
PHYSICAL REVIEW RESEARCH 2, 013302 (2020)

Weak-field dissipative conductivity of a dirty superconductor with Dynes subgap states under a dc
bias current up to the depairing current density
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We study the dissipative conductivity σ1 of a dirty superconductor with a finite Dynes parameter � under a
dc-biased weak time-dependent field. The Usadel equation for the current-carrying state is solved to calculate
the pair potential, penetration depth, supercurrent density, and quasiparticle spectrum. It is shown that, while the
depairing current density jd for � = 0 is coincident with the Kupriyanov-Lukichev theory, a finite � decreases
the superfluid density, resulting in a reduction of jd . The broadening of the peaks of the quasiparticle density
of states induced by a combination of a finite � and a dc bias can reduce σ1 below that for the ideal dirty BCS
superconductor with � = 0, while subgap states at Fermi level proportional to � results in a residual conductivity
at T → 0. We find the optimum combination of � and the dc bias to minimize σ1 by scanning all � and all
currents up to jd . By using the results, it is possible to improve jd and reduce electromagnetic dissipation in
various superconducting quantum devices.
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I. INTRODUCTION

Electromagnetic properties of superconductors have been
actively studied in many fields of fundamental and applied
physics, including applications to superconducting radio-
frequency (SRF) cavities for particle accelerators [1,2], mi-
croresonators for kinetic inductance detectors [3] and quan-
tum computations [4], and single-photon detectors [5]. One of
the striking features of superconductivity in applied perspec-
tives is the ultralow dissipation in s-wave superconductors at
temperatures T well below the critical temperature Tc and
photon frequencies h̄ωγ smaller than the superconducting gap
�. For instance, modern niobium SRF cavities exhibit [1,6,7]
surface resistance Rs < 10 n� or quality factors >1010 at T �
2 K and ωγ /2π ∼ 1 GHz under weak and strong rf currents
close to the depairing current density jd ∼ Hc/λ. Here Hc

is the thermodynamic critical field and λ is the penetration
depth.

A quality factor of the superconducting resonator is pro-
portional to 1/Rs ∝ 1/σ1. Here the dissipative conductiv-
ity σ1 is the real part of complex conductivity, which is
sensitive to the details of the quasiparticle spectrum. For
instance, σ1 is calculated from the Mattis-Bardeen (MB)
formula [8], for the quasiparticle density of states (DOS)
of the ideal BCS superconductor in the zero-current state:
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N (ε) = N0ε/
√

ε2 − �2. Here N0 is the density of states at
the Fermi level in the normal state. However, as revealed
in many tunneling experiments [9], quasiparticle DOS has a
finite density of subgap states at |ε| < � and the DOS peaks
at ε = � are smeared out. Such DOS has been described by
the Dynes formula [10,11], in which ε is replaced with ε + i�
and � is a parameter to describe the broadening of the DOS
peaks. It was recently shown [12] that a Lorentzian distribu-
tion of pair-breaking fields yields the Dynes formula. Other
pair-breaking mechanisms such as the Meissner currents
[13–16], magnetic impurities [13,17], a proximity-coupled
normal layer [18,19], and ferromagnet [20–22], etc., also
affect the DOS. Unfortunately, these realistic cases are outside
the scope of the simple MB formula with the ideal BCS
DOS.

The effects of the rf field on σ1 are studied based on the
formula derived using the Keldysh technique of the nonequi-
librium Green’s function [23,24]. It was shown [23] that the
broadening of the DOS peaks due to the strong rf field Hrf

with h̄ωγ � kBT can reduce Rs and results in a pronounced
minimum in Rs(Hrf ). The theory predicts Rs is logarithmically
decreased as Hrf increases, consistent with the experiment
[25]. The interplay of the broadening of the DOS peaks and
the reduction of the spectrum gap determines the minimum
of Rs(Hrf ). Pair-breaking effects due to realistic materials
features including magnetic impurities, Dynes � parameters,
and a proximity-coupled normal layer at the surface can also
reduce Rs via the broadening of the DOS peaks [26]. For
instance, sparse magnetic impurities can reduce Rs by ≈50%
for the weak rf field. More recently, it was shown [27] that
a combination of such pair-breaking effects in materials and
the pair-breaking current can shift the minimum in nonlinear
Rs(Hrf ), consistent with the experimental observations that the
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nonlinear behavior of Rs is sensitive to materials treatments
[28–35].

