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Quantum repeaters are indispensable for high-rate, long-distance quantum communications. The vision of a
future quantum internet strongly hinges on realizing quantum repeaters in practice. Numerous repeaters have
been proposed for discrete-variable (DV) single-photon-based quantum communications. Continuous-variable
(CV) encodings over the quadrature degrees of freedom of the electromagnetic field mode offer an attractive
alternative. For example, CV transmission systems are easier to integrate with existing optical telecom systems
compared to their DV counterparts. Yet, repeaters for CV quantum communications have remained elusive.
We present a quantum repeater scheme for CV entanglement distribution over a lossy bosonic channel that
beats the direct transmission exponential rate-loss tradeoff. The scheme involves repeater nodes consisting of (a)
two-mode squeezed vacuum (TMSV) CV entanglement sources; (b) the quantum scissors operation to perform
nondeterministic noiseless linear amplification of lossy TMSV states; (c) a layer of switched mode multiplexing
inspired by second-generation DV repeaters, which is the key ingredient apart from probabilistic entanglement
purification that makes DV repeaters work; and (d) a non-Gaussian entanglement swap operation. We report our
exact results on the rate-loss envelope achieved by the scheme.
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I. INTRODUCTION

A quantum internet [1] that distributes entanglement and
quantum-secure shared secret keys at high rates over large
distances exemplifies the goal of quantum communications
[2]. It would enable, e.g., unconditionally secure multiparty
classical communications [3], distributed versions of quan-
tum computation, sensing, and other quantum information
processing applications [4–9]. The main hurdle in the way
of establishing the quantum internet is photon loss. Entan-
glement distribution rates over a lossy bosonic channel such
as an optical fiber or free space link are known to drop
exponentially with loss [10]. The entanglement distribution
capacity of the pure loss bosonic channel of transmissivity
η under unlimited two-way local operations and classical
communication (LOCC) assistance was recently established
to be Cdirect(η) = − log2(1 − η) entangled qubit pairs (also
called ebits) per mode [11,12] (see also [13] for a strong
converse bound [14]).

Quantum repeaters [15,16] composed of entanglement
sources, distillation schemes, and memories when inter-
spersed over the channel can circumvent this exponential rate-
loss tradeoff. For discrete-variable (DV) quantum information
encodings such as over quantum states of single photons over
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their polarization or time-bin degrees of freedom, repeater
schemes [17,18] based on matter memories [19] as well as
optical memories [20,21] have been developed. Alternatively,
quantum information can also be encoded in the continu-
ous quadrature degrees of freedom of electromagnetic field
modes, known as quantum continuous variables (CVs). Since
CV quantum states reside in infinite dimensional Hilbert
spaces, they can hold substantially more quantum information
compared to DV states. Also, they can be generated using
coherent lasers and nonlinear optics without the need for
single-photon detectors, which allows for easier integration
with classical telecommunications compared to DV states.
However, quantum repeaters for CV remain to be well estab-
lished.

It is known that for Gaussian CV states, i.e., states with
Gaussian quadrature distributions, Gaussian quantum opera-
tions, namely, physical operations that map Gaussian states to
other Gaussian states, alone cannot act as quantum repeaters
[22,23]. For the two-mode Gaussian CV state resulting from
the action of a pure loss channel on one mode of a two-
mode squeezed vacuum (TMSV) entangled state, Ralph and
Lund proposed a scheme based on nondeterministic noiseless
linear amplification (NLA) (see Ralph and Lund [24]) that
probabilistically performs error correction (see Ralph [25]).
When the mean photon numbers are small, NLA can be
implemented to a good approximation in a heralded fashion
by the probabilistic, non-Gaussian quantum scissors operation
[24,26]. Dias and Ralph [27,28] showed that the state heralded
upon successful operation of a single quantum scissors on one
mode of a lossy TMSV state is more entangled than the lossy
TMSV state in terms of the logarithmic negativity [29,30]
and entanglement of formation [31] measures. Similarly, the
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FIG. 1. Mode-multiplexed quantum repeater scheme for CV entanglement distribution based on repeater nodes consisting of two-mode
squeezed vacuum (TMSV) state sources, N-quantum scissors noiseless linear amplification (NLA), quantum memories (denoted by red circles),
and fast optical switches (denoted by white circles with solid bold green arrows). The operator �̂ refers to a non-Gaussian entangled state
projection as described in (2). The optical switches toggle on to the modes where the NLA operation is successful as indicated in bold (green).
M denotes the degree of mode multiplexing.

present authors [32] evaluated the reverse coherent informa-
tion (RCI) [12,33–36] of the state heralded by NLA with mul-
tiple quantum scissors on one mode of a lossy TMSV state.
The RCI is a lower bound on the distillable entanglement
of a state, the latter being the number of ebits that can be
distilled from an asymptotically large number of copies of the
state using LOCC. It was shown [32] that the RCI heralded
using the (multiple) quantum scissors can exceed Cdirect(η)—a
necessary condition for a distillation scheme to be useful in a
repeater scheme over the pure loss channel of transmissivity
η. The CV error correction scheme of [25] was recently
generalized to the thermal noise channel [37]. NLA, both
ideal [38] and approximate, based on the quantum scissors
[39], were shown to increase the range of CV quantum key
distribution over the channel.

In this paper, using repeater nodes consisting of TMSV
sources for CV entanglement generation, NLA based on the
quantum scissors for entanglement distillation, a layer of
switched mode multiplexing (e.g., over spectral or spatial
modes), and a non-Gaussian Bell measurement [40] for entan-
glement swapping, we present a CV quantum repeater scheme
(Fig. 1) that outperforms Cdirect(η). We show that for the
proposed scheme NLA based on a single quantum scissors
is optimal for entanglement distillation at the repeater nodes
compared to any higher number of scissors. This is because
the product of the heralded RCI and the heralding success
probability at the nodes, when numerically optimized over the
free parameters of the system, is found to be maximal for a
single quantum scissors [Fig. 3(a)]. We then show that the op-
timal RCI heralded at the nodes with a single quantum scissors
in the limit of infinite NLA gain approaches 1 independently
of elementary channel segment transmissivity t . This implies
that the optimal heralded state across a channel segment
approaches a perfect ebit, the RCI of which by definition is
1. The corresponding success probability is found to scale
proportional to t when t � 1 [Figs. 3(b) and 3(c)]. Though
the limiting case is unphysical, it carries semblance to DV re-
peaters, where entanglement distillation is typically based on
the successful detection of photons arriving at a repeater node,
such that a successful detection event heralds a perfect ebit
of entanglement and the detection success probability scales
proportional to the transmissivity of the repeater link. This
prompts us to consider switched multiplexing over multiple
modes (spectral, temporal, spatial, or a combination of any

of these) between each pair of adjacent nodes in the proposed
CV repeater scheme similar to the so-called second generation
DV repeater schemes [17], where mode multiplexing was
shown to enable the end-to-end per-mode rates to beat direct
transmission [18,41]. We show that the rate-loss tradeoff in
the DV-like (≈1 ebit/mode) manner of operating the pro-
posed mode-multiplexed CV repeater also similarly beats the
direct transmission rate-loss tradeoff (Fig. 4). However, it is
still suboptimal for the CV repeater. We derive an explicit
iterative analytic formula for the end-to-end noisy entangled
quantum state heralded across the CV repeater chain indi-
cated in bold green in Fig. 1 for any nrep = 2x − 1, x ∈ N

number of repeater nodes. Using the exact expression for the
end-to-end heralded quantum state, we identify a different
operating point in terms of the entanglement source, distilla-
tion and swapping parameters, degree of mode multiplexing,
and number of repeater nodes. The said operating point in
parameter space results in the individual repeater link states
being far from perfect ebits, but with a higher heralding suc-
cess probability compared to the DV-like mode of operation,
thereby resulting in a superior overall end-to-end entangle-
ment distribution rate-loss tradeoff across the repeater chain
(Fig. 5).

