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Brownian dynamics for the vowel sounds of human language
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We present a model for the evolution of vowel sounds in human languages, in which words behave as Brownian
particles diffusing in acoustic space, interacting via the vowel sounds they contain. Interaction forces, derived
from a simple model of the language-learning process, are attractive at short range and repulsive at long range.
This generates sets of acoustic clusters, each representing a distinct sound, which form patterns with similar
statistical properties to real vowel systems. Our formulation may be generalized to account for spontaneous
self-actuating shifts in system structure which are observed in real languages, and to combine in one model
two previously distinct theories of vowel system structure: dispersion theory, which assumes that vowel systems
maximize contrasts between sounds, and quantal theory, according to which nonlinear relationships between
articulatory and acoustic parameters are the source of patterns in sound inventories. By formulating the dynamics
of vowel sounds using interparticle forces, we also provide a simple unified description of the linguistic notion

of push and pull dynamics in vowel systems.
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I. INTRODUCTION

Each human language has its own inventory of sounds.
Within these inventories a distinction is made between con-
sonants, which require some restriction of airflow for their
production, and vowels, resonant sounds, for which airflow is
relatively unrestricted [1]. Vowels are the primary carriers of
linguistic information in connected human speech [2,3]. The
sound of a vowel is determined largely by the position and
configuration of the tongue, although other parts of the vocal
apparatus can be involved [4]. Linguists have traditionally
represented vowels as points in a two-dimensional articula-
tory domain (the vowel quadrilateral) with coordinates given
by tongue height and backness [5]. To produce the vowel
sound in (cat), represented phonetically as [@], the tongue
is in a low, forward position. By contrast, the vowel in
(foot), pronounced [v], is articulated with the tongue dorsum
in a relatively high and backed position. Vowels may also
be reliably identified from the first two peaks, or formants
(F1, F»), of their frequency spectrum [6] (Fig. 1). Models
of vowel production [7] and experiments [8,9] suggest that
Fy strongly correlates to tongue height, and F, to backness,
although recent work suggests that /> may depend on both
[9]. Mathematically, there appears to be a bijective map from
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articulatory to acoustic (F7, F>) space which is approximately
affine [10], with some exceptional regions [11]. For this
reason, we will view vowel sounds as existing in a closed
two-dimensional domain: vowel space.

Vowel systems exhibit recurring patterns and regularity:
the majority of languages (64.6%) have between five and
seven different qualities of vowel with /i/ /a/, and /u/
occurring in over 80% of languages [12]. Moreover, certain
arrangements within vowel space are particularly common
[12-14]. Vowel systems, like most elements of languages,
evolve over time and may therefore be viewed as dynam-
ical systems coupled to human social dynamics, and also
to geography and social networks [15-17]. Cross-linguistic
similarities suggest that their internal dynamics may play a
particularly powerful role, and numerous models have been
proposed [13,14,18-25]. In the early work of Liljencrants and
Lindblom [13], vowels were modeled as electrical charges,
based on the principle of maximal contrast [26], yielding a
single idealized vowel system for each cardinality (number
of vowels). Focalization theory, which adds an attractive in-
teraction to vowel dynamics, hypothesizes the convergence of
formants [18,27], increasing acoustic salience and “perceptual
value.” Other models involve iterative construction driven by
contrast maximization [20], or agent-based imitation games
between speech synthesizers [14,21]. One inspiration for our
work is exemplar dynamics [22-25,28,29], where agents store
in memory a large number of exemplars for each sound, orga-
nized into sound categories. When uttering a sound, an exem-
plar is reproduced (with noise) from memory and accepted as
valid by listeners based on how easily it can be identified and,
in some cases, how typical it is of its category [24]. When two
categories get close, they may overlap, making identification
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FIG. 1. Formant data for the vowel sounds of 76 speakers of
American English from the original study by Peterson and Barney
[6], where speakers were recorded reading the words heed, hid, head,
had, hod, hawed, hood, who’d, hud, and heard. Axes have been
reversed so that the positions of vowels correspond to those in the
IPA vowel chart [5]. The approximate shape of this chart has been
superimposed on the formant data, to illustrate the correspondence
between mean formant positions (large points), and the arrangement
of the traditional chart. Front vowels: blue i, orange 1, green ¢, red
2. Back vowels: light green u, gray v, pink o, purple a, brown a.
Central vowel: turquoise 3.

of utterances in the intersecting regions more difficult, leading
to their rejection as exemplars. This shifts the mean sounds
of the two categories apart, as if subject to a repulsive force.
Exemplar models have recently been analyzed [23,30], with
the aim of determining conditions for the merger of sound
categories, and the behavior of the boundaries between them
in vowel space. Repulsive mechanisms are common to all
the models above and generate distributions of sounds which
are dispersed in vowel space. They are known as dispersion
theories [12,31].

While there is clearly value in defining models with greater
linguistic realism (using realistic synthesizer equations [21],
or metrics of perceptual distance [19]), this approach also
makes the determination of their general behavior difficult. It
is hard to evaluate whether the complexity they add in order to
better match reality is scientifically justified, or whether it is
a form of interpolation. Exemplar theory is a step away from
this approach, and may be defined as a simple iterative com-
putational model. However, rigorous analysis is challenging
[30], and because the atomic constituents of the theory are
tokens in the memories of speakers, simulations of large num-
bers of different sounds and words are also computationally
expensive. The theory has been used to explore interactions
between words and phonemes [23,24], but it has not so far
been used to model the evolution of realistic vowel systems.

The model that we present builds on the ideas described
in the above models, but we aim for an analytical definition

which is simpler to simulate and analyze. Sound change in
language may be thought of as the diffusion of word pro-
nunciations in acoustic space, making Brownian (Langevin)
dynamics [32,33] the natural mathematical description of their
motion. We think of vowel systems as a “soup” of words or,
more technically, phonological frames. These frames interact
via the vowel sounds that they contain, and the interaction
forces may be seen either as a phenomenological model [34],
based on established qualitative models of sound change [35],
or as a simplified version of exemplar dynamics. Interactions
between frames are mediated by a cloud of utterances, in
our case formant clouds, but unlike exemplar theory, we do
not explicitly model this collection of sounds, only the mean
sound for each frame. This dramatically simplifies the model,
yielding one stochastic differential equation per frame, facil-
itating analytical calculations, and allowing the simulation of
a large number of words. Our formulation is analogous to
a physical model (frames form a charged colloid [36-39])
allowing us to clarify traditional qualitative descriptions of
change in terms of pushing and pulling. Its simplicity also
allows a number of extensions to describe a range of different
phenomena in one unified model. These include self-actuating
sound change [40—42], allophonic sound variations, the ef-
fect of nonlinearities in the relationship between articulatory
and acoustic parameters [11,43], and word-frequency effects
which have recently been observed in a purely computational
exemplar model [24].

II. A BRIEF INTRODUCTION TO PHONOLOGY

For the benefit of nonlinguists, we now review the relevant
elements of phonology: the branch of linguistics that deals
with systems of sounds.

A. Phonemes and allophones

Individual speech sounds are usefully viewed as existing
within phonological frames [24]. For instance, in English the
frame /m_p/, if it forms a single word, will accept one of
two sound categories, creating either (map) or (mop). Similar
variants appear in other words, with subtle variations depend-
ing on the frame. Because of these variations, a distinction
is made between the contrastive sound categories, phonemes,
and their context dependent versions, termed allophones. For
example, (pea), (spin), and (sip) all contain what English
speakers might call a p sound, but these three sounds are
all slightly different. The transcriptions of these words into
phonetic symbols, which represent specific sounds, are [p"i:],
[spm], and [sip']. The three p sounds here are, respectively,
aspirated (followed by a burst of breath), unaspirated, and
unreleased (meaning that there is no audible end to the tem-
porary occlusion of airflow needed to make the sound). These
three variants are allophones of the English phoneme /p/:

/p/ = {[P"]. [p]. [T} ()

Phonemes differ between languages: Thai speakers, for
example, consider [p"] and [p] to be manifestations of
distinct phonemes /p"/ and /p/, respectively. Allophones
may be grouped into phonemes by examining the sounds that
surround them (their phonological environment). Consider the
frame /kae_/ where /z/ is the vowel phoneme in the word
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(cat). Inserting any of the allophones of /p/ would produce an
utterance recognized by English speakers as the word (cap).
However, inserting the sound [b] produces an utterance with
a different meaning. We say that [b] is in contrastive distribu-
tion with [p]; if we switch the sounds in the frame, we change
the meaning. Allophones of the same phoneme are generally
not in contrastive distribution; they are (normally) in comple-
mentary distribution. This means that they are not found in
the same immediate phonological environment. For example,
[p'] can only occur in syllable-final consonant clusters and
[p"] only occurs either word-initially or at the beginning of a
stressed syllable. Therefore, they never contrast, and given a
phoneme we can predict which allophone will appear simply
by knowing what other sounds surround it. The definition of a
phoneme and its allophones applies identically to consonants
and vowels. For example, an English vowel phoneme is
/@&/, which occurs in (bad) and (bat). Here the allophone
in (bad) is longer, transcribed [®-]. Another characteristic
which distinguishes vowel allophones is nasalization as in
(ban)[b&'n].

Since the allophones of a phoneme typically exhibit quite
subtle variations, the term phoneme is often used as if it
referred to a single sound in the language. Doing so is no less
consistent than using allophone in the same way. In reality,
the units of sound uttered by speakers vary widely between
and within individuals. Both phonemes and allophones are
categories, with one being a subcategory of the other. We
will exploit this idea when we come to explore allophonic
variations in Sec. VIIL.

B. Vowel systems

As explained above, the first two formants, or equivalently
the position of the tongue, are the primary determiners of
vowel sounds, but other articulatory variations can be involved
as well. After height and backness, the next most common
is lip rounding [12]. There is, however, a strong cross-
linguistic correlation between rounding and backness (94.0%
of front vowels are unrounded, and 93.5% of back vowels
are rounded), making the parameter redundant in most cases.
Beyond lip rounding, many languages have separate series of
vowels, each distinguished by some additional characteristic
such as length (long vs short) or nasalization (nasalized vs
oral). Often the sounds in both series occupy the same posi-
tions in vowel space. For example, in Mazatec [44] there are
four oral vowels /i,e,a,0/ and four corresponding nasalized
versions /f, €, 4, 0/. In this case, we say that Mazatec has four
vowel qualities. This matching between series is the norm,
so we can ignore additional characteristics and still provide
a description of vowel systems which captures the essential
properties of their structure for most languages. This will
be our approach, until we consider allophonic variation in
Sec. VIL

III. MODEL

Our model may be derived based on general assumptions
about the language-learning process, and how this is affected
by the overcrowding of sounds in acoustic space. It may
also be derived as an approximation to an explicit model of
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FIG. 2. Early stage configuration of 100 particles (words) in a
chamber representing acoustic (F}, F>) vowel space. Range of attrac-
tive force o = 1, cloud radius o = 1, diffusion coefficient D = 0.1.
Blue arrows show attractive forces, red show repulsive.

language learning in which utterances are either accepted or
rejected as valid examples of a given sound. In this section we
provide the first, nonexplicit, derivation.

We view words as particles in acoustic space, with posi-
tions determined by the vowel sounds they contain. A cluster
of words then implies the existence of a frequently occurring
sound in a language. We propose short-range attractive and
long-range repulsive forces between words based on ideas
from linguistics about the interactions between phonemes
[13,17,45]. Before setting out the details, we describe how
such forces can lead to the formation of a vowel system.
Consider a large number of words distributed uniformly at
random throughout a chamber representing vowel space as
in Fig. 2. At first, particles near to each other will be drawn
together, forming loose clusters whose typical size will be
determined by the radius at which the attractive force be-
comes repulsive, as in Fig. 3. As time progresses, provided
the volatility of the random component of their motion is
not too large, these clusters will become tighter and more
separated due to long-range repulsive effects. Depending upon
the shape of the chamber, and the range of the short- and
long-range components of the interaction force, we will obtain
a number of different arrangements of particle clusters within
the system, each of which represents a different inventory of
sounds.