These studies suggest the engineering of the DOS using
various pair-breaking mechanisms can minimize dissipation
in superconducting devices. Among the various ways for
engineering the DOS [13,13–22], the dc bias current or field is
one of the most convenient control knobs for tuning the quasi-
particle spectrum [23]. From applied perspectives, to study a
superconductor under a dc bias and to find the optimum dc
bias that minimizes electromagnetic dissipation would attract
attention in superconducting device communities. From fun-
damental perspectives, this system offers a stage for direct
observations of the effects of the broadening of the DOS peaks
on σ1 [23,36,37]. In measurements under the strong rf current,
on the other hand, these effects are mixed up with the slow
dynamics of nonequilibrium quasiparticles that control the
distribution function [38,39].

In this paper, we consider a superconductor with Dynes
subgap states under a dc bias current js superposed on the
weak electromagnetic field (Hrf → 0) with the frequency ωγ .
We incorporate a finite � into the quasiclassical theory of the
BCS model [2,26,27] and study effects of a combination of �

and the dc bias for all � and all currents up to the deparing
current density jd . Here jd for � > 0 is still unknown, while
jd of dirty-limit superconductors for � = 0 was calculated
many years ago [40–42]. The value of jd (�, T ) is related to
the maximum accelerating field that SRF cavities can achieve
with the bulk SRF [43–49] and the thin-film SRF technolo-
gies [46,50–53], and also related to the threshold current of
superconducting nanowire single-photon detectors [5].

The paper is organized as follows. In Sec. II, we briefly
review the quasiclassical theory for a dirty superconductor.
We express various physical quantities with the Matsubara
Green’s functions and the retarded Green’s functions. In
Sec. III, we evaluate the effects of � on Tc, �, superfluid
density ns, λ, N (ε), and σ1 in the zero-current state. In Sec. IV,
we calculate �, ns, and λ in the current-carrying state and
express the supercurrent density js as a function of superfluid
momentum. The maximum value of js is the depairing current
density jd (�, T ). Then we investigate the effects of � on
jd for all T . By using these results, we evaluate the effects
of � and js (� jd ) on the DOS. Then we consider the case
that the dc bias js is superposed on the weak time-dependent
current with the frequency ωγ and calculate σ1( js, �, T, ωγ ).
In Sec. V, we discuss the implications of our results.

II. THEORY

We use the well-established quasiclassical formalism for
the dirty limit [39,54]. The normal and anomalous quasiclas-
sical Matsubara Green’s functions G = cos θ and F = sin θ

obey the Usadel equation (see, e.g., Refs. [26,27]). Consider
a semi-infinite superconductor in which the current varies
slowly over the coherence length ξ (λ � ξ ) or a thin super-
conducting wire carrying the uniform current. In either cases,
the spatial differentiation term in the Usadel equation can be
neglected and the local value of θ obeys

s sin θ cos θ + (h̄ωn + �) sin θ − � cos θ = 0. (1)

Here s = (q/qξ )2�0, �0 = �(s, �, T )|s=�=T =0 is the BCS
pair potential at T = 0, h̄q = 2mvs is the superfluid momen-
tum, vs is the superfluid velocity, m is the electron mass,
qξ = √

2�0/h̄D is the inverse of the coherence length, D =
σn/2e2N0 is the electron diffusivity, and h̄ωn = 2πkBT (n +
1/2) is the Matsubara frequency. The pair potential � satisfies
the self-consistency equation

ln
Tc0

T
= 2πkBT

∑
ωn>0

(
1

h̄ωn
− sin θ

�

)
, (2)

where kBTc0 = �0 exp(γE )/π 	 �0/1.76 is the BCS critical
temperature and γE = 0.577 is the Euler constant. The super-
fluid density ns, penetration depth λ, and supercurrent density
js are given by

ns(s, �, T )

ns0
= 4kBT

�0

∑
ωn>0

sin2 θ, (3)

λ−2(s, �, T ) = μ0e2ns

m
= ns(s, �, T )

ns0
λ−2

0 , (4)

js(s, �, T ) = −ensvs = ns(s, �, T )

ns0

√
πs

�0
js0, (5)

Here ns0 = ns(0, 0, 0) = 2πmN0D�0/h̄ is the BCS superfluid
density at T = 0, λ0 = λ(0, 0, 0) = √

h̄/πμ0�0σn is the BCS
penetration depth at T = 0, js0 = Hc0/λ0 = −√

πeN0D�0qξ ,
and Hc0 = √

N0/μ0�0 is the BCS thermodynamic critical
field at T = 0.

