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Magnetic and charge susceptibilities in the half-filled triangular lattice Hubbard model
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We study the momentum-dependent magnetic and charge susceptibilities in the half-filled two-dimensional
triangular Hubbard model within the ladder dual fermion approximation in the metallic, Mott insulating,
and crossover regions of parameter space. In the insulating state, we find strong spin fluctuations at the K
point at low energy corresponding to the 120◦ antiferromagnetic order. The spin spectra of the insulating
state is consistent with the inelastic neutron spectra of the triangular compound Ba8CoNb6O24. We also find
that the spin fluctuations at the K point persist into the metallic phase and move to higher energy. These
results are in agreement with studies of spin-lattice relaxation times in κ-(ET)2Cu2(CN)3. Finally, we present
charge susceptibilities in different areas of parameter space, which should correspond to momentum-resolved
electron-loss spectroscopy measurements on triangular compounds.
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I. INTRODUCTION

Experimental evidence on several organic materials,
including κ-(BEDT-TTF)2Cu2(CN)3 [1,2], EtMe3Sb[Pd
(dmit)2]2 [3–5], and κ-H3(Cat-EDT-TTF)2 [6], suggests that
these compounds are close to a two-dimensional triangular
structure and exhibit interesting electron correlation behav-
iors including, potentially, a quantum spin-liquid phase [7]
in the ground state [8]. These compounds, as well as the
low-energy physics of the fully isotropic triangular material
Ba8CoNb6O24 [9], may be described by a half-filled single-
orbital Hubbard model on a triangular two-dimensional lat-
tice, with an on-site Coulomb interaction strength comparable
to or larger than the bandwidth [10].

Because of the subtle competition of metallic, ordered,
and spin-liquid phases in the ground state [11,12], this model
has been studied extensively with a wide range of numerical
tools, including exact diagonalization (ED) [13–15], density
matrix renormalization group theory (DMRG) [8], variational
Monte Carlo (VMC) [16–19], variational cluster approxima-
tion [20–22], strong-coupling expansions [23], path-integral
renormalization group techniques [24], and cluster dynamical
mean-field theory (DMFT) in the cellular [25–29] and dynam-
ical cluster [30,31] variants. The focus in most of these studies
has been on the precise location of the phase boundaries,
ordering (or the absence thereof), and on the nature of these
phases.

Experimentally, much of our knowledge about correlated
triangular systems is obtained from single- and two-particle
scattering experiments such as photoemission [32], Raman
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spectroscopy [33], nuclear magnetic resonance (NMR) [2,34],
or inelastic neutron scattering (INS) [9,35]. To understand
these experimental results, it is necessary to calculate the
corresponding response functions as a function of energy and
momentum. For neutron spectroscopy and angular-resolved
photoemission spectroscopy, in particular, both fine momen-
tum and energy resolutions are desired. Such results are diffi-
cult to obtain, as computational methods formulated on finite
lattices (such as ED, DMRG, and cluster DMFT) provide
limited momentum resolution. In addition, quantum Monte
Carlo approaches are impeded by a sign problem in frustrated
systems [36]. Results for these quantities are therefore often
obtained from fits to quantum spin models, which are only
justified in the large Coulomb interaction limit.

In this paper, we provide results for the momentum and
energy dependence of the spin and charge spectra of the
half-filled triangular lattice Hubbard model. We use the ladder
dual fermion approximation (LDFA), which is a diagrammatic
extension of the DMFT and recovers continuous momentum
dependence without a sign problem. We perform simulations
from strong to weak interactions and systematically study spin
and charge spectra in different areas of parameter space. We
find that strong spin fluctuations at the K point at low energy,
corresponding to the 120◦ antiferromagnetic order, persist
into the metallic phase. These results are also consistent with
experimental NMR observations.

II. MODEL AND METHODOLOGY

The Hubbard model is defined as

H = −t
∑
〈i j〉,σ

(c†
iσ c jσ + H.c.) + U

∑
i

n̂i↑n̂i↓ − μ
∑
i,σ

n̂iσ .