‘We now set out the details. For words with only one vowel,
their position is unambiguous, but words with two or more
vowels occupy multiple positions. We view such words as
generating one or more phonological frames, or environments,
for the vowels they contain. For example,

(hoodwink) — /h_dwigk/ 4+ /huvdw_gk/. 2

Each such frame now has a unique position in the acoustic
domain, determined by the sound which is placed in its gap.
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FIG. 3. Later stage configuration (f = 0.5) of 100 particles
(words) in a chamber representing acoustic (£, F>) vowel space.
Range of attractive force o = 1, cloud radius o = 1, diffusion co-
efficient D = 0.1.

For simplicity, we assume that two frames from the same word
interact in the same way as frames from different words.

We now consider a large group of speakers who are suf-
ficiently socially connected to pronounce the words of their
language in a roughly similar way. Acoustic experiments
show that vowel sounds are subject to variation. Peterson and
Barney [6] collected formant data for a group of 76 American
speakers pronouncing a series of 10 words which differed only
in their vowel, allowing F;/F, values to be collected for 10
vowels. Because these utterances vary between speakers, the
formant values form clouds in acoustic space. In Fig. 1 the
large colored dots show the centroids of each vowel phoneme
cloud. We have superimposed the standard IPA vowel quadri-
lateral [5] on the scatter plot, and we note that to a good
approximation the centroids sit in the chart positions assigned
by linguists over half a century earlier [46].

We let x;(¢) € R? be the population average vowel sound
uttered for frame i, and we refer to x;(¢) as the position of
this frame. Because utterances of the vowel sound in each
word form a cloud in acoustic space [6], the next utterance
to be heard from frame /i will be a random variable X;(z).
The speaker who produces this utterance must arrange her
vocal apparatus into an appropriate configuration to create the
desired sound. We denote by g the function which maps points
in articulatory space (mouth cavity shape, etc.) to points in
acoustic space as illustrated in Fig. 4. To generate the desired
sound, the speaker must have an intuitive knowledge of the
inverse mapping g~! so that given the target sound x she is
able to form her mouth parts into the appropriate configuration
y = g_1 (x). We assume, for now, that on average the articu-
latory states Y; used by the population to generate sounds X;
produce unbiased results in the sense that the average values
of outputs over all speakers and utterances are equal to the
frame position

E[g(Y:e)] = E[X;(1)] = x;(t). 3

Articulatory Space

Acoustic Space

A

F, (Hz)

Front Back
High

Q
Y
®

Low
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FIG. 4. The articulatory to acoustic map g. In order to utter a
target sound in acoustic space, a speaker must arrange her articula-
tory apparatus (tongue, lips, laryngeal structures, etc.) into the correct
position y. The uttered sound will be x = g(y).

We also assume that articulatory states used to generate x; are
normally distributed, having mean g’1 (x;). In this case, if the
map g is affine

x=g(y) =Ay +ec, @

where A € R?*2, then the utterances X; will also be normally
distributed, having density function

vi(x) =

1 Ty —1

T P ( S x) 27 (x xl)). 5)
Here, the covariance matrix X determines the shape of the
cloud of utterances [6,47]. In the spherical case we set X =
ol where I is the identity matrix, and o is the cloud radius.
Strictly speaking, we could have taken (5) as the definition
of the shape of the utterance cloud in acoustic space, without
needing to consider the map g. However, experiments show
that there are regions of acoustic space where g is not affine
[11] and, as we will see in Sec. VI, this affects both cloud
shape and system dynamics.

We define the state of the vowel system of our language
to be the set of all frame positions {x;(¢)}_,, where n is
the number of frames. Interactions between these frames are
generated by the language-learning process. When a speaker
learns how to pronounce the word which generated frame i,
not only will utterances of the word itself provide templates
for its vowel sound, but so will similar sounds in other words.
If two frames contain vowel sounds which can be used as
templates for one another, that is, speakers consider them to
contain the same sound, we write

Xi = X, (6)

T . .
where = denotes template equality. We write S; for the set of
frames whose vowel sounds act as templates for frame i,

S; = {j such that x; = x;}, O

where time dependence is implicit. In this paper we use
proximity in acoustic space to define template equality

T
X, =X; = [X; —Xj| <a, (8)

where o > 0 is the template range. The set of templates for
each frame will evolve over time, as frames change position.
The overall density of utterances which may be used as
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templates for learning the vowel sound in frame i is then
defined

Vix) 1= > (1 + wdij) f;1;(%), ©)

JESi

where f; is the relative frequency with which frame j is
uttered, and w > 0 (the self-focus) is the extra weight placed
on utterances of the frame as a template for its own vowel
sound. We call y;(x) the template density for frame i. When
we have a set of frames for which every frame is a template
for every other, then we call this set a phoneme. Given the
template density for a frame i we can compute the template
mean for that frame

o Jr vitoxdx

= RV 10
Jr: Yi(x)dx (10

1 -
= N g Yi(xX)x dx (1D
_ > jes, (1 +@dij)fix; (12)

Yies (I +awdipf

where N; is the normalizing constant for the template density.
The template mean X; is the mean value, weighted for self-
focus, of all the utterances from the frames which a language
learner uses when learning the sound in frame i. The linguistic
environment of each new learner will be different, and they
will inevitably introduce their own idiosyncrasies driven by
learning mistakes, the desire to emulate certain individuals,
and variations in their own physiology. However, on average
we have no reason to expect anything other than unbiased
variations around the template mean. Ignoring the effect of
frames which are not templates, we therefore expect new
speakers coming of age to use sounds which on average match
the template mean. As older speakers with more archaic forms
of speech die, the speech sounds of the population as a whole
will move in the direction of the template mean. This behavior
will induce an effective force on frame i which draws it toward
the mean of its templates

f;m = )’Zi —X;. (13)

This is the simplest choice of interparticle force consistent
with the above considerations, which are summarized visually
in Fig. 5.

We now consider repulsive interactions, which are induced
by disruptions to the learning process caused by frames which
are nearby in acoustic space, but not sufficiently near to be
templates. Given a frame i, the density of such antitemplate
frames is

Vi(x) = Y (%) (14)

JESi

We call {E,-(x) the antitemplate density. Sounds from antitem-
plates will interfere with language learners’ ability to recog-
nize nearby template sounds, making the template sounds less
likely to be copied [17,23,45]. To see how this might occur,
consider a language that contains two acoustically similar
vowel phonemes. Suppose that a language learner has noticed
that these two sounds play two different roles in the language.
We do not know how the developing mind achieves this but it

N

FIG. 5. The set of utterances for two different frames whose
vowels are part of the same phoneme. The template mean is the
average location of the frames, and since frames are attracted toward
their template mean, they are attracted to other frames in the same
phoneme.

is necessary in order to make sense of language. For example,
there are minimal pairs of words such as (pen)[pPen] and
(pan)[p"zen] which contrast only in a single vowel. Here, it
is essential to be able to distinguish /e/ from /ze/. When
learning how these two phonemes should sound, there will be
many occasions where words are uttered using a sound which,
from a purely acoustic perspective, is hard to categorize as
one or the other. Evidence for this is shown in Figs. 6 and 7
where, at least in American English, phonemes can be sepa-
rated by as little as one standard deviation of their acoustic
distribution. In this situation, an experienced speaker may be
able to use a word’s context, and the vowel’s phonological
environment, to efficiently identify what has been said. How-
ever, a younger speaker must build up this ability over time.
Until then, there will be cases where the meaning of a word
is ambiguous. Even if the word meaning is understood, the
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FIG. 6. Approximate distribution of F; values for female front
vowels, derived from Peterson and Barney vowel data [6]. Curves are
normal densities having means and standard deviations equal to those
of the first formants of female front vowels. Color coding matches
that in Fig. 1: blue i, orange 1, green ¢, red ee.
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FIG. 7. Approximate distribution of F; values for female back
vowels, derived from Peterson and Barney vowel data [6]. Curves are
normal densities having means and standard deviations equal to those
of the first formants of female back vowels. Color coding matches
Fig. 1: light green u, gray v, pink 9, purple a, brown a.

utterance may not be perceived as a legitimate pronunciation,
if its phonemes are too close to other recognizable sounds.
In both these cases the uttered sound is, we assume, less
likely to influence the language development of the speaker.
An argument similar to this is made by Labov [35] and is the
basis of exemplar theory [23,24,45]. The effect of rejecting or
otherwise reducing the importance of acoustically ambiguous
phonemes during the learning process will be to push the
sounds of the language away from regions of acoustic space
which are overcrowded with phonemes. This will induce an
effective repulsive force between frames that are not close
enough to be considered as templates of one another.

To arrive at a plausible form for the repulsive effect on
frame i from its antitemplate frames, consider a single frame
Jj ¢ Si. A simple measure of the extent to which j crowds i is
the ratio of the density of frame j utterances at x;, to the total
template and antitemplate frame density in the same location,
weighted for functional load, y € [0, 1]: the amount of work
that individual vowel phonemes do in distinguishing words
[48,49]

vfivi(xi)

Vi(xi) + y ¥i(xi)
As y — 0 sounds become irrelevant to word identification
and so the effect of overcrowding becomes negligible. The
effect of overcrowding by frame j will be proportional both
to this overcrowding ratio and to its distance away from i: if
more distant templates are rejected, the effect on the mean
of the templates which are accepted will be larger. The total

repulsive force on frame i consistent with these assumptions
is then

P Y N r k) —x;), (16
l Wi(Xi)—f-ylpi(xi)%ffw/(X)(X X;) (16)

s)

and the total force on frame i is f; = £ + ;. To summarize:
In the absence of phonemic overcrowding, the mean acoustic
position of all the utterances of a frame made by new learners
is equal to the mean position of all the templates for that

frame. These include the frame itself, and other frames con-
taining sufficiently similar sounds. Phonemic overcrowding,
realized as the close proximity of antitemplates, causes the
rejection of templates in overcrowded regions, creating a bias
away from these regions. Attraction toward the template mean
generates a short-range attractive force between frames, and
bias away from overcrowded regions generates a long-range
repulsive force. The template range o determines the radius
of the attractive region around a frame. Outside this radius,
the strength and range of repulsive interframe forces are
controlled, respectively, by the functional load y and by the
cloud radius o.

The interactions defined by (13) and (16) are not symmetric
or additive. More common frames exert a greater influence
on their surroundings, and the effect of one frame on another
depends on its relative rather than absolute density. Because
each language learner in the community will be exposed to
a different set of utterances, and different speakers may learn
differently from what they hear, the evolution of frame po-
sition will not be deterministic. We capture this stochasticity
in speaker behavior as a diffusion process with coefficient D,
having a deterministic drift component given by the attractive
and repulsive forces (13) and (16):

dx;(t) = f:dt + ~2DdW,. (17)

Here, W, is a two-dimensional Brownian motion [32]. We
emphasize that this equation describes the evolution of the
expected utterance x; = E[X|] for frame i, that is, the behavior
of the community as a whole. This It stochastic differential
equation (SDE) is equivalent to inertia-free Langevin dynam-
ics [33]. The initial conditions of Eq. (17) depend on the prob-
lem we are interested in, but typically we will randomize the
initial locations of frames within a bounded region represent-
ing the set of vowel sounds acoustically accessible to humans.

IV. DERIVATION AS AN EXEMPLAR MODEL

Our model (17) is phenomenological in the sense that it is
motivated by empirical observation and theories of language
learning, without being directly derived from an explicit
model of this process. We now derive it as an approximate
exemplar model, partly in order to connect it with recent
theory (exemplar dynamics [22-24]) but also because it is
useful (for Secs. VI and VIII and for future work) to have
an explicit model of language learners accepting and rejecting
templates. Exemplar dynamics in its purest form is an explicit
computational model of a large population of sound units
(exemplars) in the memories of speakers. Typically, these
sounds are characterized by a single acoustic variable [23,24].
Exemplars for us are a subset of the utterances {X;}_, (those
which are not rejected by learners). Excepting the means
{x;}’_,, the distributions of the utterances X; are specified ex-
ogenous to the model. This simplification allows the dynamics
of our language to be specified as a set of SDE:s.