To calculate N (ε) and σ1, we need the retarded normal and
anomalous Green’s functions GR = cosh(u + iv) and F R =
sinh(u + iv), where u and v satisfy the real-frequency Usadel
equation

is sinh(u + iv) cosh(u + iv)

+ (ε + i�) sinh(u + iv) − � cosh(u + iv) = 0. (6)

The quasiparticle DOS is given by
N (ε)

N0
= ReGR = cosh u cos v, (7)

and σ1(s, �, T, ωγ ) is given by [23]

σ1

σn
= 1

h̄ωγ

∫ ∞

−∞
dε[ f (ε) − f (ε + h̄ωγ )]M(ε, �, ωγ , s),

(8)

where f is the quasiparticle distribution function and M is the
spectral function

M = ReGR(ε)ReGR(ε + h̄ωγ ) + ReF R(ε)ReF R(ε + h̄ωγ ).

(9)

In general, f is determined by nonequilibrium dynamics of
quasiparticles [38,39]. For the cases where contributions from
nonequilibrium quasiparticles are negligible, f is given by
the Fermi distribution f = (exp(ε/kBT ) + 1)−1, yielding the
well-known formula [55,56]. In this work, we study σ1 for
the weak-field limit with and without the dc current, in which
nonequilibrium dynamics of quasiparticles driven by the time-
dependent current is negligible, so we use the Fermi distribu-
tion function. The imaginary part of the complex conductivity
can be calculated from σ2 = 1/μ0ωγ λ2(s, �, T ) for σ1 � σ2.
Here λ is given by Eq. (4).
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FIG. 1. Thermodynamic properties in the zero-current
state. (a) Critical temperature Tc(�). For instance, Tc/Tc0 =
1, 0.93, 0.71, 0.36 for � = 0, 0.05, 0.2, 0.4, respectively. (b) Pair
potential �(0, �, T ). (c) Superfluid density ns(0, �, T ) and
penetration depth λ−2(0, �, T ). (d) Thermodynamic critical field
Hc(�, T ).

In the following, we use �0 as a unit of energy and
use dimensionless quantities s̃ = s/�0, ω̃n = h̄ωn/�0, ω̃γ =
h̄ωγ /�0, �̃ = �/�0, �̃ = �/�0, T̃ = kBT/�0, etc. For
brevity, we omit all these tildes.

III. ZERO-CURRENT STATE

First consider the zero-current state (s ∝ q2 → 0). Solving
Eqs. (1) and (2) for (θ,�) � 1, we obtain the equation for the
critical temperature Tc(�) [26]

ln
Tc

Tc0
= ψ

(
1

2

)
− ψ

(
1

2
+ �

2πTc

)
, (10)

Here ψ is the digamma function. Note here Eq. (10) has the
same form as the well-known equation for the critical tem-
perature of a superconductor with pair-breaking perturbations
[14,17]. Expanding the digamma function by about 1/2 yields
a formula Tc(�) = Tc0 − π�/4 for � � 1. The numerical
solution of Eq. (10) gives Tc for an arbitrary �. As shown in
Fig. 1(a), Tc monotonically decreases with � and vanishes at
� = 1/2.

The solution of Eq. (1) is given by sin θ� =
�/

√
(ωn + �)2 + �2, where � satisfies Eq. (2). At T → 0,

the summation in Eq. (2) is replaced with integration,
which yields �(0, �, T )|T →0 = √

1 − 2� or 	 1 − � for
� � 1. For an arbitrary T , we need to solve Eqs. (1) and (2)
numerically. Shown in Fig. 1(b) is �(0, �, T ) as functions of
T for different �. Substituting sin θ� into Eqs. (3) and (4), we

