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Stability and absence of a tower of states in ferrimagnets
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Antiferromagnets and ferromagnets are archetypes of the two distinct (type-A and type-B) ways of sponta-
neously breaking a continuous symmetry. Although type-B Nambu-Goldstone modes arise in various systems,
the ferromagnet was considered pathological due to the stability and symmetry-breaking nature of its exact
ground state. However, here we show that symmetry breaking in ferrimagnets closely resembles the ferromagnet.
In particular, there is an extensive ground-state degeneracy, there is no Anderson tower of states, and the
maximally polarized ground state is thermodynamically stable. Our results are derived analytically for the
Lieb-Mattis ferrimagnet and numerically for the Heisenberg ferrimagnet. We argue that these properties are
generic for type-B symmetry-broken systems, where the order parameter operator is a symmetry generator.
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I. INTRODUCTION

Spontaneous symmetry breaking (SSB) is the phenomenon
that the thermal equilibrium state of a many-body system
has lower symmetry than the Hamiltonian that governs it.
For a continuous symmetry, there is a multitude of degener-
ate symmetry-breaking ground states in the thermodynamic
limit where the number of constituents, N , goes to infinity.
Conversely when N is finite, most such systems possess a
unique and symmetric ground state. This was explicitly shown
for the Heisenberg antiferromagnet by Marshall [1] and Lieb
and Mattis [2], and is now understood to be quite general
[3,4]. However, these unique ground states are not stable,
in the sense that adding even a small symmetry-breaking
perturbation will lead to a symmetry-broken ground state; in
the thermodynamic limit an infinitesimal perturbation suffices
to break the symmetry. Examples of this type of symmetry
breaking include the breaking of Z2 (up-down) symmetry
in Ising models, of U (1) (phase rotation) symmetry in XY
models, of SU (2) (spin-rotational) symmetry in Heisenberg
antiferromagnets, and of translational symmetry breaking in
crystals [5].

The instability of the symmetric ground state of finite-sized
systems may be intuitively understood by realizing it is actu-
ally a type of “Schrödinger cat state,” namely, a superposition
of macroscopically distinct states which each break the sym-
metry differently [5,6]. There must then be some observable
A with an extensive expectation value 〈A〉 ∼ O(N ) whose
variance scales as VarA ∼ N2, violating the cluster decompo-
sition property [7]. In other words, the symmetric ground state
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contains macroscopic uncertainty of an extensive observable,
making it exceedingly susceptible to local perturbations. The
symmetry-broken state, on the other hand, does not contain
macroscopic uncertainties and is thermodynamically stable.
All the while it is not an energy eigenstate; instead, it is
a superposition of the ground state and zero-wavenumber
low-energy states. If the broken symmetry is continuous, the
gap of these states is of the order O(1/N ). The existence of
this low-energy tower of states was observed for quantum
antiferromagnets by Anderson [8] and subsequently shown
to be generic in SSB systems with a symmetric ground state
[3,4,9–17]. To understand the physics of finite-size systems
with SSB, stability is at least as important as the energy
spectrum [18]. The existence of the tower of states can be an
important numerical diagnostic to show the propensity to SSB
even in very small systems [19,20].

This behavior is not, however, completely general. Indeed
it has long been known that the Heisenberg ferromagnet has
degenerate, symmetry-breaking ground states for systems of
any size. Furthermore, its order parameter is a symmetry
generator itself and hence a conserved quantity [21], there is
only a single Nambu-Goldstone mode while two symmetry
generators are broken, and this Nambu-Goldstone mode has
a quadratic dispersion. It has recently been cleared up that
these two features go hand-in-hand: whenever the commutator
of two broken symmetries has a nonvanishing expectation
value, two Nambu-Goldstone fields conspire to form a sin-
gle, quadratically dispersing gapless mode accompanied by a
gapped partner mode [22–26]. Such Nambu-Goldstone modes
have been dubbed type B, while ordinary, linearly dispersing
Nambu-Goldstone modes are called type A.

It is now the question whether the other ferromag-
net phenomenology—degenerate, thermodynamically stable
finite-size ground states and no tower of states—also carries
over to any type-B SSB system. A natural starting point is
the ferrimagnet, a state with antiferromagnetic correlations
between two unequal-size spin species, which implies in
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addition to antiferromagnetic order also ferromagnetic order.
Earlier, one of the authors suggested that ferrimagnets would
feature a tower of states, since their classical ground states
are not eigenstates of the quantum Hamiltonian [27]. On the
other hand, it has long been known that spin systems with
any nonzero magnetization have macroscopically degenerate
ground states [2,28].

Here we show that the Heisenberg ferrimagnet is far
more akin to a ferromagnet than to an antiferromagnet: we
demonstrate explicitly that there exists a thermodynamically
stable finite-size ground state, and that there is no tower of
states separated from the ground state by an excitation gap
of order O(1/N ). This stable ground state can be understood
to be a classical (product) state supplemented by quantum
corrections, in the same way that the SSB states of type-A
systems are [8,21]. We provide an analytic derivation of the
stability of this state in the simplified case of the Lieb-Mattis
model and provide numerical evidence for the stability in the
full Heisenberg Hamiltonian.

We furthermore argue that this behavior is general for
any system with exclusively type-B SSB. This paints a com-
prehensive picture of SSB: if the ground state is unique,
it must be accompanied by a tower of states in order for
thermodynamically stable SSB states, as a superposition of
very closely spaced energy eigenstates, to exist. In type-B
systems such a tower of states is absent, but SSB is possible
because thermodynamically stable, symmetry-breaking exact
ground states exist even for finite-size systems.