Though our analysis of the proposed CV repeater assumes
a pure loss channel model ignoring additional thermal noise
encountered in practice, it must be emphasized that our results
are a big first step in proving the validity of the concept behind
the repeater. Note that in prior work Furrer and Munro had
proposed a CV repeater scheme for the pure loss channel
based on alternative non-Gaussian entanglement distillation
schemes—symmetric photon replacement and purifying dis-
tillation [42,43], which beat Cdirect(η) [40]. It is a so-called
first generation repeater scheme as per the classification intro-
duced in [17] since it involves iterative use of entanglement
distillation, which necessitates classical communication be-
tween repeater nodes beyond nearest neighbors. On the other
hand, our repeater scheme based on mode multiplexing is a
second generation scheme that only requires nearest-neighbor
classical communications. Also, the quantum scissors in com-
parison to these other distillation schemes involves fewer
DV resources, i.e., single photon sources and photon number
resolving detectors, making it simpler to implement. Further,
while the analysis presented in [40] considers a Gaussified
version of the end-to-end heralded non-Gaussian state, our
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TMSV NLAQM QM

FIG. 2. A single repeater link between adjacent repeater nodes
from the CV quantum repeater scheme of Fig. 1. QM denotes
quantum memory.

analysis is based on the exact non-Gaussian state heralded
across the repeater chain.

This paper implicitly assumes that the repeater nodes have
access to fast optical switches and multimode quantum mem-
ories [19,44–47] of total effective loss per unit time (inclusive
of induced decoherence and coupling losses) less than that
of the repeater links connecting adjacent repeater nodes. The
quantum scissors and the non-Gaussian entanglement swap
operations at the repeater nodes are assumed to be based
on ideal single-photon sources and photon number resolving
detectors.

The paper is organized as follows. Section II presents
a detailed analysis of the elementary CV repeater link that
constitutes the repeater chain of Fig. 1. Section III describes
the non-Gaussian entanglement swap operation that connects
adjacent repeater links in the repeater chain. Section IV
elucidates the concept behind the mode-multiplexed repeater.
Section V contains our main results on the achievable rate-loss
tradeoff for the proposed CV repeater scheme based on quan-
tum scissors and mode multiplexing. Section VI concludes the
paper with a discussion on questions that are left open in this
work and some possible directions for future work.

II. CV REPEATER LINK BASED ON QUANTUM SCISSORS

Consider a single repeater link from the proposed CV
repeater scheme of Fig. 1. The link, as shown in Fig. 2,
consists of a channel segment of transmissivity, say t ; a TMSV
entangled source of mean photon number μ; NLA of gain
g = √

(1 − κ )/κ implemented by N-quantum scissors (where
κ is an intrinsic parameter of the scissors); and quantum
memories A and B. For N > 1, the quantum scissors-based
NLA module does the following (see [32, Fig. 1]).

(i) It splits the signal quantum state (one share of a lossy
TMSV state in this case) into N equal parts.

(ii) Each subsignal undergoes the quantum scissors op-
eration described in [26,48]—which involves linear optics,
single-photon injection, and detection—and as the name sug-
gests truncates the subsignal quantum state in Fock space to its
support on the subspace spanned by the 0 and 1 photon Fock
states. (See [49–52] for a related notion of quantum scissors
involving nonlinear optical elements.)

(iii) It recombines the “chopped” subsignals into one mode.
When the NLA succeeds, it heralds a noiselessly amplified
[53] version of the signal state that is truncated to its sup-
port on the N-photon subspace spanned by 0, 1, . . . , N Fock
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FIG. 3. (a) The optimal true RCI of the repeater link state.
(b) The optimal heralded RCI and (c) the corresponding heralding
success probability (scaled by the former). The channel is assumed
to be an optical fiber of attenuation 0.2 dB/km.

states. Appendix A describes the state heralded across the
CV repeater link of Fig. 2 in the Fock basis, along with the
associated heralding success probability, and an expression
for the RCI of the state.

We numerically optimized the true RCI of the repeater link
state, namely, the product of the heralded RCI and the herald-
ing success probability, over the TMSV mean photon number
and the gain of the quantum scissors, for different number
of quantum scissors. The results are plotted in Fig. 3(a).
The channel is assumed to be an optical fiber of attenuation
0.2 dB/km, so that the transmissivity of the repeater link as
a function of distance L (in km) is t = 10−0.02L. First, all
the curves lie below Cdirect(t ), as should be the case by the
very definition of capacity. Second, the optimal true RCI is
the highest for the single quantum scissors. This observation
suggests that it is optimal to use NLA based on a single
quantum scissors compared to any higher number of scissors
for entanglement distillation across the CV repeater link of
Fig. 2.

Further, we also numerically optimized the RCI alone over
the same set of parameters as heralded by N = 1, 2, 3, 4
quantum scissors. The optimal heralded RCI is plotted in
Fig. 3(b) as a function of N . It is found to approach a
limiting constant independent of the channel transmissivity
t . The constant for a single quantum scissors is found to be
log2(2) = 1, which corresponds to the distillation of a perfect
ebit of entanglement. For N > 1, the constant is found to be
less than log2 (N + 1), where N + 1 is the dimensionality of
the output Hilbert space, which indicates that the optimal her-
alded entangled states do not approach perfect “e-dits” except
when N = 1. In Fig. 3(c), the asymptotic scaling (t � 1) of
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the heralding success probability corresponding to the optimal
RCI (scaled by the former) is plotted as a function of the
transmission distance for different N and found to be ∝tN .

Having identified the optimality of NLA based on a single
quantum scissors for entanglement distillation [Fig. 3(a)], we
will focus on the CV repeater link consisting of a single
quantum scissors for the rest of this paper. It is noteworthy
that for this optimal NLA configuration in the CV repeater
link in the high loss limit both the optimal true RCI of
Fig. 3(a) and the product of the optimal RCI and its corre-
sponding heralding success probability of Fig. 3(c) scale ∝t .
However, the former exceeds the latter by several orders of
magnitude.