If an utterance X(r) € §; influences how a young speaker
learns the vowel sound x;(¢), in frame i then it is an exemplar
of that sound. Suppose that a template of frame i is uttered as
sound x and p;(x) is the probability that this sound is accepted
as an exemplar of the frame. The exemplar mean for frame i
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Phoneme A, .s="=""=u., sserrtttsea,, Phoneme B
o ® 04 o KN

Rejected Template

FIG. 8. The set of utterances for two different phonemes, each
consisting of at least one frame. When two phonemes are near to
each other in acoustic space, utterances of one may sound like the
other increasing the likelihood that these utterances will be not be
accepted as valid templates by language learners. Such utterances
are represented as open circles in the above diagram.

is then the expected value of its exemplars

. J¥ipix)xdx
[ i(x)pi(x)dx
We may approximate the exemplar mean by expanding p;(x)
to first order about the template mean. The template density (a
superposition of Gaussian densities having overall mean X;) is
approximated as a Gaussian with mean X; [so Vi;(X;) = 0]
and covariance c¢; >. We have

S UOXIpi&) + (x — %) - VpiRi)ldx

(18)

PN - - - (19)
JUX)lpiR:) + (x — &) - Vpi(Xi)]ldx
_ PRONR+ ([ 100X ® (= R)dX)VpiR)
piRON; + ([ ¥i(x)(x — ,)dx) - Vpi(R;)
oL U P0x ® (x = £)dX)V pi(Ri)
—h NopiR) @D
P CiEVpi(xi)’ 22)

pi(X;)

where ® is the outer product. This relation links the exemplar
mean to the template mean via the acceptance probability.
The number ¢; > 1 is the ratio of the width of the template
density to the width of the densities of individual frames.
Assuming that frame clusters are tight compared to cloud
size, then ¢; ~ 1.

We now explicitly define the acceptance probability based
on an overcrowding argument similar to that used in Sec. III.
Consider frame i, located at x;, and also another point X in
vowel space. If x is not too far from x;, and a large fraction
of the sounds at x come from templates of i, then these
templates are unlikely to be confused with antitemplates of
i near x. However, if location x is overcrowded with nearby
antitemplates, then rejection becomes likely (see Fig. 8). The
simplest choice consistent with these considerations is to let
pi(x) be the relative density of i templates at x, corrected for
functional load

@(X)llx—x;kk

Vi(X) + y ¥i(x)

pi(x) =

where R > 0 is a cutoff radius beyond which sounds are
rejected outright. In the absence of functional load (y = 0),
pi(X) = 1jx_x,<r, SO vowel sounds are rejected only when
excessively distant from the current frame position, without
reference to the crowding effects of other phonemes. Using
(23) we have

TVpi&) | —y RISV (Fi&) + ¥ ¥ (%)

~ = — ~— — 24)
pi%) (i (%) + y i (%:))? Yi(X:)

_ EVA%(?A@Z i 25)
Y W% + vi(%)

— oy LRV 26)
o VTR + i)

-y f.izzi(’ij - ﬁizl/fj(fii) o7
o VTR + ¥R

_ Z FiviED&i — x;) (28)

1 (%) 4 U (R
Sy ) + %)
yielding the following expression for the exemplar mean:

. fiviE)E& — x;)
i~ X+ = ~ . 29
R A P AR ATy &

If acoustic differences between the mean vowel sounds of
frames within one phoneme greatly exceed the difference
between phonemes, or the cloud radius, then we can
approximate the template means in the summand of (29)
with x;. In this case we have

(30)

Xi—X; AR —X; + Z fi:h;]\(Xl)(Xl ~X'])
s VT Vi) + i(xi)
="+ 7, @31
where £ and f; are the phenomenological forces defined
in Sec. III. If we consider a single frame, and assume that on
average young speakers match the mean of the sounds they
accept as exemplars for this frame, then the community’s
speech will evolve toward that mean. The simplest force
consistent with this assumption is f; = X; — x;, and we will
show below that this force may be derived from a simple
agent-based model. The above calculations showed that
in the exemplar acceptance/rejection picture, this force
decomposes into short-range attractive and long-range
repulsive components given by (13) and (16).

To derive the SDE (17), we consider a community of N
speakers whose evolution is driven by the replacement of
older speakers by new speakers who learn from the commu-
nity. We divide time into intervals of length §t = N~'. Ateach
interval, a speaker is selected uniformly at random from the
population, “retired,” and replaced with a new speaker whose
language state is a random variable with expectation equal to
the exemplar mean. We can write this new state X; + €; where
€ = sZ;, with Z; ~ N(0,I), is a random variable which
captures the stochasticity injected by the new speaker, perhaps
by their own free will, physiological differences, or selective
copying of certain individuals. This produces speakers who
live for a geometrically distributed number of time intervals,
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with mean N, giving an average lifespan of one time unit. To
calculate the state of the community after a replacement, we
first write the state of the speaker who is removed as

X?ead =X; + d;, (32)

where §; is a zero-mean random variable with approximately
the same statistical properties as €;. After a replacement the
new frame position will be

Xi(1)+ €

X(_iead (I)
! 33
N TN (33)

)Xz’(l) + ]lv[ii(l‘) +e—681 (34

x;(t +6t) = x;(t) —

_(N-1
U N
Defining §x;(t) = x;(¢t + §t) — x;(t), we have

22
8% = (% = X001 + \| - Z,/br. (35)

In this simple model, stochasticity in the population as a
whole is smaller in larger populations. However, an implicit
assumption of the model is that new speakers are exposed to
the whole community because their linguistic state depends
on the exemplar mean. N is therefore not realistically equal
to the number of speakers of an entire language because there
are likely to be many smaller communities with dialects. It is
possible to extend the above model to account for geographi-
cally or socially separated groups, but this is beyond the scope
of this paper. Letting W; € R? be a standard two-dimensional
Brownian motion then we have

VSZ Wit + 8t) — Wi(r) := §W,, (36)

where £ denotes equality in distribution. We may therefore
write our discrete SDE (35) as

_ 252
8x; = (X; — x;)0t + W(SW, (37)

= (fj?ltt + f;ep)(St + +/2D5SW;, (38)
where
2
K
D= —. 39
N (39

From this we see that our phenomenological equation (17) is
the continuous time equivalent of (38).

Figure O illustrates the difference between the exem-
plar model and its approximate form [the phenomenological
model (17)]. In Fig. 9 we compare the shift in the exemplar
mean calculated exactly using the acceptance probability (23),
and the approximate shift calculated by expanding p;(x) to
first order about %;. We have considered two phonemes each
composed of a set of colocated frames, and set the template
range to o = 0T, so we only see the repulsive component
of the interaction. As expected, the approximation converges
to the exact result as the phoneme separation tends to zero.
For larger separations the approximate shift falls away more
quickly, creating a shorter-range repulsive interaction. This
difference in range appears because in (17) we are measuring
interference effects on frame i using the relative density of
antitemplates at the location of i, rather than in the outer
reaches of its cloud, so antitemplate frames must be closer

Shift in exemplar mean

0 1 2 3 4 5 6
Phoneme Proximity

FIG. 9. Shiftin the exemplar mean away from the frame position
X; — x; for one phoneme (modeled by unit variance Gaussian) in-
duced by another identically sized phoneme. Red: exact calculation
using acceptance probability (23) when o0 =1, y =0.5, R=3.
Black: approximation with the same parameter values (30). Blue:
approximation with larger clouds o = 1.5 and lower functional load
y =0.3.

to have an effect. By increasing the cloud radius relative to
the exemplar model, and lowering the functional load, we can
achieve a similar interaction force in both models. The two
forms of the model are alternative but qualitatively similar
ways of characterizing how phoneme overcrowding affects
vowel sound evolution, based on the same underlying ideas.
We work with the approximate model because of its simpler
form which is efficient to simulate and to analyze mathemat-
ically. However, we take account of the effects above when
selecting the cloud radius.

V. COMPARISON TO REAL SYSTEMS

We now explore the behavior of our model by simulation,
and compare to real systems. The range of possible vowel
sounds is constrained by the limits of the human vocal ap-
paratus. In Sec. VA we define the shape and dimensions
of this accessible space, and specify boundary conditions.
In Sec. VB we use a large cross-linguistic sound inventory
database to explore how the vowel sounds of real languages
are distributed in this space. In Sec. VC we explore the
distributions generated by our model, and compare them to
the statistics of empirical distributions.

A. Defining vowel space

Although the traditional vowel chart is a wide-based
trapezium, average formant values for vowel sounds suggest
that the accessible region in (Fj, F>) space is closer to trian-
gular in shape, with /a/ forming the lowest apex. Figure 10
shows the mean formants of the peripheral (outermost) vow-
els of Northern Standard Dutch. In this particular language
/o/ and /o/ are very close, suggesting that the difference
between them is captured by something other than their first
two formants. In many other languages /o/ and /o/ are not
close, for example, in American English AF; = 226 Hz [50].
This highlights the fact that the meanings of the phonetic
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1550 Hz
294 Hzt i 1
e o
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a
921 Hzt a .
2524 Hz, Fo 1572 Hy 918 Hz

FIG. 10. Average formant values of the peripheral vowels
i,e,e,a,a,0,0,u for female speakers of Northern Standard Dutch [51].
Marked formant frequencies give the positions of the extreme vowels
/i,a,u/. Orange region shows the typical frequency range F, €
[1400, 1700] for the second subglottal resonance in female speakers
[4] (see Sec. VI).

vowel symbols are not precisely defined in terms of any
measurable quantity. Rather, they are a tool for describing the
general structure of the phonemic systems of languages. The
approximate correspondence between typical formant values
and the traditional IPA vowel chart is all the more remarkable
for this. A particularly notable discrepancy is the relative
heights of /a/ and /a/, which are identical in the standard
IPA vowel chart but in reality appear to differ in their first
formant.

Motivated by the above considerations, and to avoid in-
troducing unjustified complexity into the model, we opt for
a symmetric trapezoidal (approximately triangular) space, as
is used to tabulate differences between vowel systems in
large inventories [12,52]. Figure 11 illustrates this and also
shows representative positions for the nine most common

FIG. 11. Symmetric trapezoidal vowel space used in our model,
together with the IPA symbols and approximate positions of the
nine most common short vowels (see Table I). Orange region is the
periphery of vowel space, purple is the interior. Speakers of English
may be surprised by the absence of low back vowels /a/ (7%) or
/o/ (4%) which appear in words like (pot). These are rather rare
worldwide.

TABLE 1. The nine most common short vowels and their long
versions. Frequency column shows the percentage of languages in
the PHOIBLE database [53] which contains each vowel. Frequencies
(and IPA symbols) of long forms are in brackets. GenAM and RP
stand for “general American” and “received pronunciation.”

IPA symbol Example word Frequency
i(ir) GenAm USA: (bee)[bi:] 92% (32%)
u () GenAm USA: (shoe)[[u:] 88% (29%)
a (ax) RP UK: (now)[nau] 86% (30%)
e (ex) RP UK: (bay)[bei] 61% (21%)
o (o1) GenAm USA: (go)[gou] 60% (21%)
e (e1) GenAm USA: (bet)[bet] 37% (11%)
o (o) RP UK: (bore)[bos] 35% (10%)
o (1) RP UK: (bear)[bes] 22% (4%)
i (i) S. African Eng: (lip)[lip] 16% (1%)

short vowels [53], whose relative frequencies, together with
example words, are given in Table 1. The locations in Fig. 11
have been chosen to lie approximately at the centers of the
regions of vowel space used in the simplified classification
scheme which we describe in Secs. V B and V C. They should
not be interpreted as empirically measured average formant
positions, although the typical formant values of these vowels
will have a similar arrangement to that shown in Fig. 11.
Letting the bottom left vertex of vowel space define the origin
of coordinates, then the locations are

B kW
x=3 + e (40)
H kH
Y=g+t (4D
with k€ {0, 1,2,3}, with interior vowels /o, i/ at

(B/2,5H/8) and (B/2, 7TH/8).