FIG. 2. Quasiparticle DOS N (ε) and real part of complex con-
ductivity σ1(0, �, T, ωγ ) in the zero-current state. (a) N (ε) at
T/Tc0 = 0.1. (b) σ1(0, �, T, ωγ ) as functions of T , (c) ωγ , and (d) �.

obtain [26]

ns(0, �, T )

ns0
= λ−2(0, �, T )

λ−2
0

= 2�

π
Im ψ

(
1

2
+� + i�

2πT

)
. (11)

Shown in Fig. 1(c) are ns(0, �, T ) and λ−2(0, �, T ). The
thermodynamic critical field Hc is defined by (μ0/2)H2

c =
−�(0, �, T ), where the thermodynamic potential � is ob-
tained by replacing ωn in the BCS thermodynamic potential
with ωn + � [57]:

�(0, �, T ) = −2πT N0�

×
∑
ωn>0

[
2(ωn + �)

�
(cos θ� − 1) + sin θ�

]
. (12)

Shown in Fig. 1(d) is Hc as functions of T for different
�. As shown in Figs. 1(b)–1(d), �, ns, λ−2, and Hc are
monotonically decreasing functions of T and �.

The retarded Green’s functions are obtained by solv-
ing Eq. (6): GR = (ε + i�)/

√
(ε + i�)2 − �2 and F R =

�/
√

(ε + i�)2 − �2. Then Eq. (7) reproduces the Dynes
formula [2,26]

N (ε)

N0
= ReGR = Re

ε + i�√
(ε + i�)2 − �2

. (13)

Shown in Fig. 2(a) are the quasiparticle DOSs for different
�. As � increases, the DOS peaks are smeared out and the
density of subgap states increases. At the Fermi level, the DOS
is given by N (0)/N0 = �/

√
�2 + �2 or 	 �/� for � � 1.

Shown in Fig. 2(b) are the T dependences of
σ1(0, �, T, ωγ ) for different � calculated from Eq. (8).
As � increases, σ1 decreases (increases) at higher (lower)
T regions and the coherence peak is suppressed. Shown
in Fig. 2(c) are the ωγ dependences of σ1 for different
� at T/Tc0 = 0.2 (solid curves) and T/Tc0 = 0.4 (dashed
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curves). It is clearly shown that σ1 is determined by �

rather than ωγ for ωγ < �. As a result, the divergence at
ωγ → 0 disappears. The rapid increase of σ1 at ωγ 	 2�

is the photon absorption edge. For a finite �, the second
edge appears at ωγ 	 � due to the finite density of subgap
states. Shown in Fig. 2(d) are the � dependences of σ1 at
ωγ = 0.002 (solid curves) and ωγ = 0.2 (dashed curves).
A finite � can reduce σ1 for ωγ � T (solid curves), while
increases σ1 for ωγ � T (dashed curves). These results can
be summarized as follows. At low temperatures T < (ωγ , �)
for which σ1 is dominated by quasiparticles with ε � �, a
finite DOS at the Fermi level increases σ1, giving rise to a
residual conductivity σ1/σn → �2/(�2 + �2) [2,26,58]. At
T � (ωγ , �), where σ1 is mostly determined by thermally
activated quasiparticles, the broadening of the DOS due to
a finite � reduces σ1 [2,23,26]. The reduction of σ1 can be
qualitatively understood from the following discussion. The
convolution of the BCS DOS N (ε) and N (ε + ωγ ) yields the
logarithmic factor in the MB formula for h̄ωγ � kBT � �,
σ1/σn = (2�/kBT ) ln(4e−γE kBT/h̄ωγ ) exp(−�/kBT ), which
diverges at ωγ → 0. When � > ωγ , the denominator in the
logarithmic factor is replaced with � and the divergence
at ωγ → 0 disappears. As � increases, σ1 logarithmically
decreases [2,23,26].