III. NON-GAUSSIAN ENTANGLEMENT SWAP

The state heralded across the repeater link of Fig. 2 with a
single quantum scissors can be expressed as [54]

|ψ〉ABL ∝ (1 + ξa†b†)σρ
AL|0〉ABL (1)

where â and b̂ are the repeater link mode operators; L is
the loss mode; ξ is a function of μ, κ, and t ; and σ

ρ
AL is

the two-mode squeezing operator corresponding to squeez-
ing of magnitude ρ in modes A and L, where tanh ρ =√

1 − t tanh(sinh−1 √
μ). See Appendix C for the exact de-

scription with the proportionality constant. Clearly the state in
(1) is non-Gaussian. In the limit of low TMSV mean photon
number, to first approximation, the state in modes A and B is
a pure state of the form

|ψ〉A1B1 = (|0〉A1
|0〉B1

+ ξ |1〉A1
|1〉B1

)
/
√

1 + ξ 2. (2)

At a repeater node, the entanglement in two such re-
peater link states |ψ〉A1B1 and |ψ〉A2B2 can thus be
swapped by a non-Gaussian entangled projection operator
of the form �̂ = |φ〉〈φ|B1A2

, where |φ〉B1A2 = (|0〉B1
|0〉A2

+
q|1〉B1

|1〉A2
)/

√
1 + q2, with q = 1/ξ . Such a projection can

be implemented by Fock state filtering [40,42] and a sequence
of displacement operations, photon subtraction, and vacuum
projection [40]. See Appendix B for details about the imple-
mentation and the associated success probability.

IV. QUANTUM REPEATER BASED ON MODE
MULTIPLEXING

In order to describe the idea behind a mode-multiplexed
quantum repeater, let us for the moment consider a single-
photon-based DV analog of the CV quantum repeater scheme
of Fig. 1. Let the repeater chain consist of n = 2x, x ∈ N

links (i.e., number of repeater nodes nrep = 2x − 1) so that the
transmissivity of a single link is t = η1/n. In the DV scheme,
entanglement sources at Alice and the repeater nodes generate
perfect maximally entangled photon pairs (say polarization
Bell pairs), of which one of the photons is transmitted through
the lossy channel segment and the other retained in a quantum
memory. Successful heralding of the arrival of the transmitted
photon at the next node after loss marks the distillation of
a perfect ebit (RCI IR = 1)—an event that happens with a
probability p ∝ t = cη1/n. At each repeater node, one local
photon that was retained in a quantum memory and one
received through the channel are combined on a Bell-basis

entangling measurement. The measurement succeeds with a
probability pswap, accomplishing entanglement swap across
the repeater node.

By introducing a layer of mode multiplexing between each
pair of adjacent nodes—e.g., using a large number of spectral,
temporal, or spatial modes (or a combination of any of these)
from the entanglement source, multimode quantum memories,
and fast optical switches—the success probability p can be
boosted. For M multiplexed modes, the probability that at
least one of them succeeds in distilling an ebit of entanglement
is given by

pM = 1 − (1 − cη1/n)M . (3)

For an n-link chain, where each link is M-mode multiplexed,
the rate at which an ebit of entanglement can be distributed
between the end nodes equals the probability that at least
one of the M modes succeeds in each of the n links and
the entanglement swaps at each of the n − 1 repeater nodes
succeeds. It is given by the rate R (in units of ebits/mode) that
obeys

M × R = pn
M pn−1

swap �
{

pn−1
swap

(Mc)nηpn−1
swap.

(4)

From the first upper bound in (4), we have n =
log (M × pswap × RUB)/ log pswap. The two upper bounds in-
tersect at η = 1/(Mc)n. From the intersection, we have n =
− log η/ log (Mc). Combining the two, we have

log(M × pswap × RUB) =
(

log(1/pswap)

log (Mc)

)
log η (5)

⇒ RUB = 1

M × pswap
ητ , τ = log(1/pswap)

log (Mc)
. (6)

For M > 1/(pswapc), τ < 1. This beats the direct transmission
capacity Cdirect(η) = − log(1 − η) when η � 1 since the lat-
ter becomes ≈1.44η in the limit. The rate RUB represents an
upper bound on the envelope of achievable rates that covers
the rates obtainable by varying the number of repeater nodes
in the scheme. The exact envelope of achievable rates with the
repeater scheme was shown to be [18]

R = 1

M × pswap
ηs, s = log{pswap[1 − (1 − cz)M]}

log z
, (7)

where z is the unique solution of the transcendental equation

[1 − (1 − cz)M] log{pswap[1 − (1 − cz)M]}
= cMz log z(1 − cz)M−1. (8)

Thus, the rate-loss envelope achieved by the mode-
multiplexed repeater scheme in the limit of high loss obeys
a power-law scaling given by R ∝ ηs, 0 < s < 1, and beats
Cdirect, which corresponds to s = 1. The smaller the value of s,
the greater the range of distances where there is an advantage
over direct transmission.

V. MODE-MULTIPLEXED CV REPEATER

We now present our main results on the entanglement
distribution rate-loss tradeoffs achievable with the mode-
multiplexed CV repeater scheme of Fig. 1.
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FIG. 4. Envelope of achievable entanglement distribution rates
obtained by varying the number of repeater nodes for the DV-like
mode of operation of the mode-multiplexed CV repeater scheme
presented in Sec. V A. The different s-parameter plots correspond
to different degrees of multiplexing M. The channel is assumed to
be an optical fiber of attenuation 0.2 dB/km. Source repetition rate
Rrep = 1 MHz.

A. DV-like (≈1 ebit/mode) operation

First, we consider the case where the quantum scissors at
the CV repeater nodes are operated such that the state heralded
across a repeater link is a near-perfect ebit with a heralding
success probability ∝t (the proportionality constant being c =
5 × 10−6 in the limit t � 1). Since the CV repeater scheme
becomes similar to a DV repeater scheme in this case, a direct
application of the power-law rate formula of (7) along with
the numerically optimized value of pswap = 0.00463 (obtained
from (B35) of Appendix B for ξ = 1) yields an achievable
rate-loss envelope for the mode-multiplexed CV repeater
scheme of Fig. 1 as a function of the degree of multiplexing M.
Figure 4 shows such achievable rate-loss envelopes for M =
1010 and 1012. The end-to-end channel is once again assumed
to be an optical fiber with attenuation 0.2 dB/km; i.e., the
transmissivity as a function of the communication distance L
(in km) is η = 10−0.02L . The rates are expressed in units of
ebits/s (ebps), where the rate R of (7) (in ebits/mode) has
been multiplied by a source repetition rate taken to be Rrep =
1 MHz modes/s. With M ∼ 1010, the rate-loss envelope of
the scheme attains a power-law scaling exponent of s = 0.54,
which beats Cdirect at 851-km transmission distance. Likewise,
M ∼ 1012 yields an envelope scaling exponent of s = 0.37,

which beats Cdirect at 780 km.
For the DV-like mode of operation of the CV repeater,

Table I lists the rate-loss-envelope scaling exponent s, and
the crossover distance Lcross and corresponding rate Rcross

at which the repeater-enhanced rate-loss envelope intersects
Rrep × Cdirect for different degrees of multiplexing M. We draw
the following inferences from the table.