This article is organized as follows. In Sec. II we briefly
outline the Lieb-Mattis argument which leads to the tower of
states in antiferromagnets, the archetype for type-A SSB. In
Sec. III we show that a tower of states is absent in Heisenberg
ferrimagnets, while there is a ground-state degeneracy. These
ground states all break the SU (2) spin-rotation symmetry as
is shown in Sec. IV. In Sec. V we calculate the overlap of the
SSB ground state with the classical Néel state and compare
with the situation in the antiferromagnet. The central part
of this work is the demonstration that the two ground states
which have maximal positive or negative magnetization are
thermodynamically stable. In Sec. VI this is shown analyti-
cally for the Lieb-Mattis model. Numerical evidence of the
stability of small one-dimensional (1D) ferrimagnets is pro-
vided in Sec. VII by exact diagonalization. We conclude with
a comprehensive picture of SSB and directions for further
research in Sec. VIII.

II. ANTIFERROMAGNETS

To set the stage, we first recall some well-known facts
about Heisenberg antiferromagnets on bipartite lattices. The
Heisenberg Hamiltonian is

ĤH = J
∑
〈i j〉

�̂Si · �̂S j . (1)

Here �̂Si is a spin-s operator [29] on site i, the sum is over
nearest-neighbor lattice sites, and J > 0 is a coupling con-
stant. This Hamiltonian is invariant under global SU (2)-spin
rotations. If the lattice is bipartite it can be divided into A and

B sublattices such that each site has neighbors only on the
other sublattice. The classical ground states are Néel states
with spins anti-aligned on the two sublattices, breaking the
SU (2) symmetry to U (1); the direction of Néel ordering is
spontaneously chosen. If furthermore the number of sites
of each sublattice is the same (for instance in square and

hexagonal lattices), there is no net magnetization 〈∑i
�̂Si〉 = 0.

The Néel states are not eigenstates of Eq. (1), and will be
affected by quantum corrections. But even stronger, a finite-
size system governed by this Hamiltonian has a unique ground
state with total spin value S = 0, which therefore does not
break any symmetry. This was shown by Marshall [1], and
can be understood due to an elegant argument by Lieb and
Mattis [2]: consider the following Hamiltonian (“Lieb-Mattis
model”)

ĤLM = 2J

N
�̂SA · �̂SB = J

N

(
Ŝ2 − Ŝ2

A − Ŝ2
B

)
, (2)

where �̂S = ∑
i
�̂Si is the total spin of the system, �̂SA,B =∑

i∈A,B
�̂Si the total sublattice spin, and Ŝ2 = �̂S2, etc. Note

that �̂S = �̂SA + �̂SB. In this model each spin on the A sublattice
interacts with all spins on the B sublattice and vice versa.
This Hamiltonian simultaneously commutes with Ŝ2

A, Ŝ2
B, Ŝ2,

and Ŝz, and eigenstates can therefore be designated by the
quantum numbers |SASBSMz〉, with energies E = J

N (S(S +
1) − SA(SA + 1) − SB(SB + 1)). Clearly the energy is mini-
mal when S is minimal and both SA and SB are maximal. The
minimal value is S = 0, and therefore the ground state is a
total spin singlet, is unique, and does not break any symmetry.

It can be easily seen that the Lieb-Mattis model is equal
to only the �k = �0 and �k = �Q = (π, π, . . . , π ) contributions
of the Fourier-transformed Heisenberg Hamiltonian Eq. (1).
Lieb and Mattis have shown that for any finite N the overlap
between the ground state of Eq. (2) and the ground state of
Eq. (1) is nonvanishing. Therefore, these two states must have
the same quantum numbers, and also the ground state of the
Heisenberg antiferromagnet is a total spin singlet.

The correspondence between the two Hamiltonians goes
further. Excitations that keep SA and SB fixed while increasing
S cost an energy O(J/N ). For large N , these energy levels
are almost degenerate with the ground state. There is there-
fore a tower of extremely low-lying states with SA and SB

maximal, Mz = 0, and differing S, and this carries over to
the Heisenberg antiferromagnet by the same argument. Note
that excitations in the Lieb-Mattis model that change SA or
SB cost energy of at least O(J ), just as local excitations such
as spin flips, while Nambu-Goldstone modes (spin waves) in
the Heisenberg model have lowest energy O(J/L) with L the
linear size of the system.

The variance of the local Néel order parameter N̂ z
i =

(−1)iŜz
i in the symmetric ground states is of order 1 [4], so

that variance of the total Néel order parameter scales as N2,
indicating that this state is not thermodynamically stable. This
is easy to see when one realizes the ground state of the Lieb-
Mattis model is equal to the equal-weight superposition of
classical Néel states in all magnetization directions [6]. This
is a Schrödinger cat state, which is extraordinarily sensitive to
external perturbations.
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III. THE ABSENCE OF A TOWER OF STATES

We now begin demonstrating the differences with the pic-
ture painted in Sec. II, for the case where the magnetization is
finite. For concreteness, we study the Heisenberg ferrimagnet
governed by Hamiltonian Eq. (1), but now the spins on A and
B sublattices are sA and sB, respectively, with sA �= sB. Without
loss of generality we choose sA > sB. On a bipartite lattice
with equal number of sublattice sites, the classical Néel state
has a finite magnetization 〈Ŝz〉 = N (sA − sB)/2, and staggered
magnetization 〈N̂ z〉 = N (sA + sB)/2. Everything we say here
also holds for antiferromagnets where the number of A-
sublattice sites is different from number the B-sublattice sites;
the important feature is that the total spin is S = |SA − SB| > 0
where SA,B = ∑

i∈A,B sA,B.
It is known that the number of ground states of this

model is equal to 2S + 1 = 2|SA − SB| + 1 = N |sA − sB| + 1
[2,28], which can again be inferred from the overlap of these
states with the ground states of the corresponding Lieb-Mattis
model. This number is extensive (proportional to N) since
S is extensive. Moreover, the lowest excitation according to
Eq. (2) has spin S = |SA − SB| ± 1 while SA and SB are the
same, with energy gap �E = J ((sA − sB) + 2

N ). Crucially,
this energy gap is O(J ) instead of O(J/N ) since sA �= sB.
There is therefore no tower of states with energy gap O(1/N )
that would vanish in the thermodynamic limit. Indeed, the
exchange energy J is typically of order 1–10 meV, which is
certainly not negligible, possibly even measurable.

