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Controlling transport of underdamped particles in two-dimensional driven Bravais lattices
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We demonstrate the directed transport of underdamped particles in two-dimensional lattices of arbitrary
geometry driven by an unbiased AC driving force. The direction of transport can be controlled via the lattice
geometry as well as the strength and orientation of the oscillating drive. The breaking of the spatial inversion
symmetry, which is necessary for the emergence of directed transport, is achieved solely due to the structure
and geometry of the lattice. The most important criterion determining the transport direction is shown to be
the ballistic attractors underlying the phase space of our weakly dissipative nonlinear dynamical system. This
allows the prediction of transport direction even for setups like driven oblique lattices where the standard
symmetry arguments of transport control fail. Our results can be experimentally realized using holographic
optical-lattice-based setups with colloids or cold atoms.
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I. INTRODUCTION

The interplay between nonlinearity and symmetry breaking
in an unbiased nonequilibrium environment has been shown
to rectify random particle motion into unidirectional particle
transport, a phenomenon usually referred to as the ratchet ef-
fect [1–8]. It was initially conceived as a working principle to
describe the performance of various biological motors [9,10].
However, today the ratchet effect attracts widespread interest
and has found applications across various disciplines such
as biological, atomic, and condensed matter physics [4,11–
14]. Different schemes based on this mechanism have been
implemented to, for example, control the topological soliton
dynamics in ionic crystals [15], design electron transport in
organic semiconductors [16] and organic bulk heterojunc-
tions [17], control diffusion of driven magnetic nanoparti-
cle [18], realize unidirectional motion of active matter [14,19],
rectify voltage in superconducting quantum interference de-
vices [20,21], and induce transport of fluxons in Joseph-
son junction arrays [22,23] or vortices in conformal crystal
arrays [24,25].

Due to such a widespread applicability of ratchet-based
transport, unsurprisingly, a vast body of literature has been
devoted to controlling the strength and direction of the
ratchet current. While the ratchet setups in one spatial di-
mensional address only forward or backward transport of
particles [3,4,26–32], two-dimensional (2D) setups allow for
transport at arbitrary angles. It has been shown that particles
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driven via external time periodic forces on a spatially periodic
2D lattice allow directed transport not only parallel to the
drive but also at an angle relative to the driving law [33,34] or
even completely orthogonal to it [35]. Although there has been
major technical advancement in experimental realization of
such 2D ratchets involving different systems like cold atoms
and colloids, there are certain common drawbacks in most of
them. First, most of these ratchet-based setups in two dimen-
sions operate in the overdamped regime where the inertial
effects can be neglected. However, there exists a large class
of systems which do not operate in this overdamped regime,
such as self-propelled vibrated particles [36], underdamped
colloids and tracer particles [37,38], gold and polystyrene
nanoparticles in optical systems [39], and granular particles.
Although the control of directed transport would certainly be
desirable in these systems, an understanding of the ratchet
phenomenon in such underdamped 2D setups is lacking.
Second, a majority of these setups usually require an external
static force as a bias in order to realize directed transport of
particles. There are very few setups in two dimensions where
the transport is achieved solely due to an unbiased AC driving
force [33,34]. Finally, almost all of these setups have focused
on directed transport in driven square lattices. Only recently
has it been shown that lattices with other geometries, espe-
cially oblique lattices, also allow directed transport, although
in the overdamped regime [33].

In this work we address the above three key limitations of
the traditional 2D ratchet setups. Specifically, we show that
it is possible to realize directed transport of underdamped
particles along designated directions by externally driving
2D Bravais lattices of different geometries with an unbiased
time-dependent driving force. The necessary breaking of the
spatial inversion symmetry in our setup is achieved solely due
to the lattice geometry. Any residual reflection symmetry can
be optionally broken by a suitable orientation of the driving
force. We show that the resulting direction of transport can
be controlled and explained in terms of the ballistic attractors
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underlying the phase space of our dissipative nonlinear dy-
namical system. It is important to stress that generally such a
setup does not allow the prediction of the transport direction
a priori due to the absence of any line of reflection symmetry.
However, we show that it is possible to realize directed
transport of particles along specific directions irrespective of
the lattice geometry and orientation of the oscillating drive.

