely thin CNTs experimentally
reported with different chiralities [64–66]. Also, to facilitate
the comparison with our 50-atom SSH chains, we take them
to be roughly 7 nm long. In particular, we consider CNTs
with chiralities (3,3), (4,3), and (5,1), which have diameters
of 0.41, 0.48, and 0.44 nm and correspond to a metal, an
insulator, and a topological insulator, respectively. In Fig. 6
we show the band structures of these three CNTs calcu-
lated through a tight-binding model with a phenomenological
nearest-neighbors hopping of 2.8 eV [61,67], revealing Eg =
1.80 eV for the TI and Eg = 1.68 eV for the insulator.

Strong-field driven electron dynamics in CNTs is simu-
lated once again by inserting a tight-binding Hamiltonian
into the equation of motion (1), adopting a phenomenological
damping rate of γ = 50 meV and applying 100 fs FWHM
laser pulses of intensity I = 1013 W/m2 to excite high har-
monics in these structures. In Fig. 7 we compare the HHG
yields of undoped [Fig. 7(a)–7(c)] and doped (EF = 1 eV)
CNTs [Figs. 7(d)–7(g)], again supplementing contour plots
of | p̈(ω)|2 with linear absorption spectra (upper panels). For
undoped CNTs we observe weaker HHG for both the insulator
and the TI, only exciting up to seventh order, in contrast to
the metallic tube, exhibiting a distinctly higher HHG yield,
particularly when the impinging light energy coincides with
the dominant optical resonance near 0.9 eV. This particular
trend is not followed by SSH chains, which in the undoped
configuration produce stronger yield in insulators compared
with metals [cf. Figs. 4(a)–4(c) and Figs. 7(a)–7(c)].

The HHG yield is strongly enhanced by doping the CNTs
to a Fermi energy EF = 1 eV [Figs. 7(d)–7(g)], which intro-
duces localized plasmon resonances. By inspecting the high
harmonics generated at resonant frequencies when excited at
optical resonances [Fig. 7(g)] we see that both the insulator
and the TI have higher yields, that their harmonics are quite
strongly redshifted beyond the 7th order, and that their cutoff
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FIG. 7. High-harmonic generation in CNTs. [(a)–(c)] Dipole acceleration | p̈(ω)|2 (proportional to far-field power emission) as a function
of the output frequency ω generated by a Gaussian pulse of peak intensity I = 1013 W/m2, 100 fs FWHM duration, and central frequency ωin.
The insets above each panel indicate the associated linear response for the (a) metallic, (b) insulating, and (c) topological insulating undoped
CNTs. We have marked with white vertical dotted lines both the energy of the band gap Eg and half the energy of the band gap Eg/2. [(d)–(f)]
Same as in (a)–(c) but for CNTs doped to a Fermi energy of 1 eV. The arrows indicate the resonant input frequency ω0 of the Gaussian pulse at
which there is a boost in HHG. (g) Normalized dipole acceleration at the resonances pointed by arrows in the linear response on top of panels
(d)–(f).

is at the 21st harmonic; this behavior was qualitative predicted
by the simpler SSH model.

VIII. CONCLUSIONS

Despite the impressive pace at which the field of solid-
state HHG is developing in both experiment and theory,
the ideal material platform in which to realize this extreme
nonlinear optical phenomenon has yet to be identified. Optical
resonances supported by materials with intrinsically different
types of electronic structure constitute an underexplored pos-
sibility to enhance the electric fields driving HHG, which we
address here through the use of an intuitive model that con-
tains much of the relevant physics. More precisely, our main
conclusions based on the model SSH 1D chain are corrobo-
rated in their more realistic carbon-based analogs. In metals or

doped semiconductors, where free electrons are present, self-
consistent electron interactions become extremely important
in both the linear and nonlinear response, and not only when
dealing with optical resonances. This effect is stronger for
doped semiconductors than for metals because weaker screen-
ing in the former makes their interactions more important.
While HHG appears to be most efficient in semiconductors
for harmonics generated below the band gap, the addition of a
small amount of doping charge can produce a poorly screened,
low-density electron gas that supports an intraband plasmon
resonance appearing in this regime, therefore concentrating
the impinging electromagnetic fields in the material and fur-
ther boosting the HHG efficiency. This finding suggests the
exploration of doped semiconducting materials as a promis-
ing platform for solid-state HHG. Our results pave the way
for further investigation on the effects of electron-electron
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interactions in solid-state HHG, elucidating the involved
microscopic mechanism and the relation between electronic
band structure and the HHG yield, thus supporting its ap-
plication toward nonlinear plasmonics, topological optoelec-
tronics, and all-optical time-resolved probing of topological
phases.
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