IV. CURRENT-CARRYING STATE

A. Pair potential, superfluid density, penetration depth, and
supercurrent density

Now consider current-carrying states (s ∝ q2 �= 0). The
pair potential � = �(s, �, T ) is obtained by solving Eqs. (1)
and (2). For a special case (s, �, T/Tc) � 1, by setting θ =
θ� + δθ and � = �� + δ� and linearizing Eqs. (1) and
(2), we obtain a convenient formula �(s, �, 0) = 1 − � −
(π/4)s. For a general set of s, �, and T , we need to nu-
merically solve Eqs. (1) and (2) or, in the more conve-
nient forms, (� − s/

√
1 + z2)z = ωn + � and � ln(Tc0/T ) =

2πT
∑

n(�/ωn − 1/
√

1 + z2). Here z = cot θ . Shown in
Figs. 3(a) and 3(b) are the pair potential � as functions of
the superfluid momentum |q| for different � and T . The
blue curves (� = 0) represents � for the ideal dirty BCS
superconductors [40,41]. The other curves exhibit smaller �

due to the pair-breaking effect of � > 0. As s (∝q2), �, or T
increase, � monotonically decreases.

Shown in Figs. 3(c) and 3(d) are the superfluid density,
penetration depth, and supercurrent density as functions of |q|
for different � and T calculated from Eqs. (3)–(5). The super-
fluid density ns and penetration depth λ−2 (dashed curves) are
monotonically decreasing functions of �, |q|, and T , but the
supercurrent density js (solid curves) exhibits nonmonotonic
behaviors. At smaller |q| regions, js increases with |q|. How-
ever, when |q| reaches a critical value qd (�, T ), js ceases to
increase because of a rapid reduction of superfluid density ns

at higher |q| regions. The maximum value of js is the so-called
depairing current density jd . The solid blue curves (� = 0)
reproduce the well-known results for the ideal dirty BCS
superconductors [40–42,55]. The other solid curves (� > 0)
show that both qd and jd decrease as � increases.

FIG. 3. [(a), (b)] Pair potential � as functions of superfluid mo-
mentum |q/qξ | = √

s/�0 for different � and T . [(c), (d)] Superfluid
density ns (dashed curves) and supercurrent density js (solid curves)
as functions of |q| for different � and T . The peak value of js is the
depairing current density jd (�, T ).

B. Depairing current density

Here we discuss the depairing current density jd (�, T )
more in details. The solid curves in Fig. 4(a) are jd as func-
tions of T for different �. The solid blue curve (� = 0) corre-
sponds to jd for the ideal dirty BCS superconductors, which
takes the maximum value jd (0, 0) = 0.595Hc0/λ0, consistent
with the previous studies by Maki, Kupriyanov, and Lukichev
[40–42,55]. The other solid curves (� > 0) yield smaller jd
than the ideal case due to the �-induced degradation of ns.
Shown in Figs. 4(b) and 4(c) are jd as functions of � and
Tc(�), respectively, for various temperatures. As � increases
(as Tc decreases), jd monotonically decreases.

It is sometimes convenient to express jd as

jd (�, T ) = k
Hc(�, T )

λ(0, �, T )
. (14)

Here k is a coefficient. Since λ(0, �, T ), Hc(�, T ), and
jd (�, T ) are already calculated in Figs. 1(c), 1(d), and 4(a),
respectively, it is straightforward to calculate the coefficient
k. The dashed curves in Fig. 4(a) are k as functions of T
for different �. The dashed blue curve (� = 0) corresponds
to k for the ideal dirty BCS superconductors, consistent with
the previous studies (see, e.g., Ref. [55]). The other dashed
curves (� > 0) exhibit different T dependences from the ideal
dirty BCS superconductors with � = 0, but all the curves
merge to the well-known Ginzburg-Landau (GL) result k =
2
√

2/3
√

3 = 0.544 at T 	 Tc independent of �.
To understand the behavior at T 	 Tc, we derive the

GL equation for superconductors with a finite �. For T
close to Tc, the pair potential � becomes small, and we
can expand the thermodynamic Green’s functions in powers
of δ = �/2πT � 1. Substituting F = sin θ = ∑

m Fmδm and
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FIG. 4. (a) Depairing current density jd (solid curves) and the
k parameter (dashed curves) as functions of T for different �. The
definition of k is given by Eq. (13). jd as (b) functions of � and
(c) functions of Tc. (d) ( jd/ jGL

d0 )2/3 as functions of T/Tc. Here the
normalization factor jGL

d0 = jGL
d (�, 0) is given by Eq. (22). The GL

result extrapolated to T � Tc is also shown for comparison (dashed
gray line).