II. SETUP

We consider N noninteracting classical particles
in a 2D dissipative potential landscape V (x, y) =∑+∞

m,n=−∞ Vmne−β(r−rmn )2
formed by a lattice of 2D

Gaussian barriers centered at positions rmn = (mL, nL),
m, n ∈ Z, having site-dependent potential heights Vmn.
The lattice is driven by an external harmonic driving force
f (t ) = a cos ωt (cos θd , sin θd ). Here a and ω are the amplitude
and the frequency of the driving, respectively, and θd denotes
the angle of the driving force with respect to the x axis.
Introducing dimensionless variables x′ = x

L , y′ = y
L , and

t ′ = ωt and dropping the primes for simplicity, the equation
of motion for a single particle at position r = (x, y) with
velocity ṙ = (ẋ, ẏ) reads

r̈ = −γ ṙ + F(t ) + ξ(t )

+
+∞∑

m,n=−∞
Umn(r − Rmn)e−α(r−Rmn )2

, (1)

where F(t ) = d cos t (cos θd , sin θd ) is the effective site-
dependent driving law and Rmn = (m, n) denotes the posi-
tions of the maxima of the Gaussian barriers. The different
scaled parameters governing the system are the effective
barrier heights Umn = 2Vmnβ

mω2 , an effective driving amplitude
d = a

mω2L , an effective dissipation coefficient γ = γ̃

mω
, and

the parameter α = βL2. In addition, ξ(t ) = (ξx, ξy) denotes
thermal fluctuations modeled by Gaussian white noise of zero
mean with the property 〈ξi(t )ξ j (t ′)〉 = 2Dδi jδ(t − t ′), where
i, j ∈ x, y and D = γ̃ kBT

mω2L2 is the dimensionless noise strength,
with T and kB denoting the temperature and Boltzmann con-
stant, respectively. The set of all Gaussian barriers arranged
periodically in space with a specific value of barrier height
Umn forms a sublattice of our system. Our setup is hence a
driven superlattice formed by the superposition of different
sublattices, each consisting of barriers possessing distinct
heights Umn. The necessary condition for any setup to exhibit
directed transport is to break both the generalized spatial
inversion symmetry Sr: r → −r + δ and t → t + τ , and the
generalized time-reversal symmetry St : t → −t + τ and r →
r + δ (for any arbitrary constant translations δ and τ of space
and time, respectively) [4,40]. In our setup, each sublattice
is individually symmetric with respect to the symmetry Sr
and this symmetry can be broken by a superposition of at
least three sublattices consisting of barriers with different
heights (see Appendix A). Since our setup is dissipative, the
symmetry St is also broken.

The setup can be experimentally realized, e.g., by using
monodisperse colloidal particles in a 2D lattice obtained by
reflecting a linearly polarized laser beam onto a spatial light
modulator displaying a computer-generated hologram which

can then be driven using a piezomodulator [33]. A second
highly controllable setup could be driven lattices based on
holographic trapping of atoms [41–44] in the regime of mi-
crokelvin temperatures where a classical description of cold-
atom ratchets is appropriate [12].

In order to explore the particle transport in our lattice
characterized by the average velocity of the particle ensemble,
we initialize N = 104 particles within a square region x, y ∈
[−10, 10] with small random velocities vx, vy ∈ [−0.1, 0.1]
such that their initial kinetic energies are small compared to
the potential height of the Gaussian barriers. Subsequently,
we time evolve our ensemble up to time t f = 2 × 104 by nu-
merical integration of Eq. (1). For all our setups, we consider
noise strength D > 0 and the resulting asymptotic transport
velocity is independent of the specific initial conditions of
each particles. We demonstrate that it is possible to realize
particle transport parallel to the driving force axis (axial
transport), orthogonal to it (lateral transport), or even in an
oblique direction for different lattice geometries using our
setup.

III. RESULTS AND DISCUSSION

A. Axial transport in a rectangular lattice

In our first setup [Figs. 1(a) and 1(b)], we consider a
rectangular superlattice constructed by superposing three rect-
angular lattices with lattice vectors a = (3, 0) and b = (0, 1).