(i) The value of M has to exceed a threshold (≈109) for the
repeater-enhanced rate-loss envelope to beat Rrep × Cdirect.

(ii) The exponent s, calculated using (7) and (8), drops
monotonically with increasing M, which implies the greater
the value of M, the larger the range of distances beyond
the crossover point where there is an advantage over direct
transmission.

TABLE I. Mode-multiplexed CV repeater scheme under the DV-
like mode of operation presented in Sec. V A over an optical fiber
of attenuation 0.2 dB/km: rate-loss envelope scaling exponent s,
crossover distance Lcross, and the corresponding rate Rcross at which
the repeater-enhanced rate envelope intersects Rrep × Cdirect , as a
function of the degree of multiplexing M. Source repetition rate
Rrep = 1 MHz.

log10 M s Lcross (km) Rcross (ebps)

<9 — — —
9 0.68 1066 6.8 × 10−16

10 0.54 851 1.4 × 10−11

11 0.44 788 2.5 × 10−10

12 0.37 780 3.7 × 10−10

13 0.32 796 1.7 × 10−10

14 0.29 833 3.2 × 10−11

15 0.26 867 6.7 × 10−12

16 0.23 898 1.6 × 10−12

(iii) The M dependence of Lcross and Rcross is nonmono-
tonic, and there exists an optimal order of magnitude for M
(≈1012) at which Lcross is minimized and Rcross maximized.

B. General operation

While the DV-like operation of the CV repeater allows for
easy characterization of its achievable rate-loss envelope, it is
not optimal. We explore other operating points in parameter
space for the repeater scheme by writing down the end-to-end
heralded state explicitly for n = 2x, x ∈ N number of repeater
links in the repeater chain, denoted as ρ̂A1Bn , and evaluating its
RCI. See Appendix C for an iterative formula for the end-to-
end heralded state and its RCI. The rate per mode of a M-mode
multiplexed repeater chain R is given by

R = IR
(
ρ̂A1Bn

) × [1 − (1 − psciss )M]n−1 × pn−1
swap

M
, (9)

where psciss is the heralding success probability of the quan-
tum scissors in a repeater link and pswap is the entanglement
swap success probability associated with the non-Gaussian
entangled state projection of Sec. III (inclusive of its phys-
ical implementation) for connecting two repeater links. We
identified an operating point consisting of a TMSV mean
photon number of 0.0719; a quantum scissors gain governed
by a power law given by κ = k(η1/n)u, where k = 0.0557
and u = 0.6057; and entanglement swap parameter q = 1/ξ

in relation to (1). Figure 5 shows the rate-loss tradeoff curves
corresponding to this new mode of operation of the CV
repeater scheme for a degree of multiplexing M = 107 and
different number of repeater nodes nrep = 1, 3, 7, along with
the rate-loss envelope that tangentially meets the said rate
curves. The source repetition rate is taken to be Rrep = 1 MHz.
The envelope is found to scale as ∝η0.54 and beats Rrep ×
Cdirect at a distance of 525 km.

Table II lists the rate-loss-envelope scaling exponent s, the
crossover distance Lcross, and the corresponding rate Rcross for
the new mode of operation of the CV repeater for different
degrees of multiplexing M. The trends are similar to the
DV-like operation. The value of M has to similarly exceed
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multiplexed CV repeater scheme under the mode of operation identi-
fied in Sec. V B. The value nrep denotes the number of repeater nodes
introduced in the channel. The channel is assumed to be an optical
fiber of attenuation 0.2 dB/km. Source repetition rate Rrep = 1 MHz.

a threshold for the repeater-enhanced rate-loss tradeoff to
beat Rrep × Cdirect. The threshold M in the new mode of
operation, however, is smaller (≈103) compared to that of
the DV-like operation (≈109). The exponent s again drops
monotonically with increasing M. However, the M required
to attain a given s is smaller. For example, whereas the
DV-like operation required M = 1010 to attain s = 0.54, the
new mode of operation attains the same s with M = 107.
The M dependence of Lcross and Rcross is again similarly
nonmonotonic. The optimal M, however, is smaller (≈104)
compared to that of the DV-like operation (≈1012), and yields
a smaller crossover distance of Lcross = 380 km and higher
rate Rcross = 3.6 × 10−2 compared to Lcross = 780 km and
Rcross = 3.7 × 10−10 of the DV-like operation.

We now take a closer look at the rate-loss envelopes
corresponding to the same scaling exponent s = 0.54 in the
two modes of operation as in Figs. 4 and 5. As pointed out

TABLE II. Mode-multiplexed CV repeater scheme under the
mode of operation identified in Sec. V B over an optical fiber of atten-
uation 0.2 dB/km: rate-loss envelope scaling exponent s, crossover
distance Lcross, and the corresponding rate Rcross at which the repeater-
enhanced rate envelope intersects Rrep × Cdirect, as a function of the
degree of multiplexing M. Source repetition rate Rrep = 1 MHz.

log10 M s Lcross (km) Rcross (ebps)

<3 — — —
3 0.94 685 2.5 × 10−8

3.4 0.87 470 5.6 × 10−4

3.7 0.81 400 1.4 × 10−2

4 0.76 380 3.6 × 10−2

5 0.65 400 1.2 × 10−2

6 0.58 455 1.1 × 10−3

7 0.54 525 4.5 × 10−5

8 0.52 606 1.1 × 10−6

9 0.5 685 3.2 × 10−8

10 0.49 765 6.5 × 10−10

earlier, the new mode of operation requires fewer number
of multiplexed modes (M = 107) compared to DV-like op-
eration (1010) to attain this scaling exponent. The crossover
distance Lcross = 525 km is smaller and the corresponding
rate Rcross = 4.5 × 10−5 higher compared to the DV-like one,
for which Lcross = 851 km and Rcross = 1.4 × 10−11. Also, at
any given distance, the new mode of operation results in a
higher rate compared to the DV-like operation. For example,
at a distance of 1700 km, the former attains a rate R ∼ 10−17

ebps (with three repeater nodes), whereas the latter attains
R ∼ 10−20 ebps. Together, the above results clearly confirm
that the new mode of operation of the mode-multiplexed CV
repeater identified in Sec. V B is significantly better than the
DV-like mode of operation of Sec. V A, and showcases the
true potential of CV.

