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Birth, death, and revival of spontaneous emission in a three-atom system
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Three identical two-level atoms in free space prepared in particular entangled single-photon excited states
display a “birth,” “death,” and a nonperiodic “revival” of spontaneous emission in selected directions. Instead of
recording the spontaneously emitted photon with a maximum probability at t = 0 as for a single atom, a “birth”
manifests itself in an initially zero photon detection probability, increasing thereafter in particular directions.
Alternatively, the photon detection probability decreases in particular directions from an initially maximal value
to completely disappear (“death”) and to reappear again (“revival”). We show how these phenomena can be
induced in the fully excited system, by projecting the atomic ensemble into the required entangled single-photon
excited state via detection of the first two spontaneously emitted photons. To observe death and revival of
spontaneous emission it is necessary to provide both spatial and temporal interference for which a minimum of
three atoms is required. Hereby, the third atom, located at a large distance with respect to the other two atoms, can
be used to tune the time and direction of the death of the photon. From this manipulation of spontaneous decay
at a distance, we anticipate multiple applications, in fundamental science as well as in quantum technologies.
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Collapse and revival occur for many phenomena in quan-
tum physics appearing in different aspects and forms [1–7].
Typically, an observable of a system falls off in time to vanish
at a given moment only to reappear again, in some cases
even to its original value, sometimes in a periodic manner.
A prominent example from atomic physics is a two-level
atom interacting with a single mode of a cavity, as described
by the Jaynes-Cummings model [1]. Here, in the absence
of losses, the atomic inversion [2] as well as the atomic
dipole moment [3] display periodic collapses and revivals,
what has been observed also experimentally [4,5]. Another
well-known example are spin echos [6], where the spins of
an inhomogenously broadened atomic ensemble precess at a
different pace in an external magnetic field, producing after
some time a zero total magnetization; yet, a suitable inversion
pulse can effectively reverse the dephasing process leading
after some time to a revival of the initial magnetization.

A common feature of collapse and revival is that it typically
occurs in closed systems, e.g., subject to particular boundary
conditions. Here, lossy channels, as the infinite amount of vac-
uum modes in spontaneous decay, are typically not involved.
Indeed, losses tend to prohibit rephasing and revivals in a
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finite time, rather inducing a complete collapse of the wave
function of the observables in question [8]. Moreover, while
dephasing-based collapses and revivals occur commonly in
a finite time, the infinite number of loss channels in open
systems leads to an exponential decay and therefore requires
an infinite amount of time for a complete collapse [9].

An interesting link between collapse and revival due to de-
and rephasing versus collapses induced by lossy channels has
recently been discussed in the context of quantum entangle-
ment [10]. Here, the dynamics of two entangled atoms was
studied under the influence of spontaneous decay. It was found
that even though the spontaneous emission process of the
individual atoms requires an infinite time, the entanglement
itself between the atoms can vanish within a finite time
interval leading to a so-called “sudden death of entanglement”
[10]. Later it was shown that after the sudden death there exist
even conditions for which the entanglement reappears, despite
the intrinsically incoherent nature of spontaneous emission
[9,11–13].

Here, we go one step further, and ask the question whether
spontaneous emission itself can collapse in a finite time
interval and subsequently exhibit revivals. Since the atomic
excitation is coupled to an infinite number of vacuum modes,
rephasing is not to be expected. Yet, in this paper, we show
that three identical two-level atoms in free space, sharing a
single excitation coherently among all particles, can indeed
display a birth or, alternatively, a death and a nonperiodic
revival of spontaneous emission. Starting from an initially
fully excited nonentangled three-atom system, these counter-
intuitive phenomena can be induced by projecting the system
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FIG. 1. Geometry of the investigated setup. Three identical two-
level atoms are located in free space in the x-y plane at R1, R2,
and R3 with dipole moments oriented perpendicular to that plane.
Atoms 1 and 2 are placed close to each other so that they are subject
to the dipole-dipole interaction, while atom 3 is located far from
the other two atoms. Three detectors at ri, i = 1, 2, 3, record the
spontaneously emitted photons in the far field. By measuring two
photons coincidentally at r1 and r2 from the fully excited system,
the atomic ensemble is transferred into the entangled state ρ̂sub via
projection. The signal of the third detector (red) corresponds to the
probability to record the last photon at t3 and r3, spontaneously
scattered by the entangled atomic ensemble.