G =
√

1 − F (δ)2 = ∑
m(1/m!)(dmG/dδm)δm into Eq. (1),

we identify Fm:

sin θ = F1δ − δ3

2

(
F 3

1 − s

2πT
F 4

1

)
, (15)

cos θ = 1 − δ2

2
F 2

1 − δ4

8

(
2s

πT
F 5

1 − 3F 4
1

)
. (16)

Here F1 = 1/(n + 1/2 + s/2πT + �/2πT ). Then Eq. (2)
yields ln(Tc0/T ) = (π/4T )(s + �) + [7ζ (3)/8π2T 2]�2.
Subtracting the equation for Tc, ln(Tc0/Tc) = π�/4Tc, we
obtain the GL equation for the Dynes model,

1 − T

Tc
= πs

4Tc
+ 7ζ (3)

8π2T 2
c

�2, (17)

for �, s, � � 2πT , and T 	 Tc(�). This has the similar
form as the well-known GL equation. The only difference
is that Tc0 is replaced with Tc(�). So, obviously, Eq. (17)
should yield the well-known GL depairing current density
independent of �. The solution of Eq. (17) is

�(s, �, T ) =
√

8π2Tc(�)2

7ζ (3)

[
1 − T

Tc(�)

][
1 − s

sm(�, T )

]
,

(18)

where sm(�, T ) = (4Tc/π )(1 − T/Tc). Then Eqs. (3), (4), and
(12) yield

ns(s, �, T )

ns0
= λ−2(s, �, T )

λ−2
0

= �2(s, �, T )

2Tc
, (19)

Hc(�, T ) =
√

8π2T 2
c N0

7ζ (3)μ0

(
1 − T

Tc

)
(20)

at T 	 Tc(�). Then Eq. (5) yields

js(s, �, T ) =
√

π

2(Tc − T )

√
s

(
1 − s

sm

)
Hc(�, T )

λ(0, �, T )
. (21)

This takes the maximum when s = sm/3. Thus, the depairing
current density at T 	 Tc(�) is given by

jGL
d (�, T ) = js(sm/3, �, T ) = 2

√
2

3
√

3

Hc(�, T )

λ(0, �, T )
. (22)

As expected, the coefficient k corresponds with the well-
known GL result independent of � at T 	 Tc. Equation (22)
can be rewritten as

jGL
d (�, T ) = 16 js0

21ζ (3)

√
π

3

(
eγE Tc

Tc0

) 3
2
(

1 − T

Tc

) 3
2

, (23)

yielding the well-known T dependence in the GL regime.
Measurements of jd are often summarized by plotting

( jd/ jGL
d0 )2/3 as functions of T/Tc (see, e.g., Refs. [59,60]).

Here the normalization constant is given by

jGL
d0 = jGL

d (�, 0) = 1.54 js0

(
Tc

Tc0

) 3
2

= 8π2
√

2π

21ζ (3)e

√
(kBTc)3

h̄vF ρ(ρ�)
. (24)

The solid curves in Fig. 4(d) are our theoretical results
valid at an arbitrary temperature 0 � T � Tc. The solid blue
curve (� = 0) is coincident with the well-known Kupriyanov-
Lukichev curve [42], which reaches ( jd/ jGL

d0 )2/3 = 0.53 at
T → 0. The other solid curves represent jd for � > 0, in
which the deviations from the Kupriyanov-Lukichev curve
increases with �. The dashed gray line represent the GL result,
which is valid at T 	 Tc.

C. Density of states

Now we solve the real-frequency Usadel equation. Substi-
tuting � obtained in the above (see Fig. 3) into Eq. (6), we
can calculate the retarded Green’s functions GR and F R. Then
the quasiparticle DOS is given by Eq. (7). Shown in Fig. 5(a)
are the effects of pair-breaking currents on the quasiparticle
DOS for the ideal dirty BCS superconductors with � = 0 [14].
The curve with the highest peak represents the zero-current
state ( js = 0). As js increases, the singularity in the ideal
BCS DOS disappears and the DOS peaks are broadened. The
curve with the lowest peak represents the DOS under the
depairing current ( js = jd ). Note here we have the gapped
spectrum even at js = jd , which is the characteristic of dirty or
moderately dirty superconductors. In clean superconductors,
the spectrum gap disappears before reaching jd [44]. Shown in
Figs. 5(b)–5(d) are the effects of the current on DOS for � >
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FIG. 5. Quasiparticle DOS calculated from Eq. (7) for (a) � = 0,
(b) 0.05, (c) 0.2, and (d) 0.4. Curves with the highest (lowest) peaks
correspond to js = 0 ( js = jd ).