FIG. 1. Mean position of the particle ensemble (in radial R and
angular θ coordinates) as a function of time t (in the colorbar)
for the (a) rectangular lattice driven along θd = 0◦ with d = 0.3
and (c) square lattice driven along θd = 90◦ with d = 0.5. (b) and
(d) Snapshots of the ensemble velocity distribution at t = t f for the
setups in (a) and (c), respectively. The insets in (b) and (d) depict
schematic representations of the two corresponding lattices along
with the lattice vectors a and b, with each colored circle denoting
the position of an individual Gaussian barrier. The different colors
denote different barrier heights Umn = 0.5 (blue), 1.0 (red), and 1.5
(green) [inset in (b)] and Umn = 0.3 (blue), 0.6 (red), 0.9 (green), and
1.2 (black) [inset in (d)]. The driving axis is denoted by the pink
double arrowed lines. The other parameters are γ = 10−2, α = 5,
and D = 1.5 × 10−4.
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Although the setup breaks inversion symmetry Sr, it is invari-
ant under Py : y → −y, rendering any line parallel to the x axis
as the line of reflection symmetry modulo a spatial translation
along the y direction. The lattice is driven along this symmetry
axis by choosing θd = 0◦. As expected from the symmetry ar-
gument, the particles exhibit no transport along the y direction
and a net directed transport is observed along the positive x
direction [Fig. 1(a)]. The direction of transport can be better
understood by analyzing the asymptotic velocity distribution
of the particles at the end of the simulation time, i.e., t f , which
shows that most particles travel along the x axis with a veloc-
ity of either v ≈ (3, 0) or (−3, 0) [Fig. 1(b)]. For the chosen
parameter regime, these velocities correspond to the average
velocities of the two ballistic attractors denoting synchronized
motion of particles through the oscillating lattice traveling
one unit cell per unit time either parallel or antiparallel to
the lattice vector a in the deterministic limit D → 0. Even
for D > 0, the attractors are not completely destroyed and at
longer timescales the particles move approximately with the
same velocities as the average velocities of these attractors.
Thus, these ballistic attractors correspond to almost straight
distinct channels through the lattice corresponding to regular
motion of the particles towards left and right with opposite
velocities. The average transport velocity of the ensemble is
simply the sum of the velocities of all the particles in both
these channels. Due to the broken Px : x → −x symmetry,
the velocity distribution is asymmetric and significantly more
particles travel to the right than to the left, resulting in an axial
transport along the positive x direction.

B. Lateral transport in a square lattice

Lattices possessing a line of reflection symmetry can also
exhibit directed transport along a direction orthogonal to the
driving force. To illustrate this, we consider a square lattice
formed by the superposition of four square lattices with lattice
vectors a = (2, 2) and b = (−2, 2) [Figs. 1(c) and 1(d)]. This
lattice too breaks both Sr and Px symmetries but preserves
the Py symmetry. Upon driving the lattice along the y axis,
which is orthogonal to the symmetry axis, a lateral current
is observed along the positive x direction in accordance with
the symmetry argument [Fig. 1(c)]. From the peaks of the
asymptotic velocity distribution of the particles [Fig. 1(d)], it
is evident that the underlying particle dynamics is governed
mainly by the four ballistic attractors with average velocities
(2,2), (2,−2), (−2, 2), and (−2,−2). These correspond to
particles exhibiting regular motion, moving one unit cell per
unit time along directions parallel and antiparallel to the two
lattice vectors a and b. The Py symmetry is clearly reflected
in the asymptotic velocity distribution due to which almost
equal numbers of particles possess vy > 0 and vy < 0, thus
prohibiting any average transport in the y direction [Fig. 1(d)].
However, due to the Px symmetry breaking, the number of
particles moving along the positive x direction is much higher
and hence directed transport occurs along this direction.

C. Driving-induced breaking of the reflection symmetry

The residual reflection symmetry Py in our rectangular
or square lattice setups can be broken by driving the lattice

FIG. 2. Mean position of the particle ensemble (in radial R and
angular θ coordinates) as a function of time t (in the colorbar) for the
same square lattice setup as in Figs. 1(c) and 1(d) driven along θd =
135◦ (pink double arrowed lines) with (a) d = 0.6 and (c) d = 1.0.
(b) and (d) Snapshots of the ensemble velocity distribution at t = t f

for the setups in (a) and (c), respectively; the insets depict schematic
representations of the corresponding lattice. The other parameters are
the same as in Figs. 1(c) and 1(d).