〈· · · 〉 denotes a summation over nearest neighbors; c†
iσ (ciσ )

creates (annihilates) an electron with spin σ on site i; n̂iσ =
c†

iσ ciσ is the particle number operator; U is the on-site
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Coulomb interaction; t is the nearest-neighbor hopping inte-
gral; and μ is the chemical potential. We set t = 1 throughout
this paper and restrict ourselves to half filling.

A. Ladder dual fermion approximation

We study the model in the ladder dual fermion approxi-
mation [37–42] using the open source code of Ref. [43]. The
dual fermion technique is an exact mapping that transforms
the lattice system into a computationally tractable impurity
model and correction terms. The LDFA is an approximation to
this exact scheme that uses a nonperturbative DMFT impurity
model as a starting point [44] and perturbatively adds nonlocal
spin and charge correlations [42,43]. Therefore, LDFA recov-
ers some (but not all) of the nonlocal correlations. DMFT
calculations are performed with the continuous time auxiliary
field quantum Monte Carlo method [45,46] with submatrix
updates [47]. LDFA is accurate at high temperature [48] but
uncontrolled in practice in the sense that adding systematic
corrections, while possible in theory [49,50], is not feasible
for the parameters studied here. A detailed assessment of
the approximation errors of the susceptibility and the single-
particle properties on the square lattice [51] showed that
while doping- and interaction-dependent scaling effects were
present, the overall momentum dependence was accurate.

In the following, we repeat the formulas of the LDFA
[37–39]. The action for the Hubbard model is

S[c∗, c] = −
∑
ω,k,σ

c∗
ω,k,σ [iω + μ − hk]cω,k,σ

+
∑

i

U
∫ β

0
c∗

i,↑(τ )ci,↑(τ )c∗
i,↓(τ )ci,↓(τ )D[c∗, c],

(1)

where c∗
i,σ (τ ) and ci,σ (τ ) are Grassmann numbers correspond-

ing to creation and annihilation operators at imaginary time
τ and site i; c∗

ω,k,σ (cω,k,σ ) is the Grassmann number at the
momentum k and fermion Matsubara frequency ω. hk is the
bare dispersion and β is the inverse temperature β = 1/T .

In the spirit of the DMFT, we introduce a single-site
reference system and rewrite the lattice action (1) as

S[c∗, c] =
∑

i

Simp[c∗
i , ci] −

∑
ωkσ

(�ω − hk )c∗
ωkσ cωkσ ,

Simp[c∗
i , ci] = −

∑
ω,k,σ

c∗
ω,k,σ [iω + μ − �ω]cω,k,σ

+
∑

i

U
∫ β

0
c∗

i,↑(τ )ci,↑(τ )c∗
i,↓(τ )

× ci,↓(τ )D[c∗, c], (2)

where �ω is a hybridization function. The DF formalism
[37–39] proceeds by introducing new dual degrees of freedom
f ∗, f via a Hubbard-Stratonovich transformation of the sec-
ond term on the right-hand side of Eq. (2) and integrating out
the original degrees of freedom c∗, c. In this way, the action
(2) is divided into two separate problems: an impurity action

and a dual action

S̃[ f ∗, f ] = −
∑

k,ω,σ

f ∗
kωσ

(
G̃(0)

kωσ

)−1
fkωσ + Ṽ [ f ∗, f ], (3)

where G̃(0)
kωσ

= [g−1
ω + �ω − hk]−1 − gω, and gω is the im-

purity Green’s function. The dual interaction is given by
Ṽ [ f ∗, f ] = − 1

4γαβγ δ f ∗
α fβ f ∗

γ fδ + · · · , where small Greek let-
ters (α, β, γ , and δ) stand for the set {ω, k, σ },
γαβγ δ = g−1

αα′g−1
γ γ ′

[
gimp(4)

α′β ′γ ′δ′ − gα′β ′gγ ′δ′ + gα′δ′gγ ′β ′
]
g−1

β ′βg−1
δ′δ,

(4)

and the two-particle Green’s function of the impurity site is
defined as

gimp(4)
αβγ δ = 1

Z

∫
cαcβc∗

γ c∗
δ exp(−S[c∗, c])D[c∗, c]. (5)