0. Even for the zero-current states (the curves with the highest
peaks), the DOS peaks are smeared out by the pair-breaking
� as seen in Fig. 2(a). As the current increases, the DOS
peaks are even more broadened and the density of subgap
states increases. For instance, the DOS at ε = 0 is given by
N (0)/N0 = (�/�)[1 + (s/�)(1 + π/4)] for (s, �) � 1 [27].

D. Dissipative conductivity σ1 under a dc bias

The pair-breaking current and a finite � can strongly
affect σ1 via the modification of the quasiparticle spectrum.
Consider the case that the dc current js is superposed on
the weak time-dependent current with the frequency ωγ .
We assume the amplitude of time-dependent current is so
tiny that it affects neither the quasiparticle spectrum nor the
distribution function. The Higgs mode [61], which can affect
the surface impedance under the dc bias [62], is proportional
to the superfulid momentum induced by the time-dependent
current, and is also negligible in the weak field limit. The
dc bias can be uniform (e.g., nanowires) or can have a depth
dependence (e.g., SRF cavities). In either case, the local σ1

is calculated from Eq. (8). Shown in Fig. 6 are σ1/σ
MB
1 at

ωγ = 0.002 as functions of the superfluid momentum |q| of
the dc current. Here σ MB

1 = σ1|q=0,�=0 	 0.01σn and 0.6σn

for T/Tc0 = 0.2 and 0.4, respectively. The blobs represent σ1

for the depairing current densities. The blue curves represent
σ1 for the ideal dirty BCS superconductor (� = 0) and exhibit
the pronounced minimum [23], resulting from the interplay
of dc-induced broadening of DOS peaks which reduce σ1 and
the reduction of spectrum gap which increases σ1. In the other
curves (� > 0), the minimum shifts to lower |q| regions. This
comes from the fact [27] that a finite � broadens the DOS
peaks, and the optimum broadening of DOS peaks is achieved

FIG. 6. The dissipative conductivity σ1 as functions of the su-
perfluid momentum |q| calculated for h̄ωγ /�0 = 0.002, �/�0 =
0, 0.05, 0.2, 0.4 at (a) T/Tc0 = 0.2 and (b) T/Tc0 = 0.4. At each
blob, the dc current reaches the depairing current density jd (�, T ).

by a smaller |q| than for � = 0. The minimum in σ1 disappears
when � � �c = T 3/2�−1/2 [27]. For T/Tc0 = 0.2 and 0.4, we
have �c ∼ 0.04 and 0.1, respectively. Shown in Fig. 7 are the
contour plots of σ1/σ

MB
1 as functions of js and �. In the wide

range of parameter regions, σ1 is smaller than σ MB
1 by ≈50%.

For completeness, we discuss the ωγ dependences of σ1

under a dc bias js. Shown in Fig. 8(a) are those for � = 0 and
js � 0. When js = 0, we have the well-known logarithmic
divergence at ωγ → 0 and the sharp photon-absorption edge
at h̄ωγ = 2�. For a finite js, the divergence at ωγ → 0 disap-
pears due to the dc-induced broadening of the DOS peaks. As
js increases, the spectrum gap decreases and the absorption
edge shifts to the smaller ωγ regions. At ωγ � T , the current
can reduce σ1 (see also Fig. 6). Shown in Fig. 8(b) are the
ωγ dependences of σ1 for � > 0 and js � 0. In this case,
the divergence at ωγ → 0 disappears due to the broadening
of the DOS peaks resulting from a finite � even when js = 0
(see also Fig. 2). The vague absorption edge appears at around
� due to the tail of finite subgap states resulting from � > 0,
also seen in Fig. 2. As js increases, the absorption edge shifts
to the smaller ωγ regions.

FIG. 7. Contour plots of σ1/σ
MB
1 as functions of js and � calcu-

lated for h̄ωγ /�0 = 0.002 at (a) T/Tc0 = 0.2 and (b) T/Tc0 = 0.4.
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FIG. 8. Frequency dependences of σ1 at T/Tc0 = 0.2 for the dc
bias js/ jd = 0, 0.3, 0.6, 0.9 and (a) �/�0 = 0, (b) 0.01, and 0.1.