Recall that the Lieb-Mattis Hamiltonian is the �k = �0, �Q
part of the full Heisenberg Hamiltonian. The tower of states
consists precisely of the zero-wavenumber excitations, and
therefore these states and their energies are identical for both
models. We can therefore conclude that the lowest excitations
in Heisenberg ferrimagnets will be low (nonzero) wavenum-
ber collective excitations: spin waves with quadratic disper-
sion whose energy scales as O(J/L2) with L the linear system
size (so N = Ld ). While this energy can get arbitrarily low as
L → ∞, it will not be as low as the gap in a putative tower
of states in d > 2 dimensions. We confirm this numerically in
Sec. VII.

In Ref. [4], Tasaki provides a proof of the existence of a
tower of states with gaps of order O(1/N ), based on several
assumptions. One of these assumptions is that the ground state
be unique and be an eigenstate of a symmetry generator with
eigenvalue M. In the present case, although the ground states
are eigenstates of Ŝz, they are degenerate and not unique.
Below we argue that when M > 0, the ground state is always
degenerate. Tasaki’s derivation applies therefore only to the
case M = 0 and the results of this section are not in contra-
diction with the proof. The alternative is when the symmetry
generator is broken itself in the type-A way, which we shortly
discuss in Sec. VIII.

IV. SPONTANEOUS SYMMETRY BREAKING

From the standard viewpoint of SSB, the absence of a
tower of states naively poses a conundrum. In type-A systems,
all �k = �0 energy eigenstates, including the symmetric ground
state, are thermodynamically unstable, and a tiny perturbation
will be able to break the symmetry. The existence of a tower of

states is necessary to be able to construct the dynamically sta-
ble, symmetry-breaking superpositions of energy eigenstates,
as the energy fluctuations of these superpositions fall off as
O(J/N ). We have just seen the smallest energy gap towards
total spin excitations in ferrimagnets is instead O(J ). What
does this imply for the symmetry breaking?

The answer is in fact quite simple: the exact ground states
already break the symmetry themselves. This is easy to see
from the Lieb-Mattis model. We have shown that its spectrum
can be assigned definite quantum numbers S and Mz (where
the z axis is chosen arbitrarily). The only such state which has
full SU (2) spin-rotation symmetry is the one with S = Mz =
0. (It is not sufficient to have only Mz = 0. Recall for instance
that a two-spin- 1

2 system in the triplet state s = 1, mz = 0
breaks Sx- and Sy-rotation symmetry.) The ground states of
the ferrimagnet instead have S = |SA − SB| > 0. In fact, the
symmetric state with S = 0 has quite a high energy compared
to this state.

We can also reach this result more formally, by considering
the usual SSB procedure of adding an external staggered
magnetic field B coupling to the order parameter, to the Lieb-
Mattis model:

ĤLM = J

N

(
Ŝ2 − Ŝ2

A − Ŝ2
B

) − B
(
Ŝz

A − Ŝz
B

)
. (3)

Here Ŝz
A,B = ∑

i∈A,B Ŝz
i represent the z component of the total

spin on sublattices A and B. The matrix elements of the
symmetry-breaking field in the basis of Lieb-Mattis eigen-
states, 〈SASBSMz|(Ŝz

A − Ŝz
B)|S′

AS′
BS′M ′

z〉, are known exactly
(reproduced in Appendix A for completeness) [30]. For zero
field, B = 0, the ground states have maximal SA and SB,
minimal S = |SA − SB|, and are degenerate for any value of
Mz. For nonzero field, B > 0, the degeneracy is lifted, and
the state with the lowest expectation value of the energy has
magnetization Mz = S. This state must be a superposition
of states with different values of the total spin, |SA − SB| <

S < (SA + SB), because the staggered magnetization operator
Sz

A − Sz
B couples states with total spin S to S ± 1 states.

In the limit of large N the matrix elements of the Hamil-
tonian can be conveniently expressed in terms of the shifted
total spin S̃ = S − |SA − SB|. The Hamiltonian is then, up to
order O( 1

N ):

Ĥ ≈ E0 +
∑
S̃,S̃′

|SASBS̃Mz〉( fS̃+1δS̃,S̃′−1

+ aS̃δS̃,S̃′ + fS̃δS̃,S̃′+1)〈SASBS̃′Mz|, (4)

with

E0 = J

4
(sA − sB)2N + J

2
(sA − sB)

− B

2
(sA + sB)N − 2B

sB

sA − sB
, (5)

aS̃ = S̃

(
J (sA − sB) + 2B

sA + sB

sA − sB

)
, (6)

fS̃ = −2B
√

sAsB

sA − sB
S̃. (7)

This expression for the Hamiltonian is a special case of a
tridiagonal matrix discussed in Appendix B. As shown there,
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FIG. 1. The ground state of the ferrimagnetic Lieb-Mattis model
with staggered magnetic field B is a superposition of states with
different S̃ = S − |SA − SB|, with weights given by e−S̃/λ. Here, a
numerically determined decay length λ is plotted as a function of
B/J for increasing system size up to N = 2000. The dashed black
line is the exact result in the thermodynamic limit following Eqs. (9)
and (10). It is important to observe that in the thermodynamic limit
N → ∞ the decay length λ remains smooth near B = 0.

the ground state in the large-N limit is a superposition of states
with different S̃ = S − |SA − SB|,

|ψ0(B, N )〉 =
∑

S̃

ψ (S̃)|S̃〉, (8)

with weights given by an exponentially decaying function
ψ (S̃) = c e−S̃/λ. The decay “length” λ is given by

λ = 1/ log

(
1
2 (1 + √

1 − 4ε2)

|ε|

)
, (9)

with

ε = −2B
√

sAsB

J (sA − sB)2 + 2B(sA + sB)
. (10)

In the limit of zero staggered field, B → 0, the decay length
vanishes, and the Lieb-Mattis ground state |ψ0〉 is the total-
spin eigenstate with S = |SA − SB| and Mz = S.