In LDFA, only the ladder series of the first term of the dual
interaction Ṽ [ f ∗, f ] is considered. This leads to a set of
coupled equations that relate the charge/magnetic vertices,
the dual self-energy �̃, and the dual Green’s function to each
other. The self-energy of dual fermions is defined as

�̃ωkσ = T

2N

∑
νq

(
3

[

m

ωων (q) − 1

2

(2),m

ωω (qν)

]

+
d
ωων (q) − 1

2

(2),d

ωων (q)

)
G̃ωk+qσ , (6)

where ν is the bosonic Matsubara frequency and q is the mo-
mentum. d and m represent the charge and magnetic channels.
Equation (6) relies on the second-order vertices,



(2),d/m
ωω′ν = γ

d/m
ωω′′νχ̃

0
ω′′ν (q)γ d/m

ω′′ω′ν, (7)

where ω′ and ω′′ are fermion Matsubara frequencies, χ̃0
ων =

− T
N

∑
k G̃ωkσ G̃ω+νk+qσ , and the fully dressed vertex function



d/m
ωω′ν (q) = γ

d/m
ωω′ν +

∑
ω′′

γ
d/m
ωω′′νχ̃

0
ω′′ν (q)
d/m

ω′′ω′ν (q). (8)

The dual Green’s function is computed by using the Dyson
equation

G̃−1
ωkσ = [

G̃(0)
ωkσ

]−1 − �̃ωkσ . (9)

Equations (6) and (9) are iterated self-consistently until con-
vergence of G̃ is achieved. At convergence, the lattice Green’s
function is evaluated as

G−1
ωkσ = [1 + �̃ωkσ gωσ ]−1

[
g−1

ωk + (�ω − hk )

+ �̃ωkσ gωσ (�ω − hk )
]
. (10)

The hybridization function in Eq. (2) is not known a priori
and needs to be found self-consistently. In our calculations, we
start from the hybridization function of DMFT and calculate
the lattice Green’s function using the LDFA approach. We
then update the hybridization function as

�new = �old + ξ
[
g−1 − G−1

loc

]
, (11)

where Gloc is the local lattice Green’s function and ξ is an
updating weight. In our calculations, we set ξ = 0.2 to make
the convergence stable.
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After convergence of the hybridization function, the lattice
two-particle Green’s function G(4)

αβγ δ is obtained as

G(4)
αβγ δ − [G ⊗ G]αβγ δ

= Lαα′Lββ ′ (G̃(4) − G̃ ⊗ G̃)α′β ′γ ′δ′Rγ γ ′Rδδ′ , (12)

where G̃(4)
αβγ δ is the two-particle Green’s function

of dual fermions, (A ⊗ B)αβγ δ = AαδBβγ − Aαγ Bβδ ,

Lαβ = [(� − h)−1g−1]−1
αβ , and Rαβ = [g−1(� − h)−1]−1

αβ

[38].
The lattice charge susceptibility is defined as

χd (q, iν) = 1

β2N2

∑
k, k′,
ω, ω′,

σ

〈c†
kω↑ck+qω+ν↑c†

k′+qω′+νσ
ckω′σ 〉

− 1

β2N2

∑
k,k′,ω,ω′

Gkω↑Gk′ω′σ δq,0δν,0

= 1

β2N2

∑
k,k′,ω,ω′,σ

G(4)
kω′σ,k+qω+ν↑,kω↑,k′+qω′+νσ

− 1

β2N2

∑
k,k′,ω,ω′

Gkω↑Gk′ω′σ δq,0δν,0, (13)

and the magnetic susceptibility is defined as

χm(q, iν) = 1

2β2N2

∑
k, k′,
ω, ω′,

σ

xσ 〈c†
kω↑ck+qω+ν↑c†

k′+qω′+νσ ckω′σ 〉

= 1

2β2N2

∑
k, k′,
ω, ω′,

σ

xσ G(4)
kω′σ,k+qω+ν↑,kω↑,k′+qω′+νσ

,

(14)

where xσ = 1 (−1) as σ =↑ (↓), and N is the number of lattice
sites.