into the required entangled state via the detection of two
spontaneously emitted photons. A “birth” corresponds to a
zero probability to detect a photon spontaneously emitted
from the atomic ensemble at a time t = 0, increasing there-
after to a maximal value at t > 0. Alternatively, the detection
probability may decrease from an initially maximal value
to completely disappear at t > 0 (“death”), only to reappear
again (“revival”). As it turns out, the latter behavior occurs
for a minimum of three atoms only, when two atoms are
separated by a distance small compared to the transition
wavelength λ, and a third atom is located far away from the
other two particles. Only in such a configuration both spatial
interference (via the remote atom) and temporal interference
(via the two interacting collective emitting atoms) occur at the
same time. In contrast, death and revival can not be observed
with merely two atoms.

To investigate the phenomenon, we study the setup dis-
played in Fig. 1. Here, three identical two-level atoms are
located in the x-y plane at three different positions and three
detectors placed in the far field of the atoms record the photons
spontaneously scattered by the atomic ensemble. All three
atoms are fully excited initially. We do not consider external
driving fields, but the option that the atoms are transferred
into the required entangled state via projective measurements
[14,15], i.e., by recording two photons coincidentally at t = 0
at positions r1 and r2, emitted from the fully excited system.
After this measurement, the atomic ensemble is left with a

single excitation, shared coherently among all three atoms.
The resulting state is described by the density matrix [16,17]

ρ̂sub = A D̂2D̂1 |e, e, e〉 〈e, e, e| D̂†
1D̂†

2 , (1)

where the constant A ensures normalization and the detection
operator D̂m, removing a single excitation from the ensemble,
is defined as [16,17]

D̂m =
3∑

n=1

ei δn,m σ̂−
n . (2)

Here, σ̂−
n is the atomic lowering operator acting on the n-th

atom, k0 = 2π/λ = ω0/c is the wave number of the spon-
taneously emitted photons, and δn,m = −k0

Rn·rm
|rm| defines the

phase accumulated by a photon emitted from an atom at Rn

and recorded by a detector at rm, relative to a photon emitted at
the origin (see Fig. 1). We further define R12 = R1 − R2 and
suppose that the dipole moments of the atoms are all oriented
perpendicular to the x-y plane.

We next assume that two atoms of the ensemble are placed
close to each other, i.e., R12 = |R12| � λ, so that they are
subject to dipole-dipole interaction, while the third atom
is located far from the other two atoms such that R3i =
|R3 − Ri| � λ, i = 1, 2. In this way, the third atom can be
treated as independent.

We note that three nearby atoms have been studied previ-
ously [18]; these, however, do not exhibit the new effects we
report here for our system of two nearby and one remote atom.
For this configuration, we study the probability to record the
last spontaneously emitted photon at r3, i.e., the first-order
photon correlation function

G(1)
ρ̂sub

(t3, r3) ∝ 〈Ê (−)
3 Ê (+)

3 〉ρ̂sub , (3)

where Ê (+)
m (Ê (−)

m = [Ê (+)
m ]†) denotes the positive (negative)

frequency part of the electric field operator at rm, and 〈Â〉ρ̂sub

is the expectation value of the operator Â for the atomic
ensemble being in the state ρ̂sub.