VI. DISCUSSION AND OUTLOOK

Our results evidently demonstrate that the proposed quan-
tum repeater scheme for CV entanglement distribution in
principle works and beats direct transmission. It is important
to emphasize that the entanglement source repetition rate of
Rrep = 1 MHz was chosen as such to ensure that the corre-
sponding requirements on the multimode quantum memories
used at the repeater nodes are met under current technologies.
For example, the comb preparation and memory read/write
times of a multimode quantum memory based on atomic
frequency comb generated from rare-earth-ion-doped crystals
are typically of the order of microseconds [44]. Thus, at the
moment direct transmission systems can be operated at much
higher repetition rates compared to the proposed CV-repeater
scheme, thereby achieving higher entanglement distribution
rates in ebps units. However, when faster multimode quantum
memories become available in the future, the CV-repeater-
enhanced entanglement distribution rates (ebps) reported in
this paper can be improved commensurately by choosing
similarly high source repetition rates, thereby restoring the
advantage promised by the repeater scheme.

Regarding future work, since we assumed a pure loss chan-
nel model, and ideal single-photon sources, photon number
resolving detectors, quantum memories, and optical switches,
the impact of excess thermal noise in the channel and imper-
fections in these elements on the performance of the scheme
remains to be investigated. For example, with regard to the
quantum memories, the length of the CV repeater links for
the mode of operation identified in Sec. V B is found to
be ≈400 km, which necessitates memory storage times of
≈1.3 ms. Though there is hope to attain longer storage times
in the future [46], the current state-of-the-art storage time
for multimode quantum memories remains to be ≈50 μs
[45]. Beyond this time, the memory would begin to deco-
here, which has to be taken into account. Within the pure
loss channel model, our result identifies a particular oper-
ating point for the proposed mode-multiplexed CV repeater
scheme in parameter space where the scheme beats direct
transmission. The question of what is the optimal performance
of the proposed repeater scheme remains open. Another im-
portant general question is regarding how the rates supported
by CV repeaters compare with those supported by DV re-
peaters. At the outset the rates achieved by CV repeaters, both
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in this paper and in [40], seem lower compared to the DV
repeater rates reported in the literature. However, upon closer
look, when the ideal single-photon sources involved in both
CV and DV repeaters are replaced by heralded single-photon
generation from TMSV sources, the normalized entanglement
distribution rates per use of a TMSV source are higher for
CV compared to DV at large distances [40]. For a careful
comparison of CV vs DV repeaters, see [55].

Some possible new directions for future work on CV re-
peaters include developing CV analogs of all-optical schemes
based on cluster state quantum memories [20,21], the use of
sources that generate hybrid entanglement such as Bell states
in the Gottesman-Kitaev-Preskill [56] encoded qubit basis,
and considering alternative repeater architectures such as the
notion of a third generation one-way repeater scheme based
on quantum error correction, logical Bell state measurements,
and teleportation [17], which could potentially increase the
rates further. Also, CV repeaters for more general network
scenarios involving multiple communicating parties largely
remain to be explored. Such work might pave the way towards
bridging the gap between achievable entanglement distribu-
tion rates in repeater networks and the corresponding repeater-
assisted end-to-end rate capacities [57] (see also [58]).
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APPENDIX A: A LOWER BOUND ON THE DISTILLABLE
ENTANGLEMENT OF THE REPEATER LINK STATE

In this Appendix, we write down the state heralded across
the CV repeater link in Fig. 1 of the main text for any N � 1
number of quantum scissors and derive its RCI [12,33–35].
The RCI is a proven information theoretic lower bound on
a state’s distillable entanglement in the asymptotic limit of a
large number of copies of the state.

Consider that the TMSV state can be expressed in the Fock
basis as

|ψ〉AR =
√

1 − χ2
∞∑

n=0

χn|n〉A|n〉R, (A1)

where χ = tanh (sinh−1 √
μ), μ being the mean photon num-

ber in each mode. By modeling the pure loss channel of
transmissivity t with a beam splitter of the same transmissivity
acting on the signal mode R and the environment mode E

which is in the vacuum state, we obtain a three-mode output
state (R → Y ) of the form

|ψ〉AY E/
√

1 − χ2

=
∞∑

n=0

χn
n∑

k=0

√(
n

k

)
xkyn−k|n〉A|n − k〉Y |k〉E (A2)

=
∞∑

k=0

∞∑
n=k

χn

√(
n

k

)
xkyn−k|n〉A|n − k〉Y |k〉E (A3)

=
∞∑

k=0

∞∑
m=0

χn

√(
m + k

k

)
xkym|m + k〉A|m〉Y |k〉E , (A4)

where x = √
1 − t and y = √

t .
When NLA is successfully applied on the mode Y (Y → B)

using N-quantum scissors (see [32] Fig. 1 for a schematic
of the NLA), the state heralded across Alice, Bob, and
the environment and the heralding success probability are
given by

|ψ〉ABE = c√
PN

∞∑
k=0

ak
N∑

m=0

N!

(N − m)!

√(
m + k

k

)
bm

× |m + k〉A|m〉B|k〉E , (A5)

PN = c2
∑

k

a2k
N∑

m=0

(
N!

(N − m)!

)2(m + k

k

)
b2m, (A6)

where a = χ
√

1 − t, b = gχ
√

t/N, c =
√

(1 − χ2)κN , g is
the NLA gain of the quantum scissors, and κ = 1/(1 + g2)
is an intrinsic parameter in the quantum scissors.

The final two-mode state heralded across the NLA is
obtained by tracing over the loss mode E as ρ

(N )
AB =∑∞

u=0 ρ
(N )
AB (u), where

ρ
(N )
AB (u) =

N∑
m=0

N∑
m′=0

ζ (N )
m,u ζ

(N )
m′,u|m + u, m〉〈m′ + u, m′|AB, (A7)

and the coefficients ζm,u are given by

ζ (N )
m,u = caubm N!

(N − m)!

√(
m + u

u

)
. (A8)

The state ρ
(N )
AB is thus

ρ
(N )
AB =

∞∑
u=0

N∑
i=0

(
ζ

(N )
i,u

)2|N (u)〉〈N (u)|AB, (A9)

|N (u)〉AB =
∑N

i=0

( ζ
(N )
i,u

ζ
(N )
N,u

)|u + i, i〉AB√∑N
i=0

( ζ
(N )
i,u

ζ
(N )
N,u

)2
, (A10)

so that its entropy is given by

H (AB) = −
∞∑

u=0

(
N∑

i=0

(
ζ

(N )
i,u

)2

)
log2

(
N∑

i=0

(
ζ

(N )
i,u

)2

)
.

(A11)
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The state on system A is obtained by tracing over B as
ρ

(N )
A = TrB (ρ (N )

AB ):

ρ
(N )
A =

∞∑
u=0

N∑
m=0

(
ζ (N )

m,u

)2|m + u〉〈m + u|A (A12)

=
(

N∑
u=0

�1(u) +
∞∑

u=N+1

�2(u)

)
|u〉〈u|A, (A13)

where

�1(u) =
∑

{
i, j

}
� 0,

i + j = u

(
ζ

(N )
i, j

)2
, �2(u) =

N∑
i=0

(
ζ

(N )
i,u−i

)2
. (A14)

Its entropy is therefore given by

H (A) = −
N∑

u=0

�1(u) log2 �1(u) −
∞∑

u=N+1

�2(u) log2 �2(u).