LDFA calculations are performed on a momentum space
grid—here, we choose a square 24 × 24 cluster, resulting in
288 points in the triangular lattice Brillouin zone. Both the
single-particle Green’s function and two-particle susceptibili-
ties are defined on that grid.

B. Comparisons of DMFT and LDFA

To show the importance of nonlocal correlations included
in our LDFA approach, we compare the static magnetic
susceptibility χm(q, iν0) of dynamical mean-field theory and
the ladder dual fermion approach. χm(q, iν0) of DMFT is
given by

χm(q, iν = 0) = 1

2β2

∑
ω,ω′

χm
ωω′ν=0(q), (15)

where ω and ω′ are the fermion Matsubara frequencies and
ν is the bosonic Matsubara frequency. χm

ωω′ν (q) is calculated
by [52]

[
χm

ν (q)
]−1
ωω′ = [

χ0
ν (q)

]−1

ωω′ +
[
χ̃m

ν (q)
]−1
ωω′ −

[
χ̃0

ν (q)
]−1

ωω′ ,

FIG. 1. Static magnetic susceptibility in momentum space
χm(q, iν0 ) for U = 6t and T = t/6. The left (right) panel shows
results of DMFT (LDFA).

where [χ̃0
ν (q)]−1

ωω′ is the bare bubble of the impurity site,
[χ̃m

ν (q)]−1
ωω′ is the magnetic susceptibility of the impurity site,

and [χ0
ν (q)]−1

ωω′ is the lattice bare bubble, which is given by

[χ0
ν (q)]−1

ωω′ = − β

N

∑
k G(k, ω)G(k + q, ω)δωω′ .

Figure 1 shows χm(q, iν0) of DMFT (left panel) and LDFA
(right panel) at U = 6t and β = 6/t . The left panel shows
negative values near the K point, indicating a divergence of the
vertex at these momentum points. In contrast, the right panel
shows that χm(q, iν0) of LDFA is small, implying that the
spin fluctuations are weak. These inconsistencies suggest that
DMFT cannot accurately describe the momentum-dependent
spin fluctuations in this parameter regime.

C. Maximum entropy

To examine spectral properties, we use the ALPS imple-
mentation [53,54] of the maximum-entropy method [55] to
perform the analytic continuation of Matsubara data to the
real frequency space. Analytic continuation is numerically
ill posed, and many different spectral functions will yield
the same Matsubara response within error bars. To vali-
date our calculations, we compare the imaginary part of
the dynamical magnetic susceptibility Im χm(q, ω) from the
maximum-entropy method to the experimental data obtained
from Ba8CoNb6O24 [9] in Fig. 2. To the left of the green

0.1

0.2

0.3

0.4

0.5

0

(
)

0.1

0.2

0.3

0.4

0.5

0

(a) experiment (b) theory

FIG. 2. (a) Spin susceptibility Im χm(q, ω) obtained from INS on
Ba8CoNb6O24 by Rawl et al. [9]. (b) LDFA calculation at U = 12t
and T = t/6, using a fit of t = 3 meV. The black dots show the
location of the maximum strength at each momentum.
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FIG. 3. Metal-insulator crossover as a function of U , for temper-
ature T = t/3 and T = t/6. (a) Evolution of the quasiparticle weight
estimate Z at momentum kF = (5π/6, 0). (b) Double occupancy.
(c) Local density of states.

line, no experimental data are available. Our simulations were
obtained for U = 12t and T = t/6, and we set t = 3 meV
to fit the experimental data. Both our numerical data and the
experimental data show that the intensity of the spin excitation
around the K point is strong. We also note that the spin gap
at the K point and the spin excitation energy at the M point
are similar. This consistent behavior implies that our magnetic
susceptibilities capture the main features of the spin spectra in
triangular systems.