Since Ê (+)
m (Ê (−)

m ) can be linked to the atomic lowering
(rising) operators via Ê (+)

m ∝ ∑3
n=1 ei δn,m σ̂−

n [19], we con-
clude from Eqs. (1)–(3) that the detection probability of the
two-photon subtracted state can be equally derived from the
third-order photon correlation function of the fully excited
system [16,17]

G(3)
ρ̂exc

(0, 0, t3; r1, r2, r3)

∝ 〈Ê (−)
1 Ê (−)

2 Ê (−)
3 Ê (+)

3 Ê (+)
2 Ê (+)

1 〉|e,e,e〉〈e,e,e|
∝ 〈Ê (−)

3 Ê (+)
3 〉ρ̂sub . (4)

Note that the coupling between the first two atoms
can be conveniently described within the Dicke basis,
i.e., using the double excited, symmetric, antisymmet-
ric, and ground states |E〉 = |e, e〉, |S〉 = 1√

2
(|e, g〉 + |g, e〉),

|A〉 = 1√
2
(|e, g〉 − |g, e〉), and |G〉 = |g, g〉, respectively [19].

Hereby, the decay rate towards and from the symmetric state
|S〉 [antisymmetric state |A〉] is modified from 2γ to 2(γ +
	γ ) [from 2γ to 2(γ − 	γ )], depending on the interatomic
distance R12, whereas the energy level is shifted by +h̄	


(−h̄	
) with respect to the unaffected atomic transition
frequency ω0 [20,21]. Both, the coupling constants and the

013278-2



BIRTH, DEATH, AND REVIVAL OF SPONTANEOUS … PHYSICAL REVIEW RESEARCH 2, 013278 (2020)

corresponding master equation governing the time evolution
of the system are given in Appendix A.

Before we investigate the photon detection probabilities
G(1)

ρ̂sub
(t3, r3) for the three-atom system, let us start by studying

a system consisting of two atoms only, closely separated by a
distance R12 � λ. This will help us to appreciate the impact
of the third independent atom on the probability to detect the
last photon spontaneously emitted by the three-atom ensemble
along particular directions, investigated thereafter.

For the two-atom system, the photon detection probability
for the last photon spontaneously emitted by two atoms being
in a one-photon subtracted state can again be conveniently
calculated from the second-order photon correlation function
of the fully excited system [16,17]. One finds [22,23]

G(1)
2atoms(t2, r2) ∝ e−2γ t2

(
e−2	γ t2 cos2(δ2,1/2) cos2(δ2,2/2)

+ e2	γ t2 sin2(δ2,1/2) sin2(δ2,2/2)

+ sin(δ2,1) sin(δ2,2)
cos(2 	
 t2)

2

)
, (5)

where the sign of the last term in Eq. (5) can be positive or
negative depending on the values of δ2,1 and δ2,2. In particular,
for t2 = 0 and δ2,1 = δ2,2 + π (2m + 1), m ∈ Z, this leads to a
complete destructive interference of all terms and vanishing
of Eq. (5). Under these conditions, a birth of the photon
detection probability is obtained, i.e., a signal starting from
zero at t2 = 0 and increasing for t2 > 0 up to a maximal value,
decreasing thereafter. However, from Eq. (5), it is not possible
to derive a death of the photon detection probability, i.e.,
G(1)

2atoms(t2, r2) = 0 for t2 > 0 as demonstrated in Appendix B.
As it turns out, to achieve this an additional third atom is
required.

We thus now turn to the three-atom case (see Fig. 1). The
most general two-photon subtracted state of a pure state as in
Eq. (1), can be written in the form

ρ̂sub(0) = (cGe |G, e〉 + cSg |S, g〉 + cAg |A, g〉) · H.c. , (6)

where we used the states |{G, S, A, E}〉 of the Dicke basis for
the first two atoms and the bare basis |{g, e}〉 for the third
atom. In Eq. (6), the coefficients cGe, cSg, and cAg are given by

cGe =
√

A(ei δ2,1 + ei δ2,2 ),

cSg =
√

A

2
(ei(δ3,1+δ2,2 ) + ei(δ2,1+δ3,2 ) + ei δ3,1 + ei δ3,2 ), (7)

cAg =
√

A

2
(ei(δ3,1+δ2,2 ) + ei(δ2,1+δ3,2 ) − ei δ3,1 − ei δ3,2 )

and depend, apart from the atomic geometry assumed to be
fixed, only on the position of the first two detectors.