It should be noted that the imaginary part of the complex
conductivity is given by μ0ωγ σ2 = 1/λ2 for σ1 � σ2, which
is the regime relevant to high-quality-factor resonators and
is already shown in Figs. 3(c) and 3(d). For the other case
σ1 � σ2, where quality factors of resonators are too low for
practical applications, we do not discuss more in detail (see,
e.g., Ref. [58] for the effect of a finite � on σ2 in the zero-
current state).

V. DISCUSSION

A. Zero-current state

We studied in Sec. III the effects of a finite Dynes � on
various physical quantities in the zero-current state. While Tc,
�, ns, λ−2, and Hc are monotonically decreasing functions of
� (Fig. 1), σ1 exhibits a nonmonotonic behavior (Fig. 2). A
finite � results in the residual conductivity at lower tempera-
tures, but σ1 decreases as � increases due to the broadening
of the DOS peaks at T > (ωγ , �) [2,26]. The interplay of the
broadening of the DOS peaks, which decreases σ1, and the
reduction of the spectrum gap, which increases σ1, determines
the optimum �. Then, tuning the quasiparticle spectrum via
engineering � can reduce electromagnetic dissipation in su-
perconducting devices [2,26]. While the physics and materials
mechanisms behind � are not well understood, comparison of
tunneling spectroscopy and various materials treatments can
give useful information on how to engineer �.

B. Current-carrying state

A more convenient control knob for tuning the quasiparti-
cle spectrum is the pair-breaking dc current [23]. In Sec. IV,
the effects of the combination of a Dynes � and a dc bias js on
the physical quantities are calculated for all � and all currents
up to the depairing current density jd (Figs. 3–8). There
exists the optimum combination of � and js that minimize σ1

(Fig. 7). The minimum value is smaller than that of the ideal
dirty zero-current state BCS superconductor by ≈50%. Our
results suggest it is possible to minimize dissipation in super-
conducting devices. Once � for device materials is extracted
from tunneling spectroscopy, we can reduce σ1 by tuning the

dc bias along the abscissa of Fig. 7. If it is possible to engineer
� by combining tunneling spectroscopy and various materials
processing, even more reduction of σ1 would be possible by
tuning � along the ordinate of Fig. 7.

To test the theory, the rf measurements of resonators
should be combined with independent measurements of �

using tunneling spectroscopy of representative test samples to
provide the necessary materials parameters of the theory for
its subsequent comparison with the experimental data on σ1

under a strong dc bias without any trapped flux.

C. Temperature and frequency dependences

The effect of � on σ1 manifests itself not only in the js
dependence of σ1 but also in the T and the ωγ dependences
of σ1. As shown in Figs. 2(c) and 8, the second photon-
absorption edge appears at ωγ 	 �, which represents the
existence of the tail of subgap states. As shown in Figs. 2(b)
and 6, the height of the coherence peak in σ1(T ) is linked
to the depth of the minimum in σ1( js) through �: Both are
suppressed as � increases.

D. Deparing current density

We calculated the depairing current density jd (�, T ) for
all T and all �. Our results show that jd is coincident
with the Kupriyanov-Lukichev theory [42] for � = 0, but it
decreases as � increases (Fig. 4). So, we can expect that
real materials, which usually have � > 0, exhibit smaller
jd than the prediction by Kupriyanov and Lukichev. This is
qualitatively consistent with previous measurements, but the
relation between jd and � is still unclear. In practice, other
mechanisms prevent a precision measurement of jd , e.g., cur-
rent crowding suppresses � and ns at sharp corners, leading to
a smaller jd than the theoretical values [63]. Yet, simultaneous
measurement of jd and � can lead to a deeper insight into
jd and finding better materials treatment for reducing � and
improving jd .

VI. CONCLUSION

We have considered a superconductor with a finite Dynes
� under a dc current js and obtained the depairing current
density jd (�, T ) and the dissipative conductivity σ1( js, �, T ).
It is possible to maximize jd by reduction of � and minimize
σ1 by tuning the combination of � and js. The results can be
confirmed by future experiments and would be useful for im-
proving performances of superconducting quantum devices.
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