III. RESULTS

A. Metal-insulator crossover

The half-filled Hubbard model exhibits a metal-insulator
phase transition on the triangular lattice at zero tempera-
ture [8,22], which has been widely studied by using LDFA
[30,56,57] and other methods [8,22]. In this work, we
set the temperature above the critical temperature of the
first-order phase transition observed in DMFT studies [30],
such that the system exhibits metallic behavior for U � 8t ,
crossover behavior for 8t < U < 9.5t , and insulating behav-
ior for U � 9.5t . Figure 3 shows variation of the quasi-
particle weight Z , the double occupancy D = 〈n̂↑n̂↓〉, and

the local density of states at temperature T = t/3 and T =
t/6. Z is approximately determined as Z (kF , iω0) = 1/[1 −
Im �(kF , iω0)/ω0], where �(kF , iω0) is the self-energy at
the lowest Matsubara frequency ω0, and kF = (5π/6a, 0)
is a momentum on the Fermi surface of the noninteract-
ing system. The double occupancy is obtained via D =
1
2 [χ loc

d (τ = 0) − 2χ loc
m (τ = 0) + 2〈n̂↑〉〈n̂↓〉], where χ loc

d (s)(τ )
is the local charge (spin) susceptibility. Figure 3(c) plots the
local density of states (DOS) at the Fermi surface, obtained via
analytic continuation of the local electron Green’s function.
All three quantities are large at small U , consistent with
metallic behavior, and approach a small value at a large U ,
consistent with insulating behavior.

To illustrate the behavior in these three regions, we choose
one point in each region: U = 6t in the metallic phase, U =
8.2t in the crossover region, and U = 12t in the insulating
phase.

B. Spectral function

Figures 4(a)–4(c) show the momentum-resolved single-
particle spectral functions A(k, ω) for U = 6t , 8.2t , and 12t
at T = t/6. The white dashed line indicates the Fermi surface.
At U = 6t , when it is a metal, there is a strong quasiparticle
peak at the Fermi surface. At U = 8.2t , the intensity of
this quasiparticle peak is suppressed and the lower (upper)
Hubbard band forms around the K (
) point. At U = 12t , a
Mott gap is fully opened. Our calculations show that the Mott
gap is opened as U > 10t (see Fig. 3). We note that there is
no superstructure along the 
-K direction in Fig. 4(c) as long-
ranged magnetic order is absent. These features are consistent
with previous cluster perturbation theory results [22].

C. Magnetic susceptibility

Here, we focus on the magnetic properties. Figure 5 shows
the momentum-resolved static and dynamical magnetic sus-
ceptibility for U = 6t , U = 8.2t , and U = 12t at T = t/6.
The static magnetic susceptibilities χm(q, iν0 = 0) for these
three values of U are plotted in Figs. 5(a)– 5(c), respectively.
The white dashed line represents the boundary of the Brillouin
zone. Static spin correlations are enhanced as U increases.
At U = 12t , the static spin correlations show a clear peak at
the K point, which is much stronger than that in the metallic
(U = 6t) and crossover (U = 8.2t) regions. The strong peak
at U = 12t indicates the formation of 120◦ antiferromagnetic
(AFM) spin fluctuations [8], which will magnetically order at
low temperature [8,27,58].

FIG. 4. Momentum dependence of the spectral function A(k, ω) for (a) U = 6t , (b) U = 8.2t , and (c) U = 12t at T = t/6. The white
dashed line shows the Fermi surface.
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FIG. 5. (a)–(c) Static magnetic susceptibility in the momentum space χm(q, iν0) for U = 6t , 8.2t , and 12t at T = t/6. The white
dashed line delineates the Brillouin zone boundary. (d)–(f) Imaginary part of the dynamic magnetic susceptibility Im χm(q, ω) along the
high-symmetry direction for the same values of U . White dots: Peak position of the spectra ωm(q).

Figures 5(d)–5(f) show the imaginary part of the dynamical
magnetic susceptibility Im χm(q, ω) as a function of energy ω

and momentum q along a high-symmetry path in the Brillouin
zone [see labels in Fig. 5(a)]. White dots show the energy
ωm(q) of the maximum intensity at each momentum, referred
to as the spin-wave dispersion. It is clear that, except for
momenta near the 
 point, the intensity of spin excitations
is enhanced and the spin excitation energy decreases as U
increases. At U = 6t there is no dominant spin excitation and
spin fluctuations occur in a large part of the Brillouin zone.
At U = 8.2t and U = 12t the spin excitation energy at the K
point is smaller compared to other momenta, and most spin
fluctuations occur at the K point. For U = 8.2t and U = 12t ,
the spin excitation energy at the 
 point is nonzero, violating
the total spin conservation. This is an artifact of the LDFA
[51,59], which is not a conserving approximation.