In our model, repulsion between phonemes occurs as a re-
sult of cloud overlap, rather than from any notion of contrast.
We therefore use formant cloud shapes to estimate the dimen-
sions of our trapezium. It is clear both from Fig. 1 and for-
mant inventories for different languages [47] that clusters of
formant data representing different phonemes within a single
language, and the same phoneme across different languages,
vary in size and shape. We characterize shape and position
as follows. Given a large formant data set {Fy;, Fg,-}?’: 1> We
let S(X) denote the set of formants which were uttered for
phoneme X. We define the F; mean and radius (standard
deviation) of phoneme X to be

1

X)= —— Fii, 42

m1(X) SO0)] . 1 (42)
1

X)= | —— F2| - u2x 43

a0 = | 5 ,-es% 2 - i) (43)

with similar expressions for the F, mean and radius. Be-
cause of vocal tract size, average formant values for male
and female speakers differ systematically. This elongates
formant clouds at the population level. Since listeners sub-
consciously normalize for such differences [25], we consider
only one sex: female. In Fig. 6 the F; radius of phoneme
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clusters increases (approximately linearly) with increasing
Fi. If 01(X) = 02(X), we say that X is spherical. Provided
phonemes which are close enough to interact experience
approximately the same systematic shape variation with po-
sition in formant space, then a transformation of this space
which makes all phonemes spherical will have little effect
on their overlaps. This assumption means we can model all
frame clouds as spherical with the same cloud radius in this
transformed space.

When frame and phoneme clouds are spherical, vowel
arrangements which are near equilibrium with respect to
repulsive forces are strongly affected by the aspect ratio of
the transformed vowel space

. Max width

AR = - (44)
Height

We may estimate this ratio using the formant data in Fig. 1.
We define a standardized distance between the high vowels
/i/ and /u/, which is approximately the same in both formant
and transformed space

p2(a) — pa(i)

A(ui) = - (45)
1891

= 7 46

227 (46)

~ 8.3, 47)

where &, is the average radius of u and i. A similar calculation
for front vowels gives

_ mi(ee) — (i)

A(ae,1) Py (43)
_ 280 (49)

93
~ 6.2, (50)

where 6, is the average radius of the front vowels /i, 1, €/,
and /ae/. Since /a&/ is not the lowest vowel, but lies between
/a/ and /e/, the true standardized height of vowel space
is greater than this. According to the standard vowel chart
/&/ lies midway between /a/ and /e/ so we approximate
A(a,u) = 6A(ae,u)/5. Using our two standardized distances
we can estimate the aspect ratio
A(u,i) 83 8
R —=—=_-. ShH
Aa,i) 74 7
We take H = 7 and B + 2W = 8 so that a unit phoneme cloud
radius would be consistent with the Fig. 1 data. We set B = 1
to accommodate the lowest vowel, giving the vowel space
dimensions shown in Fig. 11 which we use for all simulations.
Because the phenomenological model generates shortened
interaction range we set the frame cloud radius to be o = 1.5
in simulations, which generates interactions of comparable
range to the exemplar version with unit radius (see Fig. 9). We
model the effect of vowel space boundaries using a repulsive
force perpendicular to each boundary, of magnitude

£ | = 5[1 + tanh <M>} (52)
2 w

TABLE II. The nine vowel categories used in our analysis.
“Frequency of representation” is the percentage of surveys in the
PHOIBLE repository [53] containing the category representative
(after stripping modifications). “Frequency of category” is the per-
centage of surveys containing at least one category member. Cate-
gories’ members were selected based on their typical formant value
proximity to the category representative.

Category Freq. Category Members Frequ.
repr. of repr. description of cat. of cat.
i 96.1% Hight front iLy,y 99.4%
u 92.4% High back u,u 99.0%
a 91.4% Low a,a,®e,e,E 94.5%
e 74.2% Upper mid front e,0 74.8%
o 74.1% Upper mid back o 74.1%
€ 39.0% Lower mid front €,E 40.7%
o) 37.5% Lower mid back 2,A,D 40.1%
E} 23.9% Central 9,¥,9,3,3 29.1%
i 17.4% High mid i,u1,4,0 26.9%

where |Ax| is the distance from the boundary, E is the
maximum magnitude, and w is the width of the boundary. We
set E = 10, w = 0.2 in all simulations.

B. Properties of real vowel systems

Our sources of statistical information on vowel system
properties are PHOIBLE [53], an online repository of phono-
logical inventory data (containing 2186 languages); Mad-
dieson’s “Patterns of Sounds” [12], based on a representative
sample of the world’s languages, contained in the UCLA
Phonological Segment Database (UPSID), and Crothers’
vowel system typology [52], which sought to find a simplified
classification of vowel systems.

Both Crothers and Maddieson use the idea of vowel qual-
ity, allowing them to identify sets of similar sounds as equiv-
alent. We mimic this approach by identifying every vowel
sound as a member of one of nine categories, each represented
by one of the most common sounds shown in Fig. 11. All
of the most common systems with fewer than 10 vowels
identified by Crothers also used only these nine sounds [52].
The phonetic alphabet is equipped with an extensive notation
for recording subtle modifications of the 28 symbols on the
standard IPA vowel chart. For example, surveys recorded
in the PHOIBLE repository together contain 1094 symbols
representing vowels. We first removed all modifying marks
(producing 28 symbols) then used the mapping in Table II
to assign category membership. For example, /ee:/ is first
stripped of its length mark, and then assigned to the category
/a/. Our category assignment was based on estimated overlap
in formant space, using typical formant values for the 28 TPA
vowels. The frequencies in Table II also illustrate the percent-
age representation of each category amongst the surveys in
the PHOIBLE repository. It is interesting to note the very high
degree of front-back symmetry in these representations, which
is reflected in our choice of system geometry.

Our categorization scheme generates a typology: a classifi-
cation of the world’s languages into groups according (in this
case) to the structure of their vowel system. Of the 2° = 512
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FIG. 12. The 15 most common vowel system types following
categorization of PHOIBLE repository vowel data. Percentages give
frequency amongst 3020 surveys, and integers give system size.

possible system types in our scheme, only 106 are attested
out of 3020 surveys (note: the number of surveys exceeds
the number of languages due to dialectal variation [54]). This
suggests that the dynamical processes which generate vowel
systems are attracted to certain equilibria, and that many pos-
sible types are inherently unstable or unattractive to speakers.
Figure 12 shows the 15 most common vowel systems in the
world’s languages, accounting for over 80% of the surveys.
Eleven have perfect front-back symmetry, and of the four
that don’t, two form a symmetrical pair. Similar results were
obtained by Crothers [52], with eight of the eleven most
common systems in his typology being symmetric.

The relative frequency of different system sizes (cardinal-
ities) has also been of interest to linguists [12,14,52]. Ac-
cording to both Crothers and Maddieson, five vowel systems
are more common than any other, with /a,e,i,o,u/ the most
common of all. Our typology reproduces this result. However,
there is no unique solution to the problem of determining
the relative frequencies of different vowel system sizes. Hu-
man societies in their “natural” preindustrial state have low
geographical connectivity, supporting many closely related
languages and dialects in relatively small areas. A nation state
destroys this variation, replacing it with a national language.
Regions such as Papua New Guinea, Central and West Africa,
and Australia therefore contribute a disproportionately high

TABLE III. Percentage of languages by their vowel system sizes
(number of qualities) estimated by Maddieson [12], Crothers [52],
and using our typology, based on PHOIBLE [53].

Num. vowels Maddieson Crothers PHOIBLE
2 0.2%
3 5.4% 11.1% 10.3%
4 8.5% 10.6% 6.8%
5 30.9% 30.8% 22.7%
6 18.9% 19.2% 16.5%
7 14.8% 13.5% 16.8%
8 5.4% 4.3% 7.5%
9 7.9% 7.2% 8.5%
10,11, ... 8.1% 3.4% 10.6%

number of languages. This problem is typically addressed by
sampling uniformly from language family groups [12] and
from geographical areas [52]. Ambiguities can also result
from the need to define vowel quality. Despite this, in Table III
we see that our results (all PHOIBLE surveys with no ad-
justments for language size or family) are in broad agreement
with those of Maddieson and Crothers.

The final statistical property that we consider is correlation
between different sounds (two-point functions, in statistical
mechanics). Given a category X, we define the indicator
function that it is present in survey £:

1 ifX e,
0 ifX ¢¢.

The indicator is a binary variable, and the correlation between
two categories is

Sx(£) = { (33)

by = (SxSy) — (Sx){Sy) (54)

JUsH) = 502 (53) — 15102)

where (-) denotes the average over all surveys. In statistics
this correlation is called the phi coefficient, but it is also equal
to the Pearson correlation coefficient. Table IV shows these
correlations calculated from PHOIBLE, as well as simulated
values. The strongest correlations are between front and back
vowels of the same height: that is, if we have one of a
front-back pair at given height, then we are likely to have the

TABLE IV. The 10 largest correlation (¢) coefficients between
categories in the PHOIBLE database and the model. Starred pairs
appear in both lists. Model parameters ¢ = 1.5, ¥y =0.5, D=
0.025, n = 150.

Rank Pair ¢ (PHOIBLE) Pair ¢ (Model)
1 0, € 0.74 i, 0 0.47
2 *e, 0 0.71 i, e 0.42
3 i, u 0.28 * €, 0 0.32
4 *9, 1 0.19 *9, € 0.32
5 9,0 0.18 e, 0 0.29
6 *9, € 0.15 *€, 0 0.23
7 9, € 0.15 €, i 0.23
8 u, 2 0.15 a, e 0.20
9 *9, O 0.15 * 0, O 0.16
10 *0, € 0.15 *0, i 0.15
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FIG. 13. Red dots show positions of standard vowels used for
classification. Each colored dot shows the position of a single
phoneme obtained by mean shift cluster analysis of quasistable
state of n = 150 frame system. Parameter values: D = 0.025, ¢ =
1.5, y =05, «a =1. Plot superimposes 20 different simulated
vowel systems.

other. After these, there are weaker correlations between the
mid central category and its surroundings, and in particular
between the high and mid central categories i and o. We will
discuss the significance of this relationship in Sec. VL.

C. Model behavior and cross-linguistic comparison

To investigate the behavior of our model, and compare
to real systems, we generate frame distributions beginning
from randomized starting configurations where frames form
a constant intensity Poisson point process [55] within vowel
space. We then run the model for sufficient time (25 lifetimes)
for a set of phoneme clusters to form, and to settle into a
quasistationary state. Stabilization consists of frame move-
ment in response to repulsive interactions, and occasional
mergers between phonemes. More rarely, we see splitting
events, where groups of frames spontaneously break away
from a phoneme. When only one or two frames break away,
we call this evaporation. In order to determine what vowel
qualities our model has produced, we perform a mean shift
clustering [56] of the locations of frames once a stable state
is reached. The mean shift algorithm locates the peaks of
a kernel density estimate [57] of the distribution of frames
within vowel space. Peaks of this density represent the centers
of phonemic clusters. Having identified the locations of our
phonemes, we then assign each to one of our nine categories
(Table II) by proximity to the positions of their representative
sounds, shown in Fig. 11. In some cases we find that two
simulated peaks are assigned to the same quality: we interpret
this as a primitive form of allophonic variation, and count both
peaks as a single phoneme. Figure 13 shows a superposition
of the phoneme locations computed by this process. There
are dense clusters of phonemes at the vertices of the space,
corresponding to the three most common vowel qualities
/a/, /i/, /u/. We also see clusters at the peripheries of vowel

space aligned with the boundaries, corresponding to the front,
back, and high central vowels. We note that these locations are
averaged both over the frames within each phoneme, and over
the cloud of formant values for each frame. For this reason we
would expect individual experimental formant measurements
to be much more dispersed in acoustic space than the clusters
in Fig. 13. Whether the mean formant values of the phonemes
of real languages line up along vowel space boundaries to
the extent seen in Fig. 13 is a difficult question to answer
empirically. While cross-linguistic formant data sets do exist
[43], the number of speakers involved in each individual study
is typically small (less than 10). For this reason, the average
formant values are subject to substantial noise. We also note
that the shape of vowel space (the acoustically accessible
region) will be different for each speaker, so the distance of
an individual’s peripheral vowels to the boundary of their own
vowel space may vary between speakers. In this work we
have represented vowel space boundaries using short-range
repulsion, consistent with the earlier maximal contrast models
[13], but we note that at least one recent (one-dimensional)
exemplar model [23] allows for a system-wide bias toward
less extreme sounds, known as lenition.