Contrary to the case of type-A SSB systems, the thermody-
namic limit and the limit of vanishing field commute for the
ferrimagnet:

lim
B↓0

lim
N→∞

|ψ0(B, N )〉 = lim
N→∞

lim
B↓0

|ψ0(B, N )〉. (11)

Just as for the ferromagnet, a particular orientation (i.e., the
choice of the z axis) for the ferrimagnetic ground state can be
singled out from the ground-state manifold by an infinitesimal
field even for finite system size. There is thus a discontinuity
in the ground state as a function of applied field for any system
size:

lim
B↓0

|ψ0(B, N )〉 �= lim
B↑0

|ψ0(B, N )〉. (12)

Numerical evaluation of the ground state of the ferrimag-
netic Lieb-Mattis Hamiltonian for large but finite N and B > 0
confirms that it is an exponentially decaying function in S̃, as
shown in Fig. 1. The decay length follows the analytical result
of Eqs. (9) and (10).

We conclude that although the ferrimagnet has 2S + 1
degenerate ground states, any small external staggered field is

sufficient to lift the degeneracy, upon which the ground state
will be remain dominated by the spin state with S = |SA − SB|,
and the magnetization direction parallel to the external field.

V. THE CLASSICAL NÉEL STATE

Besides the total (ferromagnetic) magnetization Mz, fer-
rimagnets also have a nonzero staggered (antiferromagnetic)
magnetization n = 〈Ŝz

A − Ŝz
B〉 �= 0. Using the matrix elements

in Appendix A, the staggered magnetization expectation value
for the maximally polarized ground state of the Lieb-Mattis
ferrimagnet, with Mz = S and S = (sA − sB)N/2, and no ap-
plied fields, is found to be

n = N
sA + sB

2
− 2sB

|sA − sB| + O(N−1). (13)

To leading order, this agrees with the expectation from the
classical limit for a ferrimagnet, which is the Néel product
state |ψNéel〉 with all spins on the A sublattice pointing maxi-
mally up and on the B sublattice maximally down. That state
has maximal staggered magnetization n = N sA+sB

2 .
The Néel state itself can be written as a superposition of

states with different total spin S but fixed Mz = SA − SB, and
SA,B = sA,BN/2. Because |ψNéel〉 is the ground state of the
Hamiltonian in Eq. (3) with J = 0 and B > 0, the Néel-state
wavefunction has the same exponentially decreasing form
ψ (S̃) = c e−S̃/λ as the ferrimagnetic ground state. For J = 0,
however, the decay length λ in Eq. (9) is independent of N and
B. This means that the Néel state has nonzero overlap with the
ground state of the Lieb-Mattis Hamiltonian for any system
size, and even in the thermodynamic limit N → ∞. Its value
can be found by normalizing the Néel state wavefunction:

〈ψNéel | S = |SA − SB|〉 =
√

1 − e−2/λ(J=0). (14)

For the special case of sA = 1 and sB = 1/2, we have ε(J =
0) = −

√
2

3 and the overlap is found to be 1√
2
.

Notice that the difference between the energy expectation
values of the Néel state and exact ground state for both the
Lieb-Mattis antiferromagnet and the Lieb-Mattis ferrimagnet
is of order 1, and given by ENéel − ELM = J

N SB, where we
assumed SA � SB.

The fact that the staggered magnetization in Eq. (13) differs
from its classically expected value at subleading order may
be interpreted as indicating that the Lieb-Mattis ground state
involves zero-wavenumber quantum corrections on top of the
classical Néel state. These quantum corrections correspond
precisely to the suppression of total-spin components outside
the ground-state manifold. Going towards more realistic mod-
els, one should note that the ground state of the Heisenberg
ferrimagnet is not the same as that of the Lieb-Mattis Hamil-
tonian. Because the Heisenberg model includes only local
interactions, its ground state will have quantum corrections
at all wave numbers as compared to the Néel state, and their
overlap vanishes in the thermodynamic limit (confirmed nu-
merically below), even though both states will agree to leading
order on the expectation value of staggered magnetization.
The vanishing overlap is in fact a generic property for ground
states of distinct models in an exponentially large Hilbert
space, and is expected also, for example, for the overlap
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between the ground state of the Heisenberg antiferromagnet
and the classical Néel state.

VI. STABILITY

In Sec. IV we addressed one part of the conundrum that the
absence of a tower of states poses, namely, how the ground
state breaks the symmetry. However, zero-wavenumber en-
ergy eigenstates are global—they are not tensor products of
local states—and typically unstable as we have shown, for
instance, for the ground state of the antiferromagnet in Sec. II.
The question is whether the symmetry-breaking exact ground
states of the finite-size ferrimagnet are stable.

In this section we show that the exact ground states of the
Lieb-Mattis model with maximal polarization, Mz = ±S =
±|SA − SB|, are thermodynamically stable. In the next section
we provide numerical evidence that the maximally polarized
ground states in the full Heisenberg model are also stable.