To understand the behavior of spin excitations at the
K point, where magnetic order forms at zero temperature,
Fig. 6(a) shows the spin excitation energy ωm(K ) as a function
of U . ωm(K ) approaches to two different values at small and
large U , and a sharp decrease occurs as U increases from 6t to
7t . Figure 6(b) shows Im χm(q, ω) at q = K for various differ-
ent U values. The maximum value of Im χm(K, ω) increases
very little as U increases from 6t to 7t , while it increases
rapidly as U continues to increase. These results suggest that
spin fluctuations start to condense at the K point around U =
7t . The density of states (DOS) at the Fermi surface, plotted
in Fig. 6(a), shows that the system is still metallic at U = 7t .
Our results therefore suggest that the strong spin fluctuations
at the K point not only exist in the insulating phase but also
extend into the metallic phase.

This persistence of spin fluctuations can also be observed
in the spin-lattice relaxation rate. Figure 7(a) plots the spin-
lattice relaxation rate (T1T )−1 as a function of tempera-
ture for the three values of U . (T1T )−1 is calculated via
lim
ω→0

∑
q

Im χm (q,ω)
ω

[60]. It is shown that (T1T )−1 is enhanced

as U increases. At U = 12t , (T1T )−1 increases rapidly as

temperature decreases, indicating the formation of a mag-
netic order at low temperature with the transition temperature
T ≈ 0.125t . For U = 8.2t , (T1T )−1 increases very slowly at
low temperature, consistent with the previous result that the
magnetic order is absent at low temperature [56]. The increase
of (T1T )−1 implies that spin fluctuations are not negligible.
At U = 6t , (T1T )−1 is almost independent of temperature,
consistent with the weak spin fluctuations shown in Fig. 5(d).

Figure 7(b) shows the spin-lattice relaxation rate of
κ-(ET)2Cu2(CN)3 measured under different pressures, ex-
tracted from Ref. [2]. The x axis has been rescaled by t , which
is about 0.055 eV for κ-(ET)2Cu2(CN)3 [61]. At 0 GPa, cor-
responding to the spin-liquid region, (T1T )−1 monotonously
increases as temperature decreases. At 0.4 GPa, correspond-
ing to the metallic phase near the phase boundary, (T1T )−1

increases as T decreases and reaches the maximum value

5 7 9 11
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0.1

0.15
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O
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0 0.6 1.2 1.8 2.4 3
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1.5

(b)

FIG. 6. (a) The spin excitation energy ωm(K ) at the K point and
the density of states (DOS) at ω = 0 as a function of U . (b) Imaginary
part of dynamical magnetic susceptibility Im χm(q, ω) at q = K as a
function of ω for various different U .
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FIG. 7. (a) Spin-lattice decay rate (T1T )−1 as a function of
temperature T/t for different U values. (b) shows (T1T )−1 from 1H
NMR measurements of κ-(ET)2Cu2(CN)3 [2]. The hopping integral
t for κ-(ET)2Cu2(CN)3 is about 0.055 eV [61].

at about 0.03t . Continuing to decrease temperature, (T1T )−1

decreases due to the appearance of a superconducting state,
which is not plotted in Fig. 7(b) and absent in our calculations.
At 0.8 GPa, (T1T )−1 is independent of temperature. We notice
that the temperature-dependent behavior of (T1T )−1 for these
three pressures is similar to that for the three values of U we
calculated. The main difference is the behavior of (T1T )−1 at
high temperature. In experiment, (T1T )−1 has a smaller value
at 0.8 GPa than that for 0 and 0.4 GPa at high temperature. In
our calculations, (T1T )−1 approaches the same value at high
temperature. This difference may be due to pressure changes
of the lattice geometry in κ-(ET)2Cu2(CN)3 [62].