oblique to the line of reflection symmetry. Since Py transforms
θd → −θd , F(t ) → F̃(t ) = d cos t (cos θd ,− sin θd ), which
cannot be transformed back to F(t ) by any additional time
shift operation for θd 
= 0◦, 90◦, 180◦, or 270◦. To illustrate
this, we consider the same square lattice as in Figs. 1(c)
and 1(d) but now driven along the lattice vector b by choosing
θd = 135◦ (Fig. 2). Although the broken Sr symmetry ensures
the existence of directed transport, the direction of transport
can no longer be predicted from symmetry considerations
alone. However, we show that it is possible to control the un-
derlying ballistic attractors and hence the transport direction
by varying the amplitude of the driving force d . For d = 0.6,
the ensemble is transported along θ ≈ 140◦, almost parallel
to the driving force along the lattice vector b [Fig. 2(a)].
The peak at v ≈ (−2, 2) in the asymptotic particle velocity
distribution shows that the asymptotic dynamics of the ensem-
ble is governed primarily by a single ballistic attractor with
average velocity (−2, 2) [Fig. 2(b)] denoting synchronized
particle motion parallel to b. Therefore, directed transport
appears along this direction. Upon driving the lattice along
the same axis, but with a higher driving amplitude d = 1.0,
the direction of transport can be rotated to an almost per-
pendicular direction θ ≈ 250◦ [Fig. 2(c)]. The change in the
driving strength changes the dominant attractor governing the
transport, which now has an average velocity (−2,−2), pro-
pelling a majority of the particles to move with this velocity
in a direction antiparallel to the lattice vector a [Fig. 2(d)],
hence explaining the transport. We note that for a broad
range of value of d , the particle dynamics is governed by the
four ballistic attractors with average velocities (2,2), (2,−2),
(−2, 2), and (−2,−2) (see Appendix B). The transport direc-
tion is determined by the attractor with the highest asymptotic
particle occupancy. Hence, for different values of d , directed
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FIG. 3. Mean position of the particle ensemble (in radial R and
angular θ coordinates) as a function of time t (in colorbar) for the
two oblique lattices: (a) O1 driven along θd ≈ 63◦ with d = 0.75 and
(c) O2 driven along θd ≈ 116◦ with d = 0.6. (b) and (d) Snapshots of
the ensemble velocity distribution at t = t f for the setups in (a) and
(c), respectively. The insets in (b) and (d) depict schematic repre-
sentations of the two corresponding lattices with different colored
circles denoting different barrier heights: Umn = 0.3 (blue), 0.6 (red),
0.9 (green), and 1.2 (black). The driving axis is denoted by the pink
double arrowed lines. The other parameters are γ = 10−2, α = 5,
and D = 2 × 10−4.

transport occurs, to a good approximation, along one of these
four directions.

D. Oblique lattice

In contrast to square and rectangular lattices, a 2D oblique
lattice does not possess any lines of reflection symmetry and
therefore has no obvious symmetry direction along which
directed transport should occur. Even for such a setup we
can realize directed transport of particles along a particular
direction, specifically along the shortest lattice vector, by
controlling the underlying ballistic attractors determining the
transport. We illustrate this by considering an oblique lattice
O1 composed of three superimposed oblique lattices with
lattice vectors a = (3, 0) and b = (1, 2) (|a| > |b|) with an
angle of approximately 63◦ between them. Upon driving the
lattice along b, an axial directed transport of particles is
observed along θ ≈ 63◦ parallel to b [Fig. 3(a)]. Most of the
particles move asymptotically with v ≈ (1, 2) or (−1,−2),
which denote the average velocities of the ballistic attractors
corresponding to particles moving one unit cell per unit
time parallel or antiparallel to the shortest lattice vector b
[Fig. 3(b)]. The spatial asymmetry due to the breaking of
Sr symmetry is responsible for a higher number of particles
moving parallel to b, resulting in the transport along this
direction.