The parameter with greatest influence on how many vowels
form is the template range or. We can obtain an approximate
lower bound on this parameter by considering the threshold
for (first) formant frequency discrimination in normal speech,
which is AF; ~ 50+ 10 (Hz) [58], where F; € [235, 850]
[59]. In standardized coordinates (dividing by &), this cor-
responds to a template range o, ~ 0.5. It is likely that the
acoustic proximity that defines two sounds as equivalent will
vary between languages because phoneme clouds and their
separations vary between languages [47]. Evidence for this
is provided by vowel-to-vowel coarticulation [60] where the
articulatory requirements (configuration of the vocal articu-
lators) for a phoneme are anticipated during the production
of a previous phoneme. Such interactions between phonemes
at different positions in a word lead to greater variability in
how the same phoneme is pronounced in different words.
For example, in [60], utterances of the form /apV/ where
V is a vowel which gives the context of /a/ were analyzed
to discover the extent to which the choice of V altered the
average formants of /a/ in three Bantu languages: Nde-
bele, Shona, and Sotho. Whereas /a/ is relatively isolated
in the vowel systems of Ndebele and Shona (/i,e,a,0,u/),
it is relatively crowded in Sotho (/i,e,s,a,0,0,u/). Formant
experiments showed that coarticulatory effects on /a/ were
considerably greater in Ndebele and Shona than in Sotho.
That is, a greater range of sounds were used as if they were
the same phoneme in the languages with fewer vowels. In
our model, such languages would have a greater template
range. Additional factors used for contrast beyond the first
two formants may also make precision in these formants less
important, thereby altering . We explored this effect (Fig. 14)
by generating the mean number of phonemes for a series of
template ranges. From this we see that our estimate for o,
is consistent with the observation that very few (3%) of all
languages have more than nine vowel qualities [52].

At high template range we find that most systems have
only three vowels, typically /i/, /a/, /u/, consistent with
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FIG. 14. Average number of spontaneously formed phonemes vs
template range, for a system of n = 150 frames. Parameter values:
D =0.025, 0 =1.5, y =0.5. Dots show underlying data with
darker shading indicating repeated data points.

observed systems. Almost no real languages have fewer than
three vowel qualities (Table III).

From Fig. 14 we see that with a template range in the inter-
val 1 <« < 1.5 we obtain vowel system sizes in the range
{3, ..., 8}, capturing ~84% of the size variability across
world languages [12]. However, « is defined exogenous to
the model, and we do not have means to estimate its distri-
bution, other than by comparison to the distribution of vowel
system sizes. In order to compare the relative frequencies
with which different vowel phonemes appear in our model
to their frequencies in real languages, we use Maddieson’s
data in Table IIT and [12]. We tabulate all 120 simulated
vowel systems used to create Fig. 14, and then compute the
empirical probability mass function over the nine vowels for
each size of system. We can then compute relative vowel
frequencies over all system sizes as an average over our
fixed-size mass functions, weighted by the frequencies of each
mass function in the world’s languages. The results are given
in Table V. The predictions of the model typically lie within
~10% of the observed values except for the high and central
vowels /i/ and /o/. As with other dispersion theories, our

TABLE V. Predictions (compared to data from Table II) for
the frequencies of the nine most common vowel qualities, with
and without quantal effects. Simulation parameters: n = 150, ¢ =
1.5, y = 0.5, D =0.025. In the quantal case we have parameters
0=2, w,=2, o,=1.

Category Obs. Freq. Pred. Freq. Quantal pred.
i 99% 98% 93%
u 99% 97% 93%
a 94% 94% 87%
e 75% 64% 67%
) 74% 56% 68%
€ 41% 36% 39%
5 40% 44% 36%
) 29% 11% 1%
i 27% 64% 36%

TABLE VI. The most common vowel systems of each size
in PHOIBLE [53], Crothers [52], and the model. Frequency (%)
columns show the percentage of vowel systems of the given size
which have the given form. Simulation parameters: n = 150, o =
1.5, y =0.5, D =0.025.

No. Rank PHOIBLE % Crothers % Model %

a,i,u 93 a,i,u 100 a,i,u 62
a,i,o 2 g,i,u 17
a,e,o 2 2,i,u 12
a,e,i,u 28 a,e,iu 59 a,e,i,u 24
a,e,i,o 17 a,i,u,i 41 a,0,i,u 24
a,i,o,u 16 a,e,iu 16
aeiou 67 a,e,i,0,u 86 a,giou 28
a,e,i,ou 13 a,€,1,0,1 8 aejiou 17

a,i,ou,i 13
a,e,i,o,u,i 55
a,eioui 20
a,e,i,ou,i 18

a,e,i,o,u,0,i 41
a,e,i,o,u,e,i 36
a,g,i,ou,0,k 8

a,e,i,0,u 4
a,e,i,ou,i 31
a,e,i,o,u,o 27
a,e,i,o,u,0 12

a,e,i,o,u,e,0 64
a,e,i,o,u,0,t 15
a,e,i,0,0,0 4

a,e,i,n,u,i 73
ejouen 18

a,e,i,o,u,0,i 50
a,e,i,o,u,e0 46

NN UMb BB WWW
W= WK = W= W= W=

model predicts that a high central vowel should appear with
high probability, when in real languages it is rather rare. A
possible explanation for this rarity is the existence of a natural
resonance in the human vocal tract which occurs between the
front and back of vowel space, creating a discontinuity in
the relationship between articulatory and acoustic parameters
[11,43,61]. We return to this point in Sec. VI. The fact that
interior vowels, represented by /o/ in our typology, are rare
in our model may be understood by noting that their existence
relies on a balance of repulsive forces from other sounds at
the boundaries of vowel space. If stochastic effects cause two
of these peripheral sounds to merge, then this can destabi-
lize the central vowel, which moves out to the boundary to
fill the gap. The reverse of this mechanism is a split in a
peripheral vowel, creating an overcrowded boundary, forcing
a phoneme into the interior. Unlike mergers, splits typically
require some mechanism beyond the simple learning model
we have defined, such as the conversion of two allophones into
distinct phonemes, or borrowing of sounds from some exterior
source like another language or dialect [35]. An extension to
the model which allows allophonic variation is discussed in
Sec. VII. As mentioned in Sec. IV, the model can also be
extended to allow for interacting communities, or linguistic
systems, but this is beyond the scope of this paper.

Table VI shows that apart from small height variations
in the mid vowels /e, ¢/ and /o, o/, our model, the data
from PHOIBLE, and the Crothers study agree on the most
common vowel systems. As we noted earlier, these height
variations are subject to the interpretation of individual lin-
guists, and should not be thought of as corresponding to a
precisely defined formant interval. In less common systems
there is more disagreement between the three typologies. In
particular, the seven and eight vowel systems generated by
the model are unrealistically likely to possess a high central
vowel. We conclude that while the model matches the broad
characteristics of real systems, there are details which it fails
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FIG. 15. Phoneme locations for 10 simulations of n = 150 us-
ing low functional load (y = 0.1). Other parameter values: o =
1.5, =125, D=0.05. Each set of symbols represent the
phonemes from a single simulation.

to match. At the same time, the question of which typology is
correct may not have an answer.

We now consider the effect of functional load. The func-
tional load hypothesis, first proposed by Gilliéron [48,62],
maintains that the probability of phoneme loss is inversely
related to the amount of “work” done by the phoneme in
identifying words. One simple measure of this work is the
number of minimal pairs that a phoneme distinguishes, and
a recent cross-linguistic corpus study [48] has shown that
phonemes which define more minimal pairs are less likely
to merge. In our model, phoneme merger can occur if the
peripheries of two clusters are closer than the template range.
Peripheral frames from the two clusters are attracted, pulling
the clusters progressively closer. Merger is more likely if
interphoneme forces are weaker, and from the definition of
the repulsive force (16), we see that reducing functional load
y weakens them (see Fig. 15). Since vowel system forma-
tion consists of sequential cluster merging (and splitting),
we expect low functional load to result in smaller phoneme
inventories. Figure 16 shows the strength of this effect in our
model for two levels of stochastic noise D € {0.025, 0.05}.
We find that the effects on system size (and therefore merger
probability) are systematic but weak. With lower noise, the
extremes of functional load produce an average difference of
one phoneme, and for higher noise the difference is larger, but
seen only at very low functional load where weak repulsive
forces between phonemes allow some new systems to form
(Fig. 15). For example, we have three different four vowel
systems containing a mid central vowel, matching the 14th
most common system in PHOIBLE (Fig. 12). We also see that
doubling the stochastic diffusion D has a subtle but systematic
effect on system size. Stochastic effects are required to bring
two phonemes within merger range, so higher diffusivity
results in more mergers, and therefore smaller systems.

8.
877
261 —
o /
e
Q_5.
€
>
= 4-

3.

0.2 0.4 0.6 0.8 1.0
%

FIG. 16. Average number of spontaneously formed phonemes vs
functional load, for a system of n = 150 frames. Parameter values:
o = 1.5, @ = 1.25. Blue curve D = 0.025. Orange curve D = 0.05.

VI. EFFECT OF THE SUBGLOTTAL RESONANCE

Our model, in its simplest form, may be viewed as a form
of dispersion theory [13,19]. It explains the placement of
vowel phonemes in terms of a force which acts to maximize
the acoustic distances between them. Patterns of sounds for
which these forces are in equilibrium, or near it, are more
likely to be observed in the model, helping us understand
why certain vowel sounds, and combinations of sounds, are
more common than others. An alternative explanation, quan-
tal theory [4,11,43,63], begins from the observation that the
relationships between articulatory configurations and acoustic
outputs of the human vocal apparatus contain pronounced
nonlinearities where small changes in articulatory parame-
ters can generate relatively large changes in acoustic output
(Fig. 17). The central idea of quantal theory is that these
nonlinearities quantize acoustic space into separate stable
regions where the effects of changing articulatory parameters
are small and predictable. Within these regions, speakers
can more reliably produce a desired output, increasing the
efficiency of communication. It is argued that these quantal

Nonlinear
Region

Acoustic Parameter

Articulatory Parameter

FIG. 17. Nonlinear relationship between articulatory and acous-
tic parameters. The nonlinear region II divides acoustic/articulatory
space into two quantal regions 1 and III, where speech output is less
sensitive to changes in articulation.

013274-14



BROWNIAN DYNAMICS FOR THE VOWEL SOUNDS ...

PHYSICAL REVIEW RESEARCH 2, 013274 (2020)

regions define the inventory of sounds used in human lan-
guages. Of particular interest to us is the relation between
F, and tongue ‘“backness” which has been experimentally
observed in the acoustic signals of diphthongs, continuous
sounds which begin as one vowel and end as another. When
pronouncing back-front diphthongs (for example, /a1/), F,
increases with time as the tongue moves forward. At =~
1400 Hz, F; jumps rapidly by around 50-300 Hz [63]. This is
caused by a coupling between the oral and subglottal cavities,
and occurs near the second subglottal resonance (see Fig. 10).
The typical magnitude and location of the jump is predictable
using a simple two-tube acoustic model of the cavities [63].
Because quantal effects arise via the map g from articula-
tory to acoustic space, we temporarily switch our attention
to the distribution of utterances in articulatory space. We
consider a two-dimensional articulatory domain, with two
dimensions backness (y;) and height (y,). It appears that lis-
teners mentally compensate for the effects on formant values
of age and sex so that they perceive utterances of the same
phoneme by a small and a large person as essentially the
same sound [64]. We therefore assume that both articulatory
coordinates y = (y1, y2) and their acoustic counterparts X =
(x1, x2) are normalized, so we can think of all speakers as
being the same size. Because the utterances of each frame in
acoustic space form a cloud [v;(x)], so must the articulatory
parameters which generated them. In the definition of our
model (Sec. III), we assumed that when uttering the sound
in frame i, speakers on average used articulatory parameters

Y, =g ' (x;) (55)

with normally distributed variations. Here, g~! is the inverse
of the articulatory to acoustic map. We write the articulatory
cloud

PR 01 —yit)* + (2 — yi)?
$i(y) = S5 exp <— 752 ) (56)
_ o () exp (- ) 67
V2o V2o
= i ()P (), (58)

where we have assumed that the units of articulatory parame-
ters are chosen so that the cloud radii o in the two spaces are
the same in those (quantal) regions where the map g is affine.
Since the jump in F; is generated by front-back movement of
the tongue, parametrized by y;, we can write the map g as

gl()’l)}

59
a+y; (59

gy) = [
where g;(y;) is a nonlinear function which captures the effect
of the subglottal resonance. To determine the shape of the
acoustic cloud corresponding to ¢;(y), we let (¥,Y>) be
random variables drawn from ¢;. The corresponding acoustic
variables are then

X =g1(), (60)

X;=a+Y,. (61)

Because we have assumed that the articulatory cloud is spher-
ical, having covariance matrix ¥ = o1, then ¥; L ¥, and also

0.5

Nonlinear
Region

w(x)

FIG. 18. Distortion of the acoustic frame/phoneme cloud as a
subglottal resonance at the origin is approached (red and green
distributions). Each cloud is normal in the articulatory parameter
(with o = 1), and away from the nonlinear region it remains nor-
mal (purple cloud). The parameters of g;, given by Eq. (65), are
j=1, w=0.5.