Leaving these differences aside, both our simulated and
experimental spin-lattice relaxation rates imply that spin fluc-
tuations persist into the metallic phase, which is consis-
tent with previous finite-temperature Lanczos studies [15].
Moreover, our dynamical momentum-dependent magnetic

susceptibilities further explain the behaviors of spin excita-
tions at each momentum and provide a comprehensive under-
standing of spin behaviors in correlated metals.

D. Charge susceptibility

We next examine the charge properties. Figures 8(a)–
8(c) show the static charge susceptibility χc(q, iν0) for the
same three values of U . It is clearly seen that χc(q, iν0) is
suppressed as U increases and is invisible in the insulator
(U = 12t). At U = 6t the maximum value of χc(q, iν0) is
located at the 
 point, indicating a uniform charge distribu-
tion. χc(q, iν0) along the 
 → 
′ direction (
′ is the 
 point
in the second Brillouin zone) is larger compared to the other
momenta. These features are weaker at U = 8.2 and invisible
at U = 12t .

Figures 8(d)–8(f) plot the imaginary part of the charge
susceptibility Im χc(q, ω) for these three values of U . At
U = 6t there is no charge gap at the 
 point and the maximum
energy of the charge excitation is located around the Brillouin
zone boundary, corresponding to the charge excitation from
the bottom to the top of the band. Little change is visible
near the crossover, U = 8.2t . The nonzero charge excitation
at the 
 point is because LDFA violates the total charge
conservation [51,59]. We also note that the maximum energy
of the charge excitation does not change much as U increases
before the Mott gap is opened, while it increases rapidly
as the gap is opened. Our predicted charge spectra may be
observed in momentum-resolved electron-loss spectroscopy
measurements on triangular compounds.

Finally, we compare our magnetic and charge suscepti-
bilities to the bare susceptibility Im χ0(q, ω) [63], which is
evaluated by a multiplication of two Green’s functions [63].
The low-energy spectra of Im χ0(q, ω) and Im χm(q, ω) are
consistent at U = 6t but inconsistent at U = 8.2 and U = 12t .
The high-energy spectra of Im χ0(q, ω) are consistent with
Im χc(q, ω) only near the Brillouin zone boundary for these
three values of U . These discrepancies suggest that vertex
corrections are essential.

FIG. 8. (a)–(c) Static charge susceptibility in momentum space χc(q, iν0) for U = 6t , 8.2t , and 12t at T = t/6. The white dashed line
delineates the Brillouin zone boundary. (d)–(f) Imaginary part of the dynamical charge susceptibility Im χc(q, ω) along the high-symmetry
direction for the same three values of U . White dots: Peak position of the spectra.
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IV. CONCLUSION AND DISCUSSION

In conclusion, we have studied the crossover from metal to
insulator in a triangular Hubbard model using the LDFA ap-
proach. We examined the momentum and energy dependence
of the spin and charge spectra in the metallic, Mott insulating,
and crossover regimes. In the insulator, we find most of
low-energy magnetic excitations exist at the K point, corre-
sponding to the 120◦ antiferromagnetic order. These magnetic
excitations persist into the crossover and metallic regions and
move to higher energy as U � 6t . Our results indicate that
the strong spin fluctuations at the K point exist not only in
the insulator but also the metallic phase. This conclusion is
further corroborated by our calculated spin-lattice relaxation
times and NMR measurements of κ-(ET)2Cu2(CN)3.

Our results explain the momentum-dependent spin and
charge properties of the Hubbard model in the triangular
system. Usually, the spin properties of the triangular system
are obtained by studying Heisenberg models, which cannot

describe properties of an itinerant system. In contrast, here,
magnetic properties of both metallic and insulating phases are
obtained on an equal footing.

Our results show that magnetic excitations at the K point
persist deep into the metallic region at high temperature. At
low temperature, the metallic phase near the phase boundary
becomes superconducting in κ-(BEDT-TTF)2Cu2(CN)3. It
would be interesting to experimentally study magnetic exci-
tations at low temperature and in the superconducting phase
in this material.
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