(A15)

Thus, the RCI of the heralded state follows from (A11) and
(A15) as

IR = H (A) − H (AB). (A16)

APPENDIX B: NON-GAUSSIAN ENTANGLEMENT SWAP

A beam splitter of transmissivity T = cos2 θ acting on
modes i and j can be described by the unitary operator

Ui j (θ ) = exp[−θ (â†
i â j − â†

j âi )], (B1)

that transforms the mode operators as(
âi

â j

)
→ Ui j (θ )†

(
âi

â j

)
Ui j (θ ) (B2)

=
(

cos θ sin θ

− sin θ cos θ

)(
âi

â j

)
. (B3)

Its action on a Fock state input |n〉i ⊗ |0〉 j is given by

Ui j (θ )|n〉i|0〉 j

=
n∑

k=0

√(
n

k

)
(cos2 θ )k/2(sin2 θ )(n−k)/2|k〉i|n − k〉 j . (B4)

Proposition 1. Consider the channel composed of mixing
an input mode i with a mode j in the Fock state |1〉 j on a
beam splitter Ui j (θ ), followed by a projective measurement
〈1|i in mode i. Let us denote this non-trace-preserving map as
N 11

i→ j (θ ). It can be written as

N 11
i→ j (θ ) =

(
− sin θ + cos θ

d

dθ

)
(sin θ )n̂i j , (B5)

where we use the notation n̂i j |n〉i = |n〉 j to denote input to
output transformation.

Proof. We have

Ui j (θ )|n〉i|1〉 j = Ui j (θ )â†
j |n〉i|0〉 j (B6)

= (− sin θ â†
i + cos θ â†

j )Ui j (θ )|n〉i|0〉 j . (B7)

This implies

〈1|iUi j (θ )|n〉i|1〉 j = 〈0|iâi(− sin θ â†
i + cos θ â†

j )Ui j (θ )|n〉i|0〉 j

(B8)

= − sin θ〈0|iâiâ
†
i Ui j (θ )|n〉i|0〉 j + cos θ〈0|iâiâ

†
jUi j (θ )|n〉i|0〉 j

(B9)

= − sin θ〈0|i(1 + â†
i âi )Ui j (θ )|n〉i|0〉 j

+ cos θ〈0|iâiâ
†
jUi j (θ )|n〉i|0〉 j (B10)

= − sin θ〈0|iUi j (θ )|n〉i|0〉 j + cos θ〈0|iâiâ
†
jUi j (θ )|n〉i|0〉 j

(B11)

= − sinn+1 θ |n〉 j + n cos2 θ sinn−1 θ |n〉 j (B12)

=
(

− sin θ + cos θ
d

dθ

)
sinn θ |n〉 j, (B13)

which implies, for a general state |ψ〉i = ∑
n cn|n〉i, that the

action of the channel is as given in (B5). �
Proposition 2. Consider the channel composed of mixing

an input mode i with a mode j in the Fock state |0〉 j on a beam
splitter Ui j (θ ), followed by a projective measurement 〈1|i in
the mode i. Let us denote this non-trace-preserving map as
N 01

i→ j (θ ). It can be written as

N 01
i→ j (θ ) = cos θ (sin θ )n̂i j â j (B14)

where we use the notation n̂i j |n〉i = |n〉 j to denote the input to
output transformation.

Proof. From (B4), we have

〈1|iUi j (θ )|n〉i|0〉 j = √
n cos θ sinn−1 θ |n − 1〉 j (B15)

= â j cos θ sinn−1 θ |n〉 j (B16)

= cos θ (sin θ )n̂i j â j |n〉 j, (B17)

which implies, for a general state |ψ〉i = ∑
n cn|n〉i, that the

action of the channel is as given in (B14).
Remark 1. The displacement operation D̂i(λ) on a mode

i can be implemented using a beam splitter Ui j (θ ) with the
mode j in the coherent state |λ/ sin2 θ〉 j . �

Proposition 3. Consider the measurement depicted in
Fig. 6. The projection implemented by the measurement
scheme on modes 2 and 3 is given by F̂ †

23, where

F̂23 = − cos2 θ (sin2 θ )λ
2

(
λ2

2
|0〉2|0〉3 + 1

4
|1〉2|1〉3

)
, (B18)

where θ is related to the transmissivity of the photon subtrac-
tion beam splitters and λ is the amplitude of the displacement
stages.

Proof. The measurement scheme depicted in Fig. 1 imple-
ments the projection F̂ †

23, which is

〈0, 0|23D̂3(−λ)N 01
3→3′′ (θ )θ→0D̂3(λ)D̂2(λ)

N 01
2→2′′ (θ )θ→0D̂2(−λ)U †

23(π/4)

N 11
2→2′ (π/4)N 11

3→3′ (π/4)U23(π/4), (B19)

where for brevity of notation the primes on the output modes
of individual elements in the transformation are suppressed
ahead of the subsequent elements, and λ ∈ R+.
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Trace Operation

FIG. 6. Non-Gaussian entanglement swap operation based on
Fock state filtering, displacement operations, photon subtraction, and
vacuum projection.

From (B14), we have 〈0|2D̂2(λ)[N 01
2→2′′ (θ )]D̂2(−λ)

= 〈0|2D̂2(λ) cos θ (sin θ )n̂2 â2D̂2(−λ) (B20)

= cos θ (sin θ )λ
2〈−λ|2â2D̂2(−λ) (B21)

= cos θ (sin θ )λ
2〈0|2D̂2(λ)â2D̂2(−λ) (B22)

= cos θ (sin θ )λ
2〈0|2(â2 − λ) (B23)

= cos θ (sin θ )λ
2
(〈1|2 − λ〈0|2). (B24)

Likewise,

〈0|3D̂3(−λ)
[
N 01

3→3′′ (θ )
]
D̂3(λ)

= cos θ (sin θ )λ
2
(〈1|3 + λ〈0|3). (B25)

From (B5),

N 11(π/4)|n〉 = −
(

1√
2

)n+1

+ n

(
1√
2

)2( 1√
2

)n−1

|n〉

(B26)

= (n − 1)

(
√

2)n+1
|n〉. (B27)

Therefore, we have

N 11(π/4) = (n̂ − 1)

(
√

2)n̂+1
.