Recall that a state is defined to be unstable if there exists an
extensive observable Â whose variance VarÂ = 〈Â2〉 − 〈Â〉2

scales as N2 [4,5,18]. This definition is equivalent to saying
there exists a connected correlation function that does not
satisfy the cluster decomposition property [5,7].

To prove that a state is stable one thus needs to compute the
variance of all possible extensive observables. In the case of
the Lieb-Mattis Hamiltonian in Eq. (3), all states are global,
and we can suffice by computing the variance of the transverse
total spin, Var Ŝx, and of the total sublattice magnetization,
Var(Ŝz

A − Ŝz
B).

The variance of the transverse total spin Ŝx is independent
of SA and SB. Because 〈SMz|Ŝx|SMz〉 = 0, we find

Var[Ŝx] = 〈SMz|(Ŝx )2|SMz〉
= 1

4 〈SMz|(Ŝ+ + Ŝ−)2|SMz〉
= 1

4 〈SMz|(Ŝ+Ŝ− + Ŝ−Ŝ+)|SMz〉. (15)

The maximally polarized states, with Mz = ±S, are annihi-
lated by Ŝ±, and we then find the variance to be S/2 ∼ O(N ).
On the other hand, for |Mz| < S we find

Var[Ŝx] = 1
2 S(S + 1) − 1

2 M2
z . (16)

As long as |Mz| does not scale with system size in exactly the
same way as S, the variance of the total transversal spin scales
as O(N2), implying instability. Therefore, only the states with
|Mz|/S → 1 are thermodynamically stable with respect to the
total transversal spin.

The variance of the sublattice magnetization Ŝz
A − Ŝz

B
can be computed directly using the matrix elements in
Appendix A. For the maximally polarized ground state with
Mz = S and sA > sB, it is to leading order:

Var
[
Ŝz

A − Ŝz
B

] = 4
sAsB

(sA − sB)2
+ · · · ∼ O(1). (17)

This shows that the maximally polarized ground state is
thermodynamically stable with respect to all extensive observ-
ables even in finite-sized ferrimagnets. For states with non-
maximal polarization, M ∼ O(1), we have Var[Ŝz

A − Ŝz
B] =

sAsB
sA−sB

N + · · · , which also suggests stability. However, since
we have already seen that these states with nonmaximal
polarization are unstable with respect to total transverse spin

FIG. 2. A numerical comparison of the stabilities of the maxi-
mally (Mz = S = L/2, green stars) and minimally (Mz = 0 or 1/2,
red diamonds) polarized ground states of the 1D ferrimagnetic sA =
1, sB = 1

2 Heisenberg model. (a) Var Ŝx . The results exactly follow
Eq. (16) (shown as dashed lines). The variance in the maximally
polarized state scales as O(L) and thus signal stability, whereas the
O(L2) scaling in the minimally polarized state implies instability.
(b) The variance of Ŝz

A − Ŝz
B. Here, the results do not match the

variance found for the ground states of the Lieb-Mattis model, be-
cause SA and SB are not symmetries of the ferrimagnetic Heisenberg
Hamiltonian. Nevertheless, the variance still scales as O(L) (the
dashed lines represent a fit) which implies that all ground states
are stable with respect to the uncertainty of the antiferromagnetic
correlations.

Ŝx, the two maximally polarized ground states are the only
thermodynamically stable ground states.

VII. NUMERICAL RESULTS

The Mermin-Wagner-Hohenberg-Coleman theorem does
not prohibit type-B SSB from occurring in one-dimensional
systems at zero temperature [5,31,32]. We can therefore
confirm the generality of the analytic results of the Lieb-
Mattis model in Sec. VI using numerical results for a one-
dimensional ferrimagnetic Heisenberg chain. The Hamilto-
nian is given by

Ĥ = J
∑

i

�̂Si · �̂Si+1. (18)

For concreteness, we take all the even sites to have sA = 1
spins and the odd sites sB = 1/2 spins, and impose periodic
boundary conditions. We consider chains up to length L = 14
using exact diagonalization and evaluate degeneracies and
the stability of the ground states. Also note that because our
system is one dimensional, the linear size L and total system
size N are equal. This model has been studied extensively
before, both using numerical methods as well as by a variety
of spin wave expansions [33–40]. Here, we focus on the
properties discussed before: the ground-state degeneracy, the
stability of states, and the low-lying excitations.

We confirm that the sA = 1, sB = 1
2 Heisenberg ferrimag-

net has a (L/4 + 1)-dimensional ground-state manifold with
total spin S = L/4, just like the Lieb-Mattis ground states.

Next we analyze the stability of the states in the ground-
state manifold. Following Sec. VI, we compute the variance
of the transverse total spin and the staggered magnetization,
shown in Fig. 2. The variance of staggered magnetization
scales with the system size, independent of the magnetic num-
ber Mz. All states in the ground-state manifold are therefore
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FIG. 3. An overview of all low-energy excited eigenstates with
their energy gap in units of J , in the 1D ferrimagnetic sA = 1, sB = 1

2
Heisenberg chain, as a function of system size L. Black dots represent
states with finite wavenumber, k �= 0, while red stars indicate states
with zero wavenumber k = 0 and S < |SA − SB|, and green dia-
monds have k = 0 and S > |SA − SB|. Here |SA − SB| = L/4 is the
ground-state total spin. In one dimension, the excitation gap towards
Nambu-Goldstone modes with nonzero wavenumber (black dots) is
O(1/L2) (indicated by the black dashed line), because Ek ∼ k2 and
the smallest momentum scales as k ∼ O(1/L). States with k = 0 and
S < |SA − SB| are two-Nambu-Goldstone-mode states (red stars),
which follows from the fact that their magnetization eigenvalue Mz

is smaller than the ground-state value. Finally, the states that would
constitute the tower of states in an antiferromagnet, namely, those
with k = 0 and S > |SA − SB| (green diamonds), have a gap that is
independent of system size (green dashed line).

stable with respect to staggered magnetization. However, the
variance of transverse spin scales as O(L2) for the state with
minimal Mz but it scales as O(L) for the maximally polarized
state Mz = S. In fact, the results are exactly equal to Eq. (16).
We therefore confirm that the only thermodynamically stable
ground state is the maximally polarized state with Mz = S.