X1 L X, so the cloud density in acoustic space also factorizes

Vi(x) = ¥ (x)¥in (x2). (62)
Because the map g is linear in the height variable, the acoustic

height distribution is simply

exp (_ (ngéz ) )

V2mo

Changing random variables [55] in the nonlinear case gives
the acoustic backness distribution

Yin(x2) = (63)

on (g7 (x)). (64)

_ d —1
Vit (x1) = ] (x1)

In order to compute this distribution, we use the following
explicit form for g; (also used to generate Fig. 17):

g1(y1) = y1 + j tanh(x/w), (65)

which is a linear function throughout most of its domain,
but with a step of height 2j and width w, centered at the
origin. As w — 0, the step becomes a sharp discontinuity.
Figure 18 shows the effect of the resonance on the acoustic
backness distribution. In the quantal regions, away from the
nonlinearity, the acoustic cloud remains normal. However,
as the nonlinear region is approached, some utterances have
articulatory parameters which cross the jump point, creating
sounds with extreme acoustic characteristics compared to the
average acoustic value of the phoneme. If unusual sounds
are rejected by learners, as we have assumed when defining
the acceptance probability (23), then the mean of the set of
accepted sounds will shift. For a single phoneme composed
of colocated frames, assuming that repulsion effects have had
sufficient time to isolate it, the acceptance probability for
one of its frames i becomes approximately p;(X) = 1x—x;|<r>
where R is the threshold beyond which sounds are rejected for
being too unusual. The backness component of the exemplar
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FIG. 19. Solid blue curve shows shift in exemplar mean with
threshold R = 20, generated by jump in g, of magnitude j = 1 and
width w = 0.5, defined in Eq. (65). Solid red curve shows exemplar
shift for a sharper discontinuity (w = 0.2). Dashed curves show
least-squares fits of approximate quantal force function (68). Fitting
parameters: blue, O = 0.34, w, = 1.53; red, Q = 0.60, w, = 1.45.
In both cases we have assumed we are at the top of vowel space of
X =X5.

mean is therefore
_ ffoll//il(xl)dxl
ffR Vi1 (x1)dx;

The shift of the exemplar mean away from the mean position
of the phoneme defines an additional quantal force

f?ua — [X.ll axil}’ (67)

the backness component of which is plotted in Fig. 19. Here,
we see that the discontinuity drives phonemes away from
the subglottal resonance. We have also fitted an approximate
quantal force curve with backness component

_%)2 %
£ = O(x; — x¥)exp <_(x1 x7) _ |2 x2|)’ (68)

2
s wy

Xl (66)

where x| is the position of the resonance in acoustic space and
x5 is highest point in acoustic space. The height-dependent
term in the exponent accounts for the fact that the quantal
force requires a wide range of backness (*60) in order to
operate (Fig. 18), and so we only expect to see its effects
near the top of vowel space. From Fig. 19 we see that this
force curve gives a close match to the numerical calculation
of the force. Since we do not know the exact form of the
nonlinear map g;, and because computing the distorted clouds
and exemplar mean requires numerical integration, we take
(68) as a phenomenological definition of the force induced
by the subglottal resonance. Combining this force with the
attractive and repulsive components of our phenomenological
model we obtain the quantal model with interframe force

£ = £ £ 4 £ (69)

In the exemplar dynamics picture, the interframe forces will
also be altered by the nonlinear map g because clouds become
stretched as they approach the resonance, increasing the ef-

fective interaction range across it. Because the repulsive effect
of the resonance will push phonemes away until their clouds
no longer cross it, we assume that enhanced cross-resonance
phonemic repulsion may be self-consistently neglected in the
steady state.

To examine the effects of the subglottal resonance we
reestimate the relative frequencies of each vowel quality in
our model when a quantal force is present. In order to estimate
the parameters of this force, we note from [63] that the F;
jump can be up to 300 Hz, which in standard coordinates
gives j &~ 1.5. The width w of the jump region depends on the
properties of the vocal tract. A more sudden jump increases
the magnitude Q of the quantal force. Taking j € [1, 1.5]
and w € [0.01, 0.5] gives force parameters Q € [0.5, 2.5] and
w, € [1.3,2] when o = 1.5. We have selected Q =2, w, =
2. Table V shows the predicted frequencies of each vowel
when quantal forces are included. Because quantal forces
drive phonemes away from the high central position /i/, we
find that the frequency of this phoneme reduces to approxi-
mately half its nonquantal value, close to its frequency in real
systems. However, the quantal force also appears to remove
the mid central vowel in nearly all the systems generated by
our sample. This happens because, although initially many
systems have a central vowel, it is only stable if repulsive
forces from boundary vowels are in balance. If the high central
vowel is removed, stability is lost, and the mid central vowel
migrates up and out to the system edge. In real vowel systems,
the pair /i,0/ have the fourth highest correlation (Table IV),
suggesting that the existence of one creates conditions which
make the other more likely to persist. However, the question
of what mechanism gives rise to stable central vowels is
unresolved by our model. One possibility is that these sounds
have low functional load, and are therefore less strongly
affected by repulsion. Alternatively, some languages exhibit
vowel systems which are in flux [65], and are therefore not
equilibria of our dynamics. We address the question of how
stable systems can spontaneously change in Sec. VIII.

The origins of quantal theory lie in a theory of sound pat-
terns, developed by Chomsky, Halle, and others [66], where
each unit (segment) of speech is characterized by the presence
or absence of a set of features [67]. For example, the height
of a vowel is described by the two features [+ high] and [+
low], where =+ denotes the presence or absence of the feature.
The back mid vowel /o/ includes among its features [—high,
—low, +back]. Phoneticians were motivated to search for a
physical mechanism which could explain why it was possi-
ble to construct a successful phonological theory based on
features like [+ back] when, phonetically, backness appears
to be a continuous variable [61]. The subglottal resonance
provides a phonetic basis for the feature [+ back] because
it divides vowel space into two stable regions. The relative
scarcity of high and mid central vowels in real systems is
consistent with this explanation, and formant-based studies
have shown that the resonance provides a reliable boundary
between front and back vowels [61]. Within our model, the
second most common vowel system seen in real languages
(Fig. 12), of which Italian and Yoruba are examples, requires
quantal effects for its long-term stability (Fig. 20). Without
this force, the upper mid vowels /e,o/ are only marginally
stable, and if stochastic effects cause one of them to migrate
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FIG. 20. A phonemic configuration matching the Yoruba and
Italian languages [47], which is highly stable in the presence of
a quantal force, but only marginally stable without. This is the
second most common vowel system cross linguistically, accounting
for 13.4% of language surveys in the PHOIBLE database [53]. Pa-
rameter valuesa = 1, 0 = 1.5, D =0.025, y =05, 0 =2, 0w, =
2, wy =2.

away from the boundary of vowel space, then repulsion
from the remaining boundary vowels will push it upward to
become /i/.

VII. ALLOPHONIC VARIATION

We now consider an extension to the model which allows
us to capture allophonic variation within a set of phonemes.
A phoneme is a set of sounds which are never contrastive.
That is, if two sounds are part of the same phoneme, then
exchanging them within a frame cannot change the meaning
of that frame. The allophones of a phoneme are subcategories
of that phoneme which are acoustically distinguished from
one another, and are used predictably in different contexts.
That is, allophones are in complementary distribution with one
another. Acoustic parameters are not intrinsically allophonic
or phonemic. For example, in Australian English there are
minimal pairs which differ only in vowel length as in the
words (cut)[ket] and (cart)[ke:t] implying that /e/ and /e:/
are different phonemes, whereas in English received pronun-
ciation (RP) lengthening is an allophonic variation which
occurs, for example, when a vowel is followed by a voiced
consonant.

We model allophonic variation by defining each acoustic
parameter to be either phonemic or allophonic, noting that
these definitions may spontaneously change. For simplicity,
we consider two parameters: height x (phonemic) and length
z (allophonic). The set of vowels sounds which are phonemi-
cally equivalent to the sound in frame i are then the templates
S; = {k s.t. |x; — x;| < a}. We also define another, similar set
based on the allophonic parameter P, = {k s.t. |z; — zx| < B}
where B is an allophonic template range. The set of frames
which are in both §; and P; are then allophonically equivalent

2.0 N
< ‘@"
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210 allophones phoneme
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FIG. 21. Simulation of a vertical vowel system where vowel
length is the allophonic parameter and o« =1, B =0.5, o, =
1, 0,=05 D=002, y =1.

to i. We write this set
A, =S, NP. (70)

When frame i is uttered, the probability density for the
phonemic parameter is, as before, 1;(x), whereas we write
the density of the allophonic parameter y;(z) which we can
assume is Gaussian but with a different variance to ;. The
density of phonemic templates for frame i is then defined
exactly as in the standard version of the model

Vi) 1= 3 (1 + w8i) fir;(x), (71)

JESi

whereas the density of allophonic templates is

Xi(2) =Y (14 w8i))f;x;(x). (72)

jeA;

Phonemic and allophonic antitemplate densities IZ,-, X; are de-
fined as sums of the summands above, but over S and A7 N S;.
As with the purely phonemic version of the model, we expect
frames to be attracted to the mean of their phonemic tem-
plates x; and repelled from phonemic antitemplates. Similar
arguments apply to interactions in the allophonic dimension,
producing forces of identical form to (13) and (16), with the
replacements V;(x) — x;(z) and (S;, S7) — (A;, AT NS;). As
a result, in this model we will not see interactions between
allophones of different phonemes: if a long allophone of /u/
gets longer, this will not affect a long allophone of /i/.

An example simulation is shown in Fig. 21. Each set of
allophones behave as their own subphonemic vowel system
within a subspace parametrized by z;. Using this example, it
is possible to see how a phonemic split might occur. Consider
the central phoneme in Fig. 21. The existence of the two
allophones implies that there is some conditioning factor in
the language (e.g., the voicing of a following consonant)
which determines the phonemic environments in which each
allophone should be used. If this factor disappears from the
language, then it will no longer be possible to predict which
allophone to use in a given frame. The two allophones are then
merely two different sounds in the language. More impor-
tantly, after the conditioning factor is lost, their functional load
will increase because the contrast brought by the condition
factor has gone. They may even distinguish minimal pairs.
For this reason, the allophonic parameter switches to being
phonemic and we are left with two crowded phonemes, which
will mutually repel, generating a phonemic split.
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VIII. CHAIN SHIFTS, MOMENTUM, AND
WORD-FREQUENCY EFFECTS

So far we have explored the equilibrium behavior of our
model. We now show how it provides a simplified view of
various processes of sound change observed in real languages.
We also provide an extension which allows us to model self-
actuating changes in vowel systems: significant shifts in state
which would be unlikely to result from diffusive dynamics
alone.