Thus, F̂ †
23 in (B19) can be written as

F̂ †
23 = cos2 θ (sin2 θ )λ

2
(〈1|3 + λ〈0|3)(〈1|2 − λ〈0|2)U †

23(π/4)
(n̂2 − 1)

(
√

2)n̂2+1

(n̂3 − 1)

(
√

2)n̂3+1
U23(π/4) (B28)

= cos2 θ (sin2 θ )λ
2
(〈1|3 + λ〈0|3)(〈1|2 − λ〈0|2)U †

23(π/4)(n̂2 − 1)
1

(
√

2)n̂2+n̂3+2
(n̂3 − 1)U23(π/4) (B29)

= cos2 θ (sin2 θ )λ
2
(〈1|3 + λ〈0|3)(〈1|2 − λ〈0|2)

×U †
23(π/4)(n̂2 − 1)U23(π/4)U †

23(π/4)
1

(
√

2)n̂2+n̂3+2
U23(π/4)U †

23(π/4)(n̂3 − 1)U23(π/4). (B30)

From (B3), we have

U †
23(π/4)(n̂3 − 1)U23(π/4) = (â†

2 − â†
3)(â2 − â3)

2
− 1, (B31)

U †
23(π/4)(n̂2 − 1)U23(π/4) = (â†

2 + â†
3)(â2 + â3)

2
− 1. (B32)

Thus, we have

F̂ †
23 = cos2 θ (sin2 θ )λ

2
(〈1|3 + λ〈0|3)(〈1|2 − λ〈0|2)

(
(â†

2 + â†
3)(â2 + â3)

2
− 1

)
1

(
√

2)n̂3+n̂2+2

(
(â†

2 − â†
3)(â2 − â3)

2
− 1

)
. (B33)

The projector can be written in the ket form as F̂23

= cos2 θ (sin2 θ )λ
2

(
(â†

2 + â†
3)(â2 + â3)

2
− 1

)
1

(
√

2)n̂3+n̂2+2

(
(â†

2 − â†
3)(â2 − â3)

2
− 1

)
(|1〉2 − λ|0〉2)(|1〉3 + λ|0〉3)

= cos2 θ (sin2 θ )λ
2

(
(â†

2 + â†
3)(â2 + â3) − 2

8

)(
− 1√

2
(|2〉2|0〉3 + |0〉2|2〉3) + 2λ2|0〉2|0〉3

)

= − cos2 θ (sin2 θ )λ
2

(
λ2

2
|0〉2|0〉3 + 1

4
|1〉2|1〉3

)
. (B34)

�
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Remark 2. F̂23 can be expressed in a weighted normalized
form as(

− cos2 θ (sin2 θ )λ
2√

1 + 4λ4

4

)(
2λ2|0〉2|0〉3 + |1〉|1〉3√

1 + 4λ4

)
.

Remark 3. Thus, states

|ψ〉12 = |0〉1|0〉2 + ξ |1〉1|1〉2√
1 + ξ 2

,

|ψ〉43 = |0〉4|0〉3 + ξ |1〉4|1〉3√
1 + ξ 2

can be entanglement swapped into a state |ψ〉14 =
(|0〉1|0〉4 + ξ |1〉1|1〉4)/

√
1 + ξ 2, using F̂23 of Proposition 3

with λ = √
ξ/2. The success probability of physically imple-

menting the projection F̂23 on these states is given by

Pphys =
(

ξ 2

1 + ξ 2

)
cos4 θ (sin2 θ )ξ

16
, (B35)

which can be numerically optimized over the reflectivity
parameter θ .

APPENDIX C: ITERATIVE FORMULA FOR A CHAIN OF
REPEATER LINKS CONNECTED BY THE NON-GAUSSIAN

ENTANGLEMENT SWAP

Consider the proposed CV repeater link with a single quan-
tum scissors. As an alternative to the Fock basis description
of Appendix A, the state successfully heralded across the
repeater link can be expressed as [54]

|ψ (1)〉A1B1L1 = 1

γ (1)

(
γ

(1)
0 + γ

(1)
1 a†

1 + γ
(1)

2 b†
1 + γ

(1)
3 a†

1b†
1

)
× σ

ρ
A1L1

|0〉A1B1L1 , (C1)

where

γ
(1)

0 = f , (C2)

γ
(1)

1 = 0, (C3)

γ
(1)

2 = 0, (C4)

γ
(1)

3 = κh f , (C5)

f =
√

κ sech r√
sech2 r + t tanh2 r

, (C6)

γ (1) =
√

κ sech2 r + t tanh2 r

cosh2 r(sech2 r + t tanh2 r)2
, (C7)

κh =
√

1 − κ

κ

√
t tanh r, (C8)

tanh ρ = √
1 − t tanh r, (C9)

σ
ρ
AL is the two-mode squeezing operator corresponding to

squeezing of magnitude ρ in modes A1 and L1, and r =
(sinh−1 √

μ). The heralding probability is given by

Psciss = γ (1)2
. (C10)

The state obtained by connecting two such repeater links
using a Bell swap projection �̂B1A2 = |φ〉〈φ|B1A2 , where

|φ〉B1A2 = 1√
1 + q2

(|00〉B1A2 + q|11〉B1A2

)
, q ∈ R

+, (C11)

is given by

〈φ|B1A2 |ψ (1)〉A1B1L1 ⊗ |ψ (1)〉A2B2L2

=
(

f

γ (1)

)2

〈φ|B1A2 (1 + κa†
1b†

1)(1 + κa†
2b†

2)

× σ
ρ
A1L1

σ
ρ
A2L2

|0〉A1B1L1A2B2L2 . (C12)

As a result, the state of the modes A1, B2, and L1 (with the
mode L2 being traced over) is heralded as

|ψ (2)〉A1B2L1 = 1

γ (2)

(
γ

(2)
0 + γ

(2)
1 a†

1 + γ
(2)

2 b†
2 + γ

(2)
3 a†

1b†
2

)
× σ

ρ
A1L1

|0〉A1B2L1 , (C13)

where

γ
(2)

0 = 1, (C14)

γ
(2)

1 = κhq tanh ρ, (C15)

γ
(2)

2 = 0, (C16)

γ
(2)

3 = κ2
h q, (C17)

γ (2) =
√

1 + κ2
h q2 sinh2 ρ + κ4

h q2 cosh2 ρ. (C18)

The corresponding success probability is given by the product
of the ideal Bell swap projection probability for the repeater
link states P�̂ times the probability of physically implement-
ing the projection using linear optics Pphys of (B35), i.e.,

Pswap = P�̂ × Pphys, (C19)

where the former is the norm of the un-normalized state in
(C12), given by

P�̂ = f 4 sech2 ρ

(1 + q2)γ (1)4 γ (2)2
. (C20)

Now, say we want to concatenate two such states |ψ (2)〉ABL

(connected by the non-Gaussian Bell state projection), to ob-
tain the state |ψ (3)〉ABL across four repeater links, or similarly
concatenate two states |ψ (3)〉ABL to obtain the state across
eight repeater links |ψ (4)〉ABL. More generally, assume that at
the ith step of concatenation we have two states the tensor
product of which is

|ψ (i)〉A1B1L1 ⊗ |ψ (i)〉A2B2L2

= (
γ

(i)
0 + γ

(i)
1 a†

1 + γ
(i)