Next we demonstrate that it is possible to direct the particle
transport either parallel or antiparallel to the shortest lattice
vector of an oblique lattice irrespective of the direction of
the driving force. To illustrate this, we consider a second
oblique lattice setup O2 constructed by the superposition of

FIG. 4. Mean position of the particle ensemble (in radial R and
angular θ coordinates) as a function of time t (in the colorbar) for the
oblique lattice O2 [see Figs. 3(c) and 3(d)] driven along (pink double
arrowed lines) (a) θd ≈ 26◦ with d = 1.0 and (c) θd = 90◦ with
d = 1.6. (b) and (d) Snapshots of the ensemble velocity distribution
at t = t f for the setups in (a) and (c), respectively. The insets depict
schematic representations of the corresponding lattices. The other
parameters are the same as in Figs. 3(c) and 3(d).

four oblique lattices having lattice vectors a = (3, 2) and b =
(−1, 2) (hence |a| > |b|) such that the angle between them
is approximately 83◦. When the lattice is driven along the
lattice vector b with d = 0.6, an axial directed transport is
observed at θ ≈ 300◦ antiparallel to b [Fig. 3(c)]. However,
upon driving the lattice along an axis perpendicular to b with
d = 1, a reversal of transport occurs and the ensemble moves
along θ ≈ 120◦, almost parallel to b, thereby exhibiting lateral
transport [Fig. 4(a)]. A directed transport along θ ≈ 120◦ is
also observed when the external drive is along the y axis and
d = 1.6, thus allowing us to realize oblique transport with
respect to the driving force [Fig. 4(c)]. The transport in all
these three scenarios is governed by the two ballistic attrac-
tors having average velocities (−1, 2) and (1,−2) around
which the asymptotic velocity distribution of the particles is
localized [Figs. 3(d), 4(b), and 4(d)]. Similar to the setup
O1, these velocities corresponds to synchronized motion of
particles moving either parallel or antiparallel to the shortest
lattice vector b and the transport direction is determined by the
relative asymmetry in the number of particles moving along
these two directions. Since the dominant ballistic attractors
for both setups O1 and O2 remain the same as those in Figs. 3
and 4 upon varying d , the direction of transport also does not
change considerably (see Appendix B).

IV. CONCLUSION

We have demonstrated the control of directed transport of
underdamped particles along specific directions in different
types of 2D Bravais lattices driven by unbiased external
forces. Most importantly, we have shown that it is possible
to direct the transport along one of the lattice vectors in
setups without any line of reflection symmetry irrespective of
the driving axis. These setups preclude any prediction of the
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transport direction a priori based on the standard symmetry
arguments. However, we have shown that the direction of
transport can be well understood in terms of the attractors
controlling the asymptotic dynamics of our nonlinear dy-
namical system. The observed directions of transport per-
sists for noise strengths up to D � 10−3, typical for cold
atoms or underdamped colloids. The fact that different lattice
geometries can be realized simply by varying the potential
heights of the Gaussian barriers constituting the sublattices
should also allow for time-dependent control of the transport
direction using dynamic holographic optical tweezers [45]
or dynamical digital hologram generation techniques [46,47].
Future perspectives include the investigation of the impact of
the lattice geometry on the chaotic transport in very weakly
dissipative and pure Hamiltonian regime and relevant tech-
nological applications such as the development of miniature
devices helpful for colloidal sorting or targeted drug delivery.
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APPENDIX A: SYMMETRY ANALYSIS

In order to observe directed transport of a particle ensemble
in any driven lattice setup, the necessary condition is to
break both the generalized spatial inversion symmetry Sr:
r → −r + δ and t → t + τ , and the generalized time-reversal
symmetry St : t → −t + τ and r → r + δ (for any arbitrary
constant translations δ and τ of space and time, respectively)
of the setup [4,40]. In a 2D system, the spatial inversion opera-
tion can be further decomposed into Sr ≡ PxPy + � + η, i.e.,
consecutive reflections Px : x → −x and Py : y → −y along
x and y (or any two orthogonal) axes, respectively, followed
by any optional arbitrary space and time translations � and η.
Since our setup is dissipative, St is always broken. The driving
force F(t ) being a single harmonic function of time does not
break the Sr symmetry, in contrast to a biharmonic driving
force [4,48]. Since any single Bravais lattice is symmetric with
respect to spatial inversion operation, the sublattices in our
setups are symmetric with respect to the symmetry operation
Sr. However, superposition of more than one sublattice breaks
the Sr symmetry (Fig. 5) and leads to directed transport as
discussed in the paper.