The absence of a tower of states is confirmed by an analysis
of the low-lying energy eigenstates, shown in Fig. 3. For each
low-energy eigenstate we computed its energy, momentum k,
total spin S, and polarization Mz. If a tower of states would
be present, the energy gap towards states with k = 0, Mz =
|SA − SB|, and S > |SA − SB| would vanish as O(1/L). This is
not the case, as we argued in Sec. III: in Fig. 3 we see that
these states (green diamonds) have a gap of order O(1) (green
dashed line).

Nonetheless, there are states whose gap vanishes as
O(1/L2). We identify here the excitation of a Nambu-
Goldstone mode, with dispersion E ∼ k2 and the smallest
momentum scaling as k ∼ O(1/L). Nambu-Goldstone modes
necessarily have nonzero momentum, shown in Fig. 3 as black
circles. The excitation of two Nambu-Goldstone modes with

FIG. 4. The overlap squared between ground states of various
models shown on a log-log scale. The overlap between the maxi-
mally polarized ground state of the Lieb-Mattis model state and the
classical Néel state follows Eq. (14) and stays nonzero even in the
thermodynamic limit. On the other hand, the presence of spin flips
or quantum corrections in the maximally polarized ground state of
the ferrimagnetic Heisenberg model causes its overlaps with both the
Néel state and the Lieb-Mattis state to vanish with increasing system
size.

opposite momentum now leads to states with zero momentum
but still a gap that scales as O(1/L2), shown as red stars. We
thus have analyzed the full eigenvalue spectrum and excluded
the possibility of a tower of states.

Finally, Fig. 4 shows the overlap of the Lieb-Mattis and
Heisenberg ground states with the classical Néel state. While
the former have a nonzero overlap in the thermodynamic limit,
the overlap of the latter decreases with system size. This can
be understood as a consequence of the extensive number of
single and few-spin flips contained in the Heisenberg ground
state relative to the Néel state. These can be seen as quantum
corrections to the classical state at all wave numbers, and
although they hardly affect the macroscopic staggered mag-
netization, and do not affect the magnetization at all, they
do cause the overlap with the Néel state to vanish in the
thermodynamic limit. The latter also occurs in the (type-A)
antiferromagnet.

VIII. OUTLOOK

We found the ferrimagnet to have an extensive ground-state
degeneracy and no tower of states. Furthermore, we found that
within the ground-state manifold, the maximally polarized
states are thermodynamically stable. The ferrimagnet shares
these features with the ferromagnet, which turns out to be
less unique than often assumed [24,27,31]. Note that this also
implies that the antiferromagnet cannot be understood as the
sA → sB limit of a ferrimagnet.

Although we found these results for the specific case of
the ferrimagnet, we hypothesize that these conclusions apply
to type-B systems in general. The defining property of such
systems is that the expectation value of the commutator of
two broken symmetry generators does not vanish. Apart from
some pathological cases [22], such a commutator is a linear
combination of symmetry generators itself, implying that the
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TABLE I. Comparison between type-A and type-B SSB phenomenology. They differ in the number of ground states; the existence of
a tower of states; the number of Nambu-Goldstone (NG) modes in terms of the number of broken symmetry generators n; their dispersion
relation; and the lower critical dimension, which is the lowest dimension at which zero-temperature SSB is possible (the lower critical
dimension at finite temperature is 2 for both type-A and type-B SSB).

SSB No. ground states Tower of states No. NG modes NG dispersion Lower critical dimension

Type A 1 yes n linear 1
Type B O(N ) no n

2 quadratic 0

order parameter operator commutes with the Hamiltonian; i.e.,
the order parameter operator is a symmetry generator. Since
the putative tower of states consists of zero-wavenumber
states, their energy can only depend on quantum numbers
related to the symmetry group. In Appendix C we argue that
the lowest contribution to the energy of such states contains
a factor which is proportional to the expectation value of the
order parameter operator, which is extensive, precluding the
O(1/N ) scaling of the energy.

At this time, there are few known systems which break
symmetry only in the type-B way, without any additional
type-A symmetry breaking. We expect that the latter always
leads to the existence of a tower of states, although this must
be studied in future research. In condensed-matter physics,
the best-studied cases of type-B SSB apart from magnets are
multicomponent or spinor Bose-Einstein condensates [41],
which always break U (1) number conservation as they are
always superfluids, which is an Abelian and therefore type-A
SSB. Similarly, in quantum chromodynamics, there is type-B
SSB in kaon condensates [42,43] and color superconduc-
tors [44], but there is a global U (1) symmetry broken as
well. On a deeper level, starting from a relativistic field
theory, the Lorentz invariance needs to be broken sponta-
neously by the type-B SSB [24,31]. Therefore, to find theories
which break symmetry exclusively in the type-B way, it
may be more fruitful to start from a nonrelativistic theory
outright, linear-in-time derivatives, as has been suggested in
Ref. [45].

There are two further interesting questions related to the
tower of states in systems that break symmetry in both type-A
and type-B ways. First, one can compare the tower of states
between two systems which break the same symmetries, but
one with type A only, and the other type A and type B. For
instance, one could consider full breaking of SU (2) symmetry
where none of the symmetry generators gain an expectation
value, leading to three type-A Nambu-Goldstone modes, ver-
sus the case where one generator gains a magnetization, lead-
ing to one type-A and one type-B Nambu-Goldstone mode.