Beginning from a randomized initial state, our model will
evolve over time into a stable system in which repulsive forces
between phonemes are near equilibrium. Due to stochasticity,
it is in principle possible for one or more phonemes to
move sufficiently far away from this equilibrium so that the
system enters the basin of attraction of some other equilibrium
configuration. A series of further phoneme movements will
then ensue, until the new equilibrium is reached. Spontaneous
sound changes from one stable state to another also occur
in real languages, and if they involve multiple interacting
sounds, they are referred to as chain shifts [35]. This ter-
minology arises because multiple-vowel linguistic changes
often occur in sequence, with the movement of one vowel
inducing another nearby to move, and so on. Chain shifts are
traditionally divided into two classes: push chains and pull
chains, discussed below. Our model appears unrealistically
stable when compared to real languages, generating changes
too infrequently. We will show below how sensitivity to an
age vector [40-42] in the linguistic community can generate
more realistic change processes.

A. Push and pull chains

One of the best known examples of a chain shift is The
Great Vowel Shift which occurred in the English language
between the time of Chaucer (1343-1400) and Shakespeare
(1564-1616) [68]. The shift affected the front and back long
vowels of English, which moved upward in vowel space, with
the high vowels /iz/ and /u:/ shifting inward and becoming
diphthongs [68]

/i) — Jot/, (73)
/jw/ — [au/, (74)

where the notation A — B indicates that after the shift, the
frames which originally contained vowel A, contain vowel B.
Two theoretical explanations exist for the mechanism which
allowed this to happen. We use these alternatives to illustrate
the difference between a push chain and a pull chain without
commenting on which is more likely [17]. For simplicity, let
us consider only the front vowels. A simplified summary of
their movement is as follows:

Jay/ — Jei/ — e/ — [ii/ — [o1/. (75)

This shift also involved a merger, so the final state of the
frames using phonemes /e:/ and /e:/ was /i:/. The pull chain
explanation is that /iz/ changed first, creating a gap at the top
of vowel space, into which the other lower vowels moved.
That is, the leading edge of the chain moves first. The push
chain explanation is that the back of the chain shifts first,

pull chain push chain
A B configuration A B
oo
mystery ° °
wall g B begins
to move
)
°°o
[
A begins ° °
to move
° ° °
<« & <« 0
e © ° °
[ A begins

B begins to move

to move

FIG. 22. The mechanics of push and pull chains, adapted from
Labov [17]. Pink and blue dots are utterances of two different
phonemes, A and B. Dots circled in red have a high probability of
rejection as tokens used for learning. Orange circling indicates a
lower probability of rejection. Green circle dots are unlikely to be
rejected. Mystery walls are required to hold the phonemes together
before the push chain begins.

overcrowding the sounds in front, and pushing them forward
in sequence.

A learning-based explanation for push and pull (or drag)
chains has been outlined by Labov [17], and an adapted
form of this is summarized in Fig. 22. Consider first the pull
chain. In [17], the initial locations of the phonemes A and B
(configuration 1) are described as stable, without need for the
“mystery walls” that we have added. These walls represent
other phonemes or the boundaries of vowel space. In our
model the initial configuration would not be stable without
these confining elements because the rejection of peripheral
tokens would lead to a repulsion effect between A and B. If the
wall confining A is removed, then it will move away from B
and B tokens that were previously rejected start to be accepted,
causing B to begin motion. The fact that the walls are needed
in our model reveals a difference between it and Labov’s
qualitative description of a pull chain. We require a release of
confinement in order to produce a pull chain. That is, we must
begin with a configuration where vowels are compressed; for
example, if there are four front vowels /e,e,e,i/ held in place
by repulsive forces from back vowels. If one of these, say /i/,
“pops out” into the interior of vowel space, then the repulsive
forces between the remaining sounds will push them upward
to fill the front positions until interphonemic forces are in
balance.

We now consider the push chain. The explanation in [17]
begins with configuration 2 of Fig. 22. As we have noted, this
configuration is not stable in our model. We therefore assume
that our two phonemes are initially separate and form part of
some larger stable system. We then assume that something
causes phoneme B to start moving (we propose a mechanism
below). When B is sufficiently close to A, token rejection
effects (repulsion) cause phoneme A to start moving away.
The phoneme B is then said to have pushed phoneme A.

Within our description of vowel dynamics, the distinction
between push and pull chains is to some extent unnecessary.
Both processes may be understood as the effects of repulsive
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FIG. 23. Anexample of what is commonly called a pull or “drag”
chain. Starting from randomized frame locations, four phonemes
spontaneously formed. The highest is removed from the system at
t = 25. Parameter valuesa =1, 0 = 1.5, y =1, D = 0.025. One
time unit = a single speaker’s expected lifetime. No momentum.

interaction forces, but in different contexts: one in which
compression is released, and one in which it is applied. In our
our view there is really no such thing as a pull chain; vowel
shifts are all caused by pushing, and it is the start of a shift
that determines whether it is referred to as a push or a pull.

In Fig. 23 we have illustrated a pull chain in a one-
dimensional vowel space, which may be viewed as a toy
model of the consequence of Labov’s upper exit principle [65],
which we paraphrase as “in chain shifting high peripheral
vowels become nonperipheral.” In other words, high front
vowels (/i,ir/) have a tendency to pop out of the top left
corner of vowel space, as perhaps happened at the start of the
great vowel shift. We may view the one-dimensional space
in Fig. 23 as a simple model of the front of two-dimensional
vowel space, in which phonemes are confined by the repulsion
of other nonfront vowels (see Fig. 13). The four initial vowels
in this space formed spontaneously, starting from randomized
initial frame positions. At t = 25 lifetimes, we removed the
highest vowel, mimicking a spontaneous shift of the form
/it/ — /o1/. Repulsive forces between the remaining three
then pushed them upward to fill out the empty space. The
traditional interpretation would be that the movement of the
top vowel dragged the lower vowels upward.

B. Momentum

Stochasticity of frame trajectories derives in our model
from unpredictability in the language-learning process, which
at the population level is realized as a diffusion process
for frame location. We will show in Sec. IX that beyond
a critical level of diffusivity D., phonemic clusters cannot
form. Assuming D < D, the motion of the centroid of a
phoneme consisting of N frames will undergo a diffusion
process with coefficient DP’ oc N~!. The magnitude of DP°
also depends on the distribution of relative frame frequencies
within the phoneme, with heavier tailed distributions leading
to greater diffusivity, due to the dominance a smaller number
of very common words. This purely diffusive behavior is
problematic from the point of view of empirical observations
of sound change, which often self-actuate before progressing
monotonically (or nearly so) over a sustained period [42].

One explanation is that language learners are sensitive to the
direction of change. This direction is observable from differ-
ences in language use between older and younger speakers,
often referred to as the age vector of a linguistic feature, or
its momentum. A number of studies have sought to model
such effects [40—42] in terms of the relative frequency of a
linguistic feature. Although their mathematical details differ,
the essential idea is that when (new) speakers select their
linguistic state, they are biased in the direction of the age
vector.

It is straightforward to incorporate the momentum effect
into our model. Working with a one-dimensional acoustic
space, where the position of the ith frame is given by x;(t),
we define the linguistic memory of the community for frame
i as a time average over its history

1 t
mi(t) = ;/

When 7 =1 this memory is an average over the historical
states of the community when each speaker was born. Dif-
ferentiating with respect to time we obtain

xi()e“ 7 ds. (76)

1
m(t) = ;[xi(t) —m;(1)]. 7

We define the difference between the current state and the
memory as the age vector

Ai(t) = x;(t) — m(2). (78)

We then define an additional momentum response

bA
¥(A) = 0 tanh (7) (79)

which is added to the attractive (13) and repulsive (16) forces
already in our model. This is the shift in the average sound
learned by a new speaker, based on their tendency to empha-
size “younger” forms of speech. An analogous response func-
tion appears in the frequency-based models [40,41], where it
is termed a prediction function [40] or generates a perceived
frequency [41]. The parameter b in (79) is the momentum
sensitivity and 0 is the cutoff, giving the maximum possible
magnitude of the momentum driven rate of change. For A «
6 the momentum response is approximately linear ¥ (A) ~
bA as A — 0. The momentum model for a single frame may
be written

dx; = [f + £ + ¥ (x; — mp)]dt + /2D dW;, (80)
dm; = %(xi — m;)dt. (81)

We now analyze the stability of a single isolated phoneme
consisting of N frames of equal frequency with self-focus
w=0. Formally, we consider the limit o« — oo, so the
phoneme does not lose frames through evaporation. The tem-
plate mean and the template memory mean are

1 N
R0 = 5 D xil) =t (), (82)
i=1

1 N
() = 3 mil) =t (m), (83)
i=1

013274-19



J. BURRIDGE AND B. VAUX

PHYSICAL REVIEW RESEARCH 2, 013274 (2020)

where (-) denotes the average over frames (the phoneme
average). From the definition of the momentum model we
have

L 1&
ds = v ;[(x —x)dt + ¥ (x; — m)dt + 2D dW;]  (84)

12D .
= (Y (A)))dt + WdW’ (85)

where W is a standard Brownian motion. The analogous
equation for the template memory mean is

1
dim = —(X —m)dt. (86)
T

Subtracting (86) from (85) we obtain the age vector dynamics

. A 2D .
dA = |:<I/I(A,~)) - ?}dt + ,/de. (87)

Expanding the momentum-response function about A; =0
we obtain to order (A?)

dA=|[b 1 A b AN d ‘/ZDdW 88
—[( —;>< i)_ﬁ( ,)] t+ - (88)

Writing A; = A + €; where ¢; is a zero-mean random variable
we have, if ¢; is also symmetric (so (€7) ~ 0),

(A7) = A +3A(€}) (89)
SO
dA = <b— LoPieNa— 2 adlas [Paw
- T g2 302 N
90)

For a phoneme with a large number of frames the drift term
dominates the dynamics and we see that provided

7) <0, oD

then the age vector has a stable fixed point at A = 0 so the
phoneme will be subject only to a weak diffusion with DP"® =
D/N. In this case, we will not see any sustained movement in
one direction. At a critical value of age vector sensitivity, the
fixed point destabilizes and two stable fixed points appear at

A 362 1 B

The phoneme will select one of these at random, and then
execute a sustained movement in that direction, until noise

50
401
30
8 501 . :"\§§‘:""‘!
104
01— . . . " -
0.0 0.5 1.0 1.5 2.0 2.5

D

FIG. 24. Black line shows mean location of 100 frames, starting
from position x; = 15, as diffusion coefficient is increased from zero
over T = 5000 lifetimes. System size L = 30. Red and blue-green
lines show 70th (30th) and 90th (10th) percentile frame locations,
which indicate distribution of frames within the system. Vertical
olive band shows theoretical location of critical diffusion coefficient
D, = «?/3 where phoneme disintegrates. Other parameter values
a=2,0=1,y=0.

effects, interactions with other phonemes, or with the bound-
aries of vowel space cause it to change direction or return to
stability. If sensitivity to the age vector fluctuates with time, or
if its value is near the threshold for stability, then the phoneme
may switch between periods of stability and instability. We
note that it is in principle possible to measure the age vector
within a speech community by considering differences in the
vowel systems of old and young speakers, and to measure
sensitivity, given sufficient longitudinal data.

To illustrate the effect of momentum we first consider
the behavior of a single phoneme driven entirely by diffu-
sive dynamics (b = 0), without any repulsive effects (y =
0). We consider a one-dimensional vowel space x; € [0, L],
beginning with all frames located at the same location x =
L/2. Starting from zero diffusion coefficient, we gradually
increase D over a long time interval (T = 5 x 10° lifetimes),
yielding the behavior shown in Fig. 24. While the diffusion
coefficient is less than the critical value D,, the phoneme
remains intact and of finite size. Diffusive changes in position
during this phase of evolution generate a cumulative shift
of ~5 cloud radii over the first 2 x 10% lifetimes. Such a
shift corresponds approximately to a vowel changing from
“high” to “low” (e.g., /i/ — /e&/). Taking a single lifetime
as 50 years then this shift would take around 1 x 10* years to
complete. This timescale is unrealistic. For example, the great
vowel shift took place over 300 years [68]. Moreover, the
template range used in Fig. 24 is at the upper end of realistic,
allowing larger diffusion coefficients to be reached before
phonemic destruction. As the destruction point is approached,
the phoneme expands in size, before disintegrating entirely,
leaving frames distributed approximately uniformly over the
system. We conclude that diffusive dynamics alone is not
sufficient to describe the pace of realistic sound changes.