APPENDIX B: ROLE OF DRIVING STRENGTH
IN DIRECTED TRANSPORT

Here we discuss the behavior of the attractors underlying
the phase space of the different lattices described in the
main text for different driving amplitudes d . As mentioned
in the main text, the deterministic D → 0 dynamics of our
driven lattice setup is governed by the asymptotic attractors
in the system, which can be either chaotic, denoting diffusive
particle motion through the lattice, or ballistic, representing
regular periodic motion of the particles. The attractors are
characterized by their average velocities v̄, which for the
ballistic attractors can be expressed as v̄ = 1

T ( ma
na

a + mb
nb

b),

FIG. 5. Schematic diagram showing the breaking of the Sr sym-
metry in our rectangular lattice setup with lattice vectors a and b.
Each closed colored circles represent Gaussian barriers with different
heights Umn = 0.5 (blue), 1.0 (red), and 1.5 (green). The Px transfor-
mation about the horizontal dotted line leaves the lattice invariant.
However, the subsequent Py transformation about the vertical dotted
axis interchanges the positions of the green and red lattice points
which cannot be restored and optional spatial translations or time
shifts. The numbers 1, 2, and 3 below correspond to the blue, red, and
green lattice points, respectively, and have been provided to allow a
better visualization of the breaking of symmetry.

with ma, na, mb, nb ∈ Z, a and b being the two lattice vectors
and T the temporal driving period, which for our case is unity.
The ballistic attractors correspond to almost straight distinct
channels through the lattice yielding regular motion of the
particles synchronized with the external driving force. The
average transport velocity of our particle ensemble is simply
the vector sum of the velocities of the particles in all these
channels.

Although all our setups are characterized by both the
chaotic and ballistic attractors, we have focused on the di-
rected transport governed solely by the ballistic attractors. In
the following, we discuss the ballistic attractors correspond-
ing to each of our setups for different values of the driv-
ing strength d . For this, we numerically propagate N = 104

particles within a square region x, y ∈ [−10, 10] with small
random velocities vx, vy ∈ [−0.1, 0.1] for different values of
d up to t = 2 × 104. The asymptotic average velocities of
each of these trajectories correspond to the average velocity
v̄ of the different attractors underlying the setup. When v̄
is expressed in polar coordinates, the angular component θ̄

denotes the average direction of an attractor and the modulus
|v̄| denotes its average speed.

1. Rectangular lattice

First, we consider the rectangular lattice with spatial period
(3,1) and lattice vectors a = (3, 0) and b = (0, 1) driven
along the x axis [Fig. 6(a)] as described in the main text.
For different values of the driving strength d , we note that
the majority of the attractors are located along either θ̄ = 0◦
or θ̄ = 180◦ [Fig. 6(b)], with some isolated ones along θ =
30◦, 90◦, 210◦, 270◦. Therefore, for almost any value of d , we
would expect most of the particles in our setup to move along
either the positive or negative x direction. The breaking of
the spatial inversion symmetry induces an asymmetry in the
number of particles moving in the two directions; therefore,
directed transport emerges along any one of them as discussed
in the main text. The reflection symmetry in the y direction
forbids any transport along the y direction.
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FIG. 6. (a) Schematic representation of our rectangular lattice
setup with lattice vectors a and b. Each closed colored circles
represent Gaussian barriers with different heights Umn = 0.5 (blue),
1.0 (red), and 1.5 (green). The dotted line parallel to the x axis
denotes the line of reflection symmetry. (b) Average direction of
the attractors θ̄ (in angular coordinates) as a function of driving
amplitude d (in radial coordinates) with the colorbar denoting their
average speed |v̄|. The driving axis is denoted by the pink double
arrowed lines in both the figures. The other parameters are γ = 10−2,
θd = 0◦, α = 5, and D = 1.5 × 10−4.