Since the time evolution of a single atom and two dipole-
dipole interacting atoms is well known [19], we obtain as a
solution for the combined system

ρ̂sub(t3) = (e−γ t3 cGe |G, e〉 + e−(γ+	γ+i 	
)t3 cSg |S, g〉
+ e−(γ−	γ−i 	
)t3 cAg|A, g〉) · H.c.

+ cGg(t3) |G, g〉 〈G, g| . (8)
From Eq. (8), we see that the independent third atom decays
with the unmodified decay rate γ [first term in Eq. (8)],
whereas for the first and second atoms, modified decay rates
γ ± 	γ and energy shifts 	
 appear in the exponents in front
of the states |S〉 and |A〉 [second and third terms in Eq. (8)].
We also note that the explicit form of cGg(t3) (fourth term in
Eq. (8)) is not relevant for G(1)

ρ̂sub
(t3, r3), as for this term all

atoms are already in the ground state. Furthermore, since only
the relative geometrical phases play a role for the dynamics
of the system, we can place the first atom at the coordinate
origin, i.e., δ1,m = 0 for m ∈ {1, 2, 3} (see Fig. 1). Claiming
cGe ∈ R and denoting the complex phase of cSg and cAg as
ϕSg/Ag = Arg( cSg/Ag

cGe
), we find for the probability to detect at

r3 the last photon spontaneously emitted by the three-atom
ensemble being in the state ρ̂sub

G(1)
ρ̂sub

(t3, r3) ∝ |cGe|2 e−2γ t3 + 2|cSg|2 e−2(γ+	γ )t3 cos2(δ2,3/2) + 2|cAg|2 e−2(γ−	γ )t3 sin2(δ2,3/2)

+ 2|cSg||cAg| e−2γ t3 sin(δ2,3) sin(ϕAg − ϕSg + 2 	
 t3)

+ 2
√

2|cSg||cGe| e−(2γ+	γ )t3 cos(δ2,3/2) cos(ϕSg + δ2,3/2 − δ3,3 − 	
 t3)

+ 2
√

2|cAg||cGe| e−(2γ−	γ )t3 sin(δ2,3/2) sin(ϕAg + δ2,3/2 − δ3,3 + 	
 t3). (9)

Comparing to Eq. (5), we see from Eq. (9) that the ad-
dition of a third atom at a large distance from the first two
atoms fundamentally changes the spatio-temporal behavior
of G(1)

ρ̂sub
(t3, r3). In particular, the position of the third atom

strongly affects the temporal behavior of the last three terms
of Eq. (9), leading to a much more complex and rich structure
of G(1)

ρ̂sub
(t3, r3) as discussed in detail in Appendix C. This is in

contrast to the two-atom case where, for a given interatomic
distance R12, the temporal features of G(1)

2atoms(t2, r2) are un-
affected by the atomic geometry. The system of three atoms
therefore allows to fine tune the dynamics of the spontaneous
decay along certain directions involving both temporal and
spatial interferences alike.

Considering the birth of a photon, we can, for example, in-
vestigate the configuration where only the symmetric state of
the first two atoms contributes to G(1)

ρ̂sub
(t3, r3) (i.e., |cAg| = 0);

to achieve this we have to choose δ2,1 = δ3,1 = δ2,2 = δ3,2 =
δ = 2mπ , with m ∈ Z [see Eq. (7)]. Under these conditions,
we find from Eq. (9)

G(1)
ρ̂sub

(t3, r3)

∝ 4 e−2γ t3 +16 e−2(γ+	γ )t3 cos2(δ2,3/2)

+16 e−(2γ+	γ )t3 cos(δ2,3/2) cos(δ2,3/2−δ3,3−	
 t3).