2 b†
1 + γ

(i)
3 a†

1b†
1

)
× (

γ
(i)

0 + γ
(i)

1 a†
2 + γ

(i)
2 b†

2 + γ
(i)

3 a†
2b†

2

)
× σ

ρ
A1L1

σ
ρ
A2L2

|0〉A1B1L1A2B2L2 , (C21)

where for brevity of notation we have denoted the modes as
A1, B1, L1, A2, B2, and L2 in place of the actual mode labels.
When the modes B1 and A2 are projected on the non-Gaussian

013310-10
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Bell state, we have

〈φ|B1A2 |ψ (i)〉A1B1L1 ⊗ |ψ (i)〉A2B2L2

= (
a〈00|B1A2 + b〈01|B1A2 + c〈10|B1A2 + d〈11|B1A2

)
× σ

ρ
A1L1

σ
ρ
A2L2

|0〉A1B1L1A2B2L2 , (C22)

where

a =
(
γ

(i)
0 + γ

(i)
1 a†

1

)(
γ

(i)
0 + γ

(i)
2 b†

2

)
√

1 + q2

+
(
γ

(i)
2 + γ

(i)
3 a†

1

)(
γ

(i)
1 + γ

(i)
3 b†

2

)
q√

1 + q2
, (C23)

b =
(
γ

(i)
2 + γ

(i)
3 a†

1

)(
γ

(i)
0 + γ

(i)
2 b†

2

)
q√

1 + q2
, (C24)

c =
(
γ

(i)
0 + γ

(i)
1 a†

1

)(
γ

(i)
1 + γ

(i)
3 b†

2

)
q√

1 + q2
, (C25)

d =
(
γ

(i)
0 + γ

(i)
1 a†

1

)(
γ

(i)
0 + γ

(i)
2 b†

2

)
q√

1 + q2
. (C26)

The resulting state that is heralded in modes A1, B2, and L1

is given by

|ψ (i+1)〉A1B2L1

= 1

γ (i+1)

(
γ

(i+1)
0 + γ

(i+1)
1 a†

1 + γ
(i+1)

2 b†
2 + γ

(i+1)
2 a†

1b†
2

)
× σ

ρ
A1L1

|0〉 , (C27)

where

γ
(i+1)

0 = [
γ

(i)
0

2 + qγ
(i)

2

(
γ

(i)
1 + γ

(i)
0 tanh p

)]
, (C28)

γ
(i+1)

1 = [
γ

(i)
0 γ

(i)
1 + qγ

(i)
3

(
γ

(i)
1 + γ

(i)
0 tanh ρ

)]
, (C29)

γ
(i+1)

2 = [
γ

(i)
0 γ

(i)
2 + qγ

(i)
2

(
γ

(i)
3 + γ

(i)
2 tanh ρ

)]
, (C30)

γ
(i+1)

3 = [
γ

(i)
1 γ

(i)
2 + qγ

(i)
3

(
γ

(i)
3 + γ

(i)
2 tanh ρ

)]
, (C31)

γ (i+1) =
√(

γ
(i+1)

0
2 + γ

(i+1)
2

2) + cosh2 ρ
(
γ

(i+1)
1

2 + γ
(i+1)

3
2)

.

(C32)

The state can be simplified as

|ψ (i+1)〉A1B2L1 = 1

γ (i+1)

[(
γ

(i+1)
0 +γ

(i+1)
1 a†

1

)
σ

ρ
A1L1

|0〉A1L1⊗|0〉B2

+ (
γ

(i+1)
2 + γ

(i+1)
3 a†

1

)
σ

ρ
A1L1

|0〉A1L1 ⊗ |1〉B2

]
.

(C33)

The end-to-end two-mode state heralded across a repeater
chain of n = 2x, x ∈ N, repeater links can be written down by
tracing over the environment mode as

ρ̂A1B2x = TrL1

(|ψ (x+1)〉〈ψ (x+1)|A1B2x L1

)
= ρ̂

(0,0)
A1

⊗ |0〉〈0|B2x + ρ̂
(0,1)
A1

⊗ |0〉〈1|B2x

+ ρ̂
(1,0)
A1

⊗ |1〉〈0|B2x + ρ̂
(1,1)
A1

⊗ |1〉〈1|B2x ,

(C34)

where

ρ̂
(0,0)
A1

= 1

γ (x+1)2

(
γ

(x+1)
0 + γ

(x+1)
1 a†

1

)
ρ̂ th

A1
(ρ )

(
γ

(x+1)
0 + γ

(x+1)
1 a1

)
,

ρ̂
(0,1)
A1

= 1

γ (x+1)2

(
γ

(x+1)
0 + γ

(x+1)
1 a†

1

)
ρ̂ th

A1
(ρ )

(
γ

(x+1)
2 + γ

(x+1)
3 a1

)
,

ρ̂
(1,0)
A1

= 1

γ (x+1)2

(
γ

(x+1)
2 + γ

(x+1)
3 a†

1

)
ρ̂ th

A1
(ρ )

(
γ

(x+1)
0 + γ

(x+1)
1 a1

)
,

ρ̂
(1,1)
A1

= 1

γ (x+1)2

(
γ

(x+1)
2 + γ

(x+1)
3 a†

1

)
ρ̂ th

A1
(ρ )

(
γ

(x+1)
2 + γ

(x+1)
3 a1

)
,

(C35)

where ρ̂ th is the thermal state of mean photon number ρ. The
above density operator can be written in the Fock basis with
terms 〈m1, m2|A1B2x .ρ̂A1B2x .|n1, n2〉A1B2x = ρ̂

(m2,n2 )
A1

, {m1, n1 ∈
W}, and {m2, n2 ∈ {0, 1}}, where

ρ̂
(0,0)
A1

= 〈
φ(0)

m1

∣∣ρ̂ th
A1

(ρ)
∣∣φ(0)

n1

〉
,

ρ̂
(0,1)
A1

= 〈
φ(0)

m1

∣∣ρ̂ th
A1

(ρ)
∣∣φ(1)

n1

〉
,

ρ̂
(1,0)
A1

= 〈
φ(1)

m1

∣∣ρ̂ th
A1

(ρ)
∣∣φ(0)

n1

〉
,

ρ̂
(1,1)
A1

= 〈
φ(1)

m1

∣∣ρ̂ th
A1

(ρ)
∣∣φ(1)

n1

〉
, (C36)

with∣∣φ(0)
n

〉 = (
γ

(x+1)
0 |n〉 + γ

(x+1)
1

√
n|n − 1〉)/γ (x+1),∣∣φ(1)

n

〉 = (
γ

(x+1)
2 |n〉 + γ

(x+1)
3

√
n|n − 1〉)/γ (x+1). (C37)

Finally, the RCI of the state can thus be calculated from
the eigenspectra of the suitably truncated Fock basis density
matrices corresponding to ρ̂A1B2x and ρ̂A1 .
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