2. Square lattice

For our square lattice setup with lattice vectors a =
(2, 2) and b = (−2, 2) [Figs. 7(a) and 7(b)], there exist

FIG. 7. Schematic representation of our square lattice setup with
lattice vectors a and b driven along (a) the y axis with θd = 90◦

and (b) θd = 135◦. Closed colored circles represent Gaussian barriers
with different heights Umn = 0.3 (blue), 0.6 (red), 0.9 (green), and 1.2
(black). The dotted line in (a) denotes the line of reflection symmetry.
(c) and (d) Average direction of the attractors θ̄ (in angular coordi-
nates) as a function of driving amplitude d (in radial coordinates)
with the colorbar denoting their average speed |v̄| corresponding to
(a) and (b), respectively. The blue colored smaller dots denote the
chaotic attractors, whereas the larger closed circles of other colors
denote the ballistic attractors. The driving axis is denoted by the
pink double arrowed lines in all the figures. The other parameters
are γ = 10−2, α = 5, and D = 1.5 × 10−4.

FIG. 8. (a) Schematic representation of our oblique lattice setup
O1 with lattice vectors a and b driven parallel to b. Closed colored
circles represent Gaussian barriers with different heights Umn = 0.3
(blue), 0.6 (red), and 0.9 (green). (b) Average direction of the attrac-
tors θ̄ (in angular coordinates) as a function of driving amplitude
d (in radial coordinates) with the colorbar denoting their average
speed |v̄|. The blue colored smaller dots denote the chaotic attractors,
whereas the larger closed circles of other colors denote the ballistic
attractors. The driving axis is denoted by the pink double arrowed
lines in both the figures. The other parameters are γ = 10−2, θd ≈
63◦, α = 5, and D = 2 × 10−4.

roughly six different directions corresponding to the bal-
listic attractors irrespective of the driving axis and driving
strength. These are along 45◦, 90◦, 135◦, 225◦, 270◦, and
315◦ [Figs. 7(c) and 7(d)]. However, in the presence of
noise, the breaking of the spatial inversion symmetry induces
asymmetric jumps of trajectories between different attractors
such that only one or two ballistic attractors govern the
particle dynamics asymptotically (see Figs. 1 and 2 in the
main text).

When the lattice is driven along the y axis [Fig. 7(a)],
the reflection symmetry about the x axis ensures that equal
numbers of particles asymptotically end up in attractors with
0◦ < θ̄ < 180◦ and 180◦ < θ̄ < 360◦, thus prohibiting trans-
port in the y direction. However, the spatial inversion sym-
metry ensures an imbalance between the number of particles
whose dynamics is governed by the ballistic attractors with
θ̄ = 45◦, 315◦ and those with θ̄ = 135◦, 225◦. This ensures
a net transport along the positive or negative x direction as
discussed in the main text.

For any other choice of the driving axis, e.g., as in
Fig. 7(b), there exists no line of symmetry and usually only
one of the six ballistic attractors controls the asymptotic
particle dynamics. Hence, for different values of the driving
strength d , directed transport is observed along one of these
directions. In the main text we showed two such examples,
where the transport is governed by the attractors with θ̄ =
135◦ and 225◦, respectively, for the same orientation of the
driving axis as in Fig. 7(b) but for two different driving
strengths d .

3. Oblique lattice

For our oblique lattice setups (O1 and O2) with lattice
vectors a and b (|a| > |b|), we find that there are always
two ballistic attractors oriented parallel and antiparallel to
the smallest lattice vector b irrespective of the orientation

013290-6
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FIG. 9. Schematic representation of our oblique lattice setup O2 with lattice vectors a and b driven along (a) θd ≈ 116◦, (b) θd ≈ 26◦,
and (c) θd = 90◦. Closed colored circles represent Gaussian barriers with different heights Umn = 0.3 (blue), 0.6 (red), 0.9 (green), and 1.2
(black). (d)–(f) Average direction of the attractors θ̄ (in angular coordinates) as a function of driving amplitude d (in radial coordinates) with
the colorbar denoting their average speed |v̄| corresponding to (a)–(c), respectively. The blue colored smaller dots denote chaotic attractors,
whereas the larger closed circles of other colors denote the ballistic attractors. The driving axis is denoted by the pink double arrowed lines in
all the figures. The other parameters are γ = 10−2, α = 5, and D = 2 × 10−4.

and strength of the driving force (see Figs. 8 and 9). As a
result, for most values of driving strength d and orientation
θd , it is possible to realize directed transport of particles
along any one of these directions, as we have discussed in
the main text.

Hence, for all our setups, the underlying ballistic attractors
are quite robust with respect to slight variations of the driving
strength d . The particular values of d in the main text have
been chosen in order to exemplify the directed transport at
specific angles in each of these setups.
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