(10)
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Equation (10) shows that, similar to the two-atom system,
it is possible to find configurations where G(1)

ρ̂sub
(t3, r3) vanishes

at t3 = 0, e.g., by varying the position r3 of the third detector
and/or the positions R2 and R3 of the second or third atom.
(A similar expression as Eq. (10) is found if only the antisym-
metric state of the first two atoms contributes to G(1)

ρ̂sub
(t3, r3),

i.e., |cSg| = 0, see Appendix C.)
However, surprisingly and in difference to Eq. (5), beyond

the birth of a photon, we can also obtain a death and a consec-
utive revival of a photon, by finding roots of G(1)

ρ̂sub
(t3, r3) for

t3 > 0.
The latter can be attained by setting G(1)

ρ̂sub
(t3, r3) = 0 in

Eq. (10), in which case we get

t±
Sg = ln(±2 cos(δ2,3/2))

	γ
. (11)

Note that in Eq. (11) it is required that t±
Sg � 0 is real (what

depends on the sign of 	γ and the value of δ2,3). It then
follows that

δ3,3 = δ2,3

2
− 	
 t±

Sg + π

2
[(1 + 4m) ± 1] . (12)

Considering Eqs. (10)–(12), a complete disappearance of
G(1)

ρ̂sub
(t3, r3) can be observed at times t3 = tSg > 0, followed by

a reappearance and increase of G(1)
ρ̂sub

(t3, r3) for times t3 > tSg

(see Fig. 2).
Our results may appear counter-intuitive, given that the

death and revival of spontaneous emission are genuine fea-
tures of a three-atom system and do not occur for two atoms.
These effects, furthermore, only appear if the third atom is
placed at a distance from the two nearby atoms, such that
it does not interact with them. However, there is a simple
intuitive explanation: the light emitted by two distant (nonin-
teracting) atoms exhibits a spatial pattern, originating from a
double-slit like interference, although for two distant atoms
(i.e., without atom-atom interaction) there is no modified
dynamics as compared to a single atom. In contrast, the
temporal behavior of two (interacting) nearby atoms is altered
via the dipole-dipole interaction, although there is no spatial
dependency because the two atoms are close to each other.
Our setup of two adjacent atoms together with a third distant
atom uniquely combines the spatial and temporal interference
effects in a minimal way, and it is this combination which
leads to the qualitatively new phenomena we report.

In summary, we considered a setup in which the archetype
system of two dipole-dipole interacting two-level atoms is
augmented by a third identical atom, placed at a large distance
compared to the transition wavelength λ to the other two.
Starting from initially excited atoms in free space, we have
shown that the measurement of the first two spontaneously
emitted photons may project the atomic ensemble into a
singly-excited entangled state, which exhibits qualitatively
different spontaneous emission features. In particular, the last
emitted photon can exhibit a birth, i.e., a signal starting from
zero at t = 0 and increasing for t > 0 up to a maximal value
before dropping off exponentially thereafter. Moreover, the
probability to detect the spontaneous photon can display a
death followed by a revival for times t > 0. The latter outcome
is a genuine three-atom result, which does not appear in a
two-atom system. These effects occur, since our three-atom
system uniquely combines the spatial interference effects
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FIG. 2. (a) Probability G(1)
ρ̂sub

(t3, r3) of detecting the last photon
spontaneously emitted by the three-atom system as a function of
time t3 and detector directions δ2,3 for the special case of the first
two atoms being in a symmetric state. The roots G(1)

ρ̂sub
(t3, r3) = 0 are

indicated by the red dashed line. The graph is limited to G(1)
ρ̂sub

= 0.15
to visualize the region of of interest more clearly. [(b) and (c)]
Probability G(1)

ρ̂sub
(t3, r3) in particular directions marked by the blue

and green lines in (a), respectively. The red crosses mark times of
zero detection probability, corresponding to a birth (b) and a death
and revival (c), respectively. Parameters are k0R12 = π , δ2,1 = δ3,1 =
δ2,2 = δ3,2 = 2mπ , δ3,3 is given by Eq. (12), δ2,3 = 2π/3 for (b) and
δ2,3 = 3π/4 for (c).

observed in the emission from distant atoms with the temporal
interference effects characteristic of nearby atoms.