Second, what happens to the tower of states in a system
with both type-A and type-B symmetry breaking, but where
the symmetry generators which excite the type-A Nambu-
Goldstone modes are themselves gapped by imposing an
external field, which also gaps out the associated tower of
states? It could well be that the type-B phenomenology is
unaffected by this external field, and will follow the results of
this work. Here one might think of canted or conical magnets,
which are like ferrimagnets with the remnant Sz symmetry
broken by an applied magnetic field in the z direction.

The nonzero overlap between the ground state of the ferri-
magnetic Lieb-Mattis Hamiltonian and the classical Néel state

suggests it may be possible to find a simple exact representa-
tion of this ground state, which we leave for future work. It
also opens up the question of the entanglement structure of the
ferrimagnet, which unlike that of the product state Heisenberg
ferromagnet, is quite subtle. It would be interesting to see
whether the entanglement in type-B SSB systems exhibits
the same Nambu-Goldstone mode counting as type-A SSB
systems [16,17].

Concluding, the distinction between type-A and type-
B SSB seems to go much further than the counting of
Nambu-Goldstone modes [24,25], as is summarized in Ta-
ble I. Type-A, ordinary SSB has a unique symmetric ground
state and a tower of low-lying states with energy gap
∼O(1/N ). There is a linearly dispersing Nambu-Goldstone
mode for each broken symmetry. Furthermore, it has quantum
corrections to the classical SSB state, and due to the Coleman
theorem type-A SSB in one dimension at zero temperature is
forbidden in the thermodynamic limit. Conversely, here we
have found that type-B SSB is accompanied by an extensive
ground-state degeneracy and has no tower of low-lying states.
Instead, at least one of the ground states is thermodynamically
stable. Two broken symmetry generators lead to one quadrati-
cally dispersing Nambu-Goldstone mode and a gapped partner
mode. Finally, type-B systems do not suffer from the Coleman
theorem and are stable in one dimension [5,31,32] (although
both type-A and type-B systems are subject to the Mermin-
Wagner-Hohenberg theorem that forbids SSB in two or lower
dimensions at finite temperature [5,31]). There seems to be
only one essential difference between general (“ferri”) type-B
SSB and the peculiar case of the ferromagnet: the latter is the
same as the classical ferromagnet, whereas the ferrimagnet is
a classical Néel state dressed with quantum corrections [27].
Another difference is that the ferromagnet does not contain
a gapped mode partnered with the gapless Nambu-Goldstone
mode; this can be interpreted as the gap being pushed to
infinity [5,46]. Nevertheless, here we have seen that even if
quantum corrections are present in type-B systems, the lowest
energy gap of zero-wavenumber states is not O(1/N ) but O(1)
and they do not constitute a tower of states in the sense of
Refs. [3,4,8–11].
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APPENDIX A: MATRIX ELEMENTS

For completeness, we reproduce here the matrix elements
of the staggered magnetic field in the basis of Lieb-Mattis
eigenstates |SASBSMz〉, as described in Ref. [30]:〈

SASBSMz

∣∣(Sz
A − Sz

B

)∣∣S′
AS′

BS′M ′
z

〉
= δSA,S′

A
δSB,S′

B
δMz,M ′

z
[ fS+1δS,S′−1 + gSδS,S′ + fSδS,S′+1].

(A1)

Here, we defined the functions

fS ≡
√

(S2 − (SA − SB)2)((SA + SB + 1)2 − S2)
(
S2 − M2

z

)
(2S + 1)(2S − 1)S2

,

(A2)

gS ≡ (SA − SB)(SA + SB + 1)Mz

S(S + 1)
. (A3)

For the specific case of SA/B = sA/BN/2, Mz = |SA − SB|, and
large N , the matrix elements can be conveniently expressed in
terms of the shifted total spin S̃ = S − |SA − SB|, up to order
O(1/N ):

fS̃ ≈ 2
√

sAsB

sA − sB
S̃, (A4)

gS̃ ≈ 1

2
(sA + sB)N − 2

sB + (sA + sB)S̃

sA − sB
, (A5)

S(S + 1) ≈ 1

4
(sA − sB)2N2 + 1

2
(sA − sB)(2S̃ + 1)N. (A6)

APPENDIX B: GROUND STATE
OF A TRIDIAGONAL MATRIX

Consider a symmetric tridiagonal matrix, where the only
nonzero elements are on the diagonal and just below and
above it:

M =

⎛
⎜⎜⎝

a1 b1

b1 a2 b2

b2 a3 b3

. . .
. . .

. . .

⎞
⎟⎟⎠. (B1)

We are interested in the ground-state eigenvector and eigen-
value for the special case where both ax and bx increase
linearly with x > 0. By rescaling the matrix we define

ax = x, bx = εx. (B2)

As an ansatz for the ground-state eigenvector, with eigen-
value v, we choose

ψx = (−sgn[ε])xe−x/λ. (B3)

The eigenvalue equation now reads, for each row x,

|ε|((x − 1)e1/λ + xe−1/λ) = x − v. (B4)

By looking at the first row, with x = 1, we can relate ε, λ, and
v:

|ε|e−1/λ = 1 − v. (B5)

Inserting this back into the equation for general x > 1, we find

|ε|2 x − 1

1 − v
+ x(1 − v) = x − v, (B6)

which can be simplified to

(x − 1)(|ε|2 − v(1 − v)) = 0. (B7)

Because the second factor must equal zero for all x, we found
an expression for v in terms of ε that is independent of x. This
proves that ψx is indeed an eigenvector of M with eigenvalue

v = 1
2 (1 +

√
1 − 4|ε|2). (B8)

The exponential decay length is given by

λ = 1/ log

(
1
2 (1 +

√
1 − 4|ε|2)

|ε|

)
. (B9)

APPENDIX C: ABSENCE OF A TOWER OF STATES IN
GENERAL TYPE-B SYSTEMS

In this Appendix we argue that systems with only type-B
SSB do not possess a tower of low-lying zero-wavenumber
states, based on the assumption that the zero-wavenumber
Hamiltonian consists of Casimir operators. It follows that
contributions to the energy gap are either zero or (at least)
proportional to 1/N times the expectation value of a symmetry
generator, which is extensive, so that the gap is of order O(1)
instead of O(1/N ).