Seen from a different perspective, G(1)
ρ̂sub

(t3, r3) cor-
responds to the third-order photon correlation function
G(3)

ρ̂exc
(0, 0, t3; r1, r2, r3) of the fully excited atomic system

[17]. Thus the death of a spontaneously emitted pho-
ton can also be viewed as a noncoincident three-photon
Hong-Ou-Mandel interference, corresponding to the roots of
G(3)

ρ̂exc
(0, 0, t3; r1, r2, r3) with appropriately positioned detec-

tors. Here, similar to the original Hong-Ou-Mandel effect
[24–30], the probability to measure multiple photons at dif-
ferent positions vanishes, yet with the difference that the
detection occurs at different times t1 = t2 = 0 and t3 > 0.

The genuine three-atom phenomena reported here are not
only of interest from a fundamental point of view. Since the
third atom is far apart and thereby individually addressable, it
provides a powerful tool to control the collective spontaneous
emission of the total system at a distance. This could have
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FIG. 3. Plot of the detection probability G(1)
2atoms(t2, r2) of the second photon as a function of time t2 and detector position δ2,3 for k0R12 = π .

(Left) The condition δ2,1 = δ2,2 + π (2m + 1) is fulfilled. The birth of G(1)
2atoms(t2, r2) for t2 > 0 is clearly visible (blue and green lines). (Right)

The condition is changed to δ2,1 = δ2,2 + π (2m + 1) + π/8 leading to a superposition of birth (blue line) and the ordinary exponential decay
(green line) in G(1)

2atoms depending on the residual phase factor δ2,2.

a plethora of applications in fundamental science as well
as in applied quantum technologies: the simple access and
manipulation of the third atom—either via modification of
its position or via illumination by an additional laser—could
be used in quantum imaging, to extract spatial information
with increased resolution of the two adjacent atoms which
cannot be resolved easily due to their proximity. In turn, a
laser-control of the relative phase of the distant atom can be
used to control the directional emission.

APPENDIX A: TIME EVOLUTION OF THREE ATOMS
WITH TWO DIPOLE-DIPOLE-INTERACTING ATOMS

The level splitting 	
 and the rate 	γ modifying the
spontaneous emission rate from 2γ to 2(γ ± 	γ ) of two
dipole-dipole interacting atoms can be compactly written in
the form [19–21]

	
 + i 	γ = 3

2
γ e− i k0R12

[
cos2(α) − 1

k0R12
+ (1 − 3 cos2(α))

×
(

i

(k0R12)2
+ 1

(k0R12)3

)]
(A1)

where the angle α between the atomic dipole moment and R12

corresponds to π/2 in our setup. As can be directly seen in
Eq. (A1) both coupling constants depend on the interatomic
distance R12 and vanish for great atomic distances. Moreover,
the master equation providing the time evolution of the three-
atom system reads [19]

∂t ρ̂ = − i ω0

3∑
m=1

[
σ̂ z

m, ρ̂
] − i

2∑
m , n = 1

m �= n

	
[σ̂+
m σ̂−

n , ρ̂]

−
3∑

m=1

γ (σ̂+
m σ̂−

m ρ̂ − 2σ̂−
m ρ̂σ̂+

m + ρ̂σ̂+
m σ̂−

m )

−
2∑

m , n = 1
m �= n

	γ (σ̂+
m σ̂−

n ρ̂ − 2σ̂−
n ρ̂σ̂+

m + ρ̂σ̂+
m σ̂−

n ). (A2)

Note that by limiting the upper summation in the second and
fourth terms in Eq. (A2) to 2, i.e., restricting the dipole-dipole
interaction to the first two atoms, we treat the remote third
atom as noninteracting.

APPENDIX B: BIRTH OF SPONTANEOUS EMISSION
IN A TWO-ATOM SYSTEM

We show that a a system consisting of two atoms G(1)
2atoms

only shows a birth of spontaneous emission but does not
display features such as death or revival as encountered for
a three-atom system.

This means we have to show that G(1)
2atoms(t2, r2), given in

Eq. (5) of the main text and reprinted here

G(1)
2atoms(t2, r2) ∝ e−2γ t2

(
e−2	γ t2 cos2(δ2,1/2) cos2(δ2,2/2)

+ e2	γ t2 sin2(δ2,1/2) sin2(δ2,2/2)

+ sin(δ2,1) sin(δ2,2)
cos(2 	
 t2)

2

)
, (B1)

only vanishes if t2 = 0, and that for t2 > 0 we have
G(1)

2atoms(t2, r2) �= 0.
We first focus on all time-dependent terms in Eq. (B1).

Depending on the sign of 	γ , one of the exponentials in
Eq. (B1), either e	γ t or e−	γ t , increases for t2 > 0 and
becomes greater than one, whereas the last term in Eq. (B1)
oscillates as a function of t2, with a maximum amplitude equal
to one. Since 	γ and 	
 are of the same order of magnitude
(for a given atomic separation R12), we only have to focus
on the interval 0 < t2 < 	
π/2. In fact, only for t2 close to
zero it is possible to achieve G(1)

2atoms(t2, r2) = 0 if and only if
sin(δ2,1) sin(δ2,2) is negative. For t2 = 0 the oscillating term
in Eq. (B1) is maximal and Eq. (B1) reduces to

G(1)
2atoms(t2, r2)

∝ cos2(δ2,1/2) cos2(δ2,2/2)

+ sin2(δ2,1/2) sin2(δ2,2/2) + 1
2 sin(δ2,1) sin(δ2,2).

(B2)
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Now, claiming G(1)
2atoms = 0 in Eq. (B2), we find the condi-

tion δ2,1 = δ2,2 + π (2m + 1), m ∈ Z and with that we obtain
sin(δ2,1) sin(δ2,2) = − sin(δ2,2)2. For t2 > 0, we then have

G(1)
2atoms(t2, r2)

∝ e−2γ t sin2(δ2,2)(cosh(2	γ t ) − cos(2	
t )). (B3)

Equation (B3) shows that t2 = 0 is indeed the only solution
for G(1)

2atoms = 0, i.e., it exists no point in time t∗
2 > 0 for which

G(1)
2atoms(t

∗
2 , r2) = 0, except the trivial solution δ2,1 = δ2,2 +

π (2m + 1) and δ2,2 = nπ , n ∈ Z for which G(1)
2atoms(t2, r2) = 0

for all t2.
Again we want to point out, that it is sufficient to restrict

the analysis to the case δ2,1 = δ2,2 + π (2m + 1) because for
all other choices of δ1,2 and δ2,2 the first two terms in Eq. (B1)
are already greater than the third term for t2 = 0 and thus for
all t2 > 0.

As can be seen in Fig. 3, for an arbitrary choice of δ2,1

and δ2,2, G(1)
2atoms in general shows both, a birth of spontaneous

emission, an exponential decay, or a superposition of both
features.