Apart from some pathological exceptions [22], in type-
B systems the order parameter operator commutes with the
Hamiltonian; i.e., the order parameter operator itself is a
symmetry generator. In order to study type-B systems in
general, we need to analyze the Lie algebra structure of the
Hamiltonian and its eigenstates.

The symmetry generators Q̂a, which by definition are Her-
mitian and commute with the Hamiltonian, can be expressed
in the Cartan-Weyl basis, in which the Cartan subalgebra is
spanned by a maximal set of r mutually commuting gener-
ators F̂ i, where r is called the rank of the Lie algebra. The
remaining generators can be expressed in pairs of Hermitian-
conjugate root generators Êα , Ê−α , with α called the root vec-
tor and commutation relations [Êα, Ê−α] = αiF̂ i. Watanabe
and Brauner have shown that the Cartan subalgebra can be
chosen in such a way that only the Cartan generators F̂ i can
obtain an expectation value, and hence lead to type-B SSB
[23]. We can simultaneously diagonalize the Hamiltonian and
the Cartan generators. Eigenstates of the Cartan generators F̂ i

are weight states |μ〉 with eigenvalues μi, collected in a weight
vector μ.

Now we recall several important theorems from Lie group
theory [47,48]. First, irreducible representations of a semisim-
ple Lie algebra are completely classified by specifying the
highest weight μ̄. Second, a Lie algebra of rank r contains
r Casimir operators, which commute with the entire Lie
algebra. Third, by Schur’s lemma, any operator that commutes
with all generators of the Lie algebra is proportional to the unit
matrix in any irreducible representation.

For discussing the ground states and the tower of states,
we only need to consider the k = 0 part of the Hamiltonian,
which therefore only depends on internal degrees of freedom
which transform under the Lie group of symmetry transfor-
mations. Consequently we are going to assume that the k = 0
Hamiltonian can be completely specified in terms of Lie
algebra generators; in other words, it is a spectrum-generating
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algebra [48]. It follows that the k = 0 Hamiltonian, which
commutes with the entire algebra, consists only of Casimir
operators.

For type-B SSB, a ground state is an eigenstate of sym-
metry generators in the Cartan subalgebra, i.e., a weight
state, where at least one weight component is nonzero. Since
a symmetry generator is an extensive operator, this weight
component is extensive. Because the irreducible representa-
tion of this generator is specified by its highest weight, the
highest weight must also be extensive, which implies that the
representation space has extensive dimensions. And since the
Hamiltonian consists of Casimir operators, which are propor-
tional to the identity matrix in any irreducible representation,
this implies that there is a ground-state degeneracy of the
extensive dimension of this representation. This proves that
under mild assumptions type-B SSB involves an extensive
ground-state degeneracy.

The Hamiltonian is a sum of Casimir operators Cp of order
p, which consist of combinations of generators Q̂a with total
multiplicity p. Because the Q̂a are extensive, each term in the
Hamiltonian must be of the form 1

N p−1 Ĉp, up to factors of order
O(1), so that the energy is extensive. We now focus on the
quadratic Casimir operator with p = 2, although the argument
is similar for higher p.

In the Cartan-Weyl basis, the quadratic Casimir operator
can be expressed as [49]

Ĉ2 =
∑

i

F̂ iF̂ i +
∑
α∈�+

(ÊαÊ−α + Ê−αEα ), (C1)

where �+ is the set of positive root vectors. Since Casimir
operators are proportional to the identity matrix, we can find
the proportionality constant by acting on the highest weight
state for which Êα|μ̄〉 = 0. Then, acting on this state, the term
in brackets is equal to [Êα, Ê−α] = αiF̂ i. We therefore find

the energy of all states in the irreducible representation μ̄ to
be

E = 1

N

∑
i

μ̄i

⎛
⎝μ̄i +

∑
α∈�+

αi

⎞
⎠. (C2)

With all this, we can analyze the putative tower of states.
Denoting the representation to which the ground state belongs
by μ̄0, it consists of k = 0 states in different irreducible
representations μ̄′, but with the same eigenvalues μ for the
Cartan generators, which implies that μ̄′ > μ̄0 � μ. From
Eq. (C2) we see that, since μ̄′ is extensively nonzero, the
energies of any excited state contain at least a factor of 1

N μ̄′
j ,

and therefore are at least O(1). There is no tower of states with
gaps O(1/N ).

There is one caveat: it could be that the weight state
has eigenvalue μ j = 0 for one (or more, but not all) Cartan
generators. Then Eq. (C2) would allow for a tower of states
with energy gaps O(1/N ). But if a Cartan generator has
eigenvalue zero, there are two possibilities: First, the state
could be invariant under one or more SU (2) subgroups, in
which case the root generators which would construct the
tower of states also annihilate the state. Second, the symmetry
is broken in the type-A way, in which case a tower of states
is expected. We leave detailed investigation of systems with
both type-A and type-B breaking for future work.

We therefore conclude that states which exclusively feature
type-B SSB have an extensive ground-state degeneracy and no
tower of states with energy gaps O(1/N ).

Note that the distinction between symmetry breaking
where the expectation value of the Casimir operator is min-
imal or maximal has been discussed before [50], although
these authors do not consider the case where μ < μ̄ as is the
case for almost all type-B SSB [27].
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