APPENDIX C: DEATH AND REVIVAL
IN A THREE-ATOM SYSTEM

In the main text, we derived in Eq. (9) the detection prob-
ability of the last spontaneously emitted photon depending
on the actual two-photon reduced atomic state ρ̂sub. We then
investigated the special case for the first two atoms being in
a symmetric state which results in Eq. (10). The so called
death and subsequent revival of spontaneous emission can
be found along the detection directions at a given detection
time given by Eqs. (11) and (12), respectively. Similarly we
can set |cSg| = 0 and examine the antisymmetric state of the
first two atoms. To achieve this configuration, we have to set
δ2,1 = δ3,1 = δ2,2 = δ3,2 = π (2m + 1) with m ∈ Z and thus
obtain

G(1)
ρ̂sub

(t3, r3)

∝ 4 e−2γ t3 +16 e−2(γ−	γ )t3 sin2(δ2,3/2)

+ 16 e−(2γ−	γ )t3 sin(δ2,3/2) sin(δ2,3/2−δ3,3+	
 t3).

(C1)

Comparing Eq. (C1) with Eq. (10) of the paper both ex-
pression are identical after performing the transitions 	γ →
−	γ , 	
 → −	
, and sin → cos. Thus we find true roots
of Eq. (C1) for times

t±
Ag = ln(±2 sin(δ2,3/2))

	γ
(C2)

where we have to choose the sign such that tAg > 0 is real. For
the geometrical phase δ3,3, it then follows that

δ3,3 = δ2,3

2
− 	
 t±

Ag + π

2
[4m ± 1]. (C3)

Although the three-atom system also produces a birth of
spontaneous emission (Fig. 4) similar to the two-atom case,

π
3

2π
3

π

t3 · γδ2,3

G
(1

)
/

0
0.05
0.1

0.15

t3 · γ
G

(1
)
/

0

0.5

1 ·10−2

t3 · γ

G
(1

)
/

0.

FIG. 4. (a) Probability G(1)
ρ̂sub

(t3, r3) of detecting the last photon
spontaneously emitted by the three-atom system as a function of
time t3 and detector directions δ2,3 for the special case of the first two
atoms being in an antisymmetric state. The roots G(1)

ρ̂sub
(t3, r3) = 0 are

indicated by the red dashed line. The graph is limited to G(1)
ρ̂sub

= 0.15
to visualize the region of of interest more clearly. [(b) and (c)]
Probability G(1)

ρ̂sub
(t3, r3) in particular directions marked by the blue

and green lines in (a), respectively. The red crosses mark times
of zero detection probability, corresponding to a birth (b) and a
death and revival (c). Parameters are k0R12 = π , δ2,1 = δ3,1 = δ2,2 =
δ3,2 = (2m + 1)π , δ3,3 is given by Eq. (C3), δ2,3 = π/3 for (b) and
δ2,3 = π/2 for (c).

G(1)
ρ̂sub

in Eq. (C1) differs significantly from Eq. (B1). In the
latter equation, the third interference term only depends on
cos(	
t ) whereas in Eq. (C1) we find sin(δ2,3/2 − δ3,3 +
	
t3) which opens up the possibility to highlight all temporal
features via tuning the geometrical phases δ2,3 and δ3,3. As
a consequence, for δ2,3/2 − δ3,3 < 0, the major contribution
of the interference term in Eq. (C1) is shifted towards grater
times t3, i.e., the death of spontaneous emission is shifted
from t3 = 0 to t3 > 0 followed by a revival directly there-
after.

Finally, we want to give a physical interpretation for all
terms occurring in Eq. (11) of the paper. (1) The first three
terms correspond to the photon detection probability produced
by each individual state |G, e〉, |S, g〉, and |A, g〉. (2) The fourth
term corresponds to the interference between the symmetric
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and antisymmetric state. It oscillates with 2	
 due to the
level splitting. (3) The fifth and sixth terms correspond to
the interference between the symmetric and antisymmetric
state with the independent atom, respectively. It oscillates with
frequency ±	
 due to the level splitting.

By setting either |cSg| = 0 or |cAg| = 0, Eq. (11) is
reduced by three terms in each case. Thus investigating the
more complex case for which both |cSg| �= 0 and |cAg| �= 0
may give rise to a multitude of additional fascinating and
interesting regimes.
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