We now consider the effect of momentum. In Fig. 25
we have simulated a two-vowel system, with T = 1, where
momentum sensitivity fluctuates over time. We model these
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FIG. 25. Darker green and red lines show locations of two
phonemes starting from positions x = 1,5 in a system of size L =
10. Lighter lines give 90th (10th) percentile frame locations for
these two phonemes, as an indication of size. Inset plot shows
age vector sensitivity as a function of time. Horizontal red line
shows estimated critical sensitivity b ~ 1.1. Model parameter values
t=1,a=1,0=1, y=1, D=0.025, § =0.5. Parameters for
mean reversion (Ornstein-Uhlenbeck) process followed by momen-
tum sensitivity are b* = 0.9, a = 0.05, o, =0.1.

fluctuations using Ornstein-Uhlenbeck dynamics [32]
db, = a(b* — by)dt + 0,dW,, (93)

where b* is the long run mean sensitivity, a is the reversion
rate toward to this mean, and o, is the volatility of the
sensitivity. We set b* = 0.9, which is below the threshold
for spontaneous sustained shifts. Initially, the two phonemes
are four cloud radii apart, producing very weak interactions.
When the sensitivity crosses the critical threshold, the lower
vowel spontaneously begins rising, starting a push chain. The
motion of the green vowel is halted by the boundary of vowel
space, and the vowels enter a temporary equilibrium while
the sensitivity again becomes subcritical. A final move of
the lower vowel is generated by a short-lived supercritical
period of sensitivity. We calculate the threshold b, by first
numerically estimating the variance of the age vector

(e:) ~ 0.07 (94)

and then setting the right-hand side of (91) to zero, and solving
for b, ~ 1.1. The two major shifts generated in this simulation
took ~10 lifetimes, corresponding to 2500 years, in line with
the great vowel shift.

The one-dimensional momentum model we have defined
here is too simple to be directly comparable to the great vowel
shift because, in its current form, it does not describe different
lengths of vowel or diphthongs. However, we can reproduce
the essential properties of observed systems, serving a starting
point for more sophisticated models which could be used to
test hypotheses about the nature of historical vowel shifts, and
to predict future changes.

c
]
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: o o>
0 ]
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FIG. 26. The interaction of two phonemes (black and red), each
with two frames. Solid lines: high-frequency frames (f = 0.45);
dashed lines: low frequency (f = 0.05). Parameter values o =
1, =5, y =1, v = 1. Initial age vector of black frame A = 2.
Momentum-response parameters b = 0.7, 6 — oo.

C. Word-frequency effects

Exemplar theory and empirical studies suggest [24]
that high-frequency frames change more slowly than low-
frequency frames when pushed by the movement of an-
other vowel (a push chain [17]). The opposite occurs in the
frames which are being pushed. We consider a system of
two phonemes, each consisting of one high- and one low-
frequency frame. Initially, the phonemes are separated by
40 with one phoneme having an age vector A > 0 in the
direction of the other, with subcritical momentum sensitivity.
This creates a simple two-frame push chain. Figure 26 shows
the dynamics of the high- and low-frequency frames as they
approach, in the noiseless limit D — 0. We see that in the
incident frame (the “pusher”) the high-frequency frame moves
faster, whereas in the “pushee” frame, the high-frequency
frame is slower to react. The effects are quite subtle, as they
are in empirical data [69], and we note that the differing
response of high- and low-frequency frames requires positive
self-focus. Without this, the data used by learners are the same
for all frames in a phoneme, so the dynamics of each frame
is statistically identical. The magnitude of word-frequency
effects therefore provides a mechanism to infer the extra
weight that listeners place on words as templates for the
vowel sounds they contain, as compared to words which
contain similar sounds. Finally, we note an intuitive physical
analogy. When o > 0, higher-frequency frames behave as
more massive particles which are less strongly influenced by
the proximity of others.

IX. CONTINUUM LIMIT

So far we have considered languages with relatively small
numbers of frames, each of which can be explicitly simulated.
We now consider the many-word limit where system dynam-
ics may be described in terms of a continuum frame density.
Let N be the total number of frames in our language and
consider the limit N — oo in one dimension, in which case
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we can define a frame density

PO = im(1/8) 3 filjeyi<s/a- (95)

We suppress the time dependence of p for compactness. The
set of frames which are templates for a frame located at x lie in
the template interval T, := [x — «, x + «]. In one dimension
the total force on frame i, given the positions of the other
frames, may be written

(96)

M) =% — x i) (xi —x;)
M(x1|{xj}];él) Xi —Xxi + %:’ y_l{p\i(xi) " wi(Xi),

where we have used the symbol u to avoid confusion with the

frequency of frame i. In the limit N — oo we have, for the
attractive component of this force,

Jr, (= xi)p(u)du

i Jy, P o7
and for the repulsive component
Z fivi () — x;5)
a5 v i) + ¥i(x)
p ) [ (xi — w) P (x)p(uw)du
(98)

T T T, o+ Gptodu’

where ¥, (x) is the N (u, o2) density; we consider the case
o =1 and set the self-focus w = 0 for simplicity. In the
limit N — oo we write the force on a frame at x as u(x),
with the dependence on p implicit. In this limit the density
evolves deterministically provided the relative frequencies of
all frames tend to zero as N — oo. Conditional on the density
field, the location of frame i obeys the stochastic differential
equation

dx; = u(x;)dt + ~/2D dW; 99)

and therefore the probability density function, p;(x, t), for its
location obeys the Fokker-Planck equation [33]

3 piCx, 1) = =3[ (¥)piCx, )] + DB pi(x, 1). (100)

To find the density field p(x) we note that because it is
deterministic

p(x) = E(p(x) (101)
=1m(1/8) Y SEUpi<2)  (102)
= lim(1/8) ) fipi(x. )9 (103)
=Y fimilx,0). (104)
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FIG. 27. Dots: estimated A values (obtained by automated peak
identification) when o = 0.5, y = 0. Circles: y = 1. Initial fluctu-
ations given by high-frequency sine wave. Dashed lines: analytical
predictions. Inset: solution to (105) for y = 0.5, D = 0.02, giving
X = 1.39 (cf. prediction A* = 1.33).

Multiplying both sides of (100) by f; and summing over i we
obtain

p) [ (u— x)p(u)du>

— 2 _
& p(x) = D3; p(x) 8):( J; pGdu

) P&) [ = WY (0)p(u)du
\r U u@p@du+ [ pu(p@du )
(105)

This is the continuum evolution equation which defines our
model in the limit of large numbers of words. We have made
use of the fact that the contribution of individual frames to the
density field is negligible so w(x) is the same function for all
frames.

Beginning from small fluctuations in frame density, so-
lutions to Eq. (105) take the form of regularly positioned
peaks representing distinct vowels (inset Fig. 27). Expanding
p(u) to second order in the attractive term, and comparing
to the magnitude of the diffusive flux, we obtain the lower
bound & > +/3D on template range for vowel formation. This
relationship was tested in Fig. 24.

We can calculate the typical number of spontaneously
formed vowels in a system by finding the wave number at
which density fluctuations are most susceptible to cluster
formation. To achieve this, we write Eq. (105) in terms of
diffusive, attractive, and repulsive fluxes

g p(x) = =0 [jp(x) + ja(x) + jr(x)] (106)

and assume that our vowel system begins from a primordial
state where the distribution of frames is approximately uni-
form with fluctuations which are spatially correlated only over
very short ranges (no clusters of significant size). We write the
state of the system at this early stage

px) =c+en(x,t) (107)
—c+ \/% /_Z Ao, e dw, (108)
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where ¢ > 0 is a constant and 7(x, t) is a zero-mean fluctuat-
ing field with Fourier transform #j(w, ) and € < 1 is a small
parameter measuring the magnitude of fluctuations. At small
times ¢, the spatial correlation function

C(Z,t)=/ n(x, )n(x + z, t)dx (109)

o0

decays rapidly with increasing |z|, and therefore has an en-
ergy spectrum /27 |7 (w)|* whose dominant contributions are
from high wave numbers w [33]. As the system evolves and
phonemic clusters form, the energy spectrum will begin to
concentrate at lower wave numbers, and spatial correlations
will decay more slowly. The peak w* of the energy spectrum
gives the typical separation of clusters as

2

w=" (110)
w

To estimate the location of the peak we consider the behavior

of the diffusive, attractive, and repulsive fluxes as the clusters

begin to form. To lowest order in € we have, from (105), as

€ —>0

Jp(x) ~ —eDif'(x), (111)

Ja) ~ 2: / (u — x)y(w)du, (112)
o JT,

, €y [ (x — Wp(x — wn(u)du

Jr(x) ~ —8 NG

(1 — perf(a/V2) + y

where ¢ is the standard normal probability density function.
Substituting the Fourier representation of 7 into these fluxes
allows us to write the total flux j = jp + ja + jr as

o0

jo) = % Mo, Of @ do,  (114)
where
_ sin(aw) — aw cos(aw)
f(w) = —Do + "
4 .
e y)erf(%) - /T(; v (v) sin(wv)dv.
(115)

The final integral term may be evaluated in terms of error
functions of a complex argument [70], but the integral repre-
sentation is more compact and easier to interpret. Substituting
expression (114) for the flux into the continuum evolution
equation (106) we obtain the following ordinary differential
equation for the transform of the fluctuations

I, 1) = of (w)i(w, 1) (116)
which has solution
fi(w, 1) = Hi(w, 0) explof(w)t]. (117)

The decoupling of Fourier modes which allowed this solution
[71] is a consequence of the linearization of the fluxes in
(111), (112), and (113), so the solution is only valid for
small fluctuations. However, because the locations and sizes
of clusters (peaks in p) are decided early in the evolution of
the system, the wavelength A* corresponding to the fastest

w f(w)

FIG. 28. Contributions to the net mode growth rate from dif-
fusion (red), attraction (green), and repulsion (blue), when D =
0.02, @« =0.5, y =1. Black dotted curve shows overall mode
growth rate wf (@) with maximum circled.

growing wave number o™ gives an accurate approximation to
the wavelength of the final peak distribution. From (117) we
see that fluctuations with wave numbers for which f(w) < 0
decay over time, whereas those for which f(w) > 0 grow,
with the fastest growing wave number w* corresponding to
the maximum of wf(w):

o* = argmax wf(w). (118)
w

This prediction is compared to simulations in Fig. 27. In
the small noise limit D — 0 we have A — 2.29«, so we
expect vowels to be separated by just over twice the maximum
separation which speakers consider to be phonemically equiv-
alent. The threshold for first formant frequency discrimination
in normal speech is AF} =~ 50 + 10 (Hz) [58], where F; €
[235, 850] [59]. Taking AF; as a lower bound on « gives
a theoretical maximum of six spontaneously formed vowel
heights, consistent with observed systems [13].

In Fig. 28 we have plotted the separate contributions from
the diffusive, attractive, and repulsive fluxes to the overall
growth rate w f(w) of Fourier modes. Here, we see that attrac-
tive forces cause all modes to grow, corresponding to increas-
ing amplitude fluctuations at all length scales as frames are
pulled together producing higher density peaks. The diffusive
flux reduces (smoothes out) fluctuations at all length scales,
but has greatest effect on high-frequency (short length scale)
fluctuations because it penalizes the second derivative of the
density distribution. The behavior of the repulsive flux is more
subtle: for low wave-number fluctuations (large clusters) it
has a negative effect: if the typical repulsion range is smaller
than the size of a cluster, then it will break up the cluster
into smaller parts. At larger wave numbers (corresponding to
smaller clusters), repulsion has a positive effect on growth:
when the clusters are smaller, the dominant repulsion effect is
a squeeze from near neighbors, increasing the density of all
clusters.

X. DISCUSSION

We have presented a model of the evolution of vowel
systems in which words behave as interacting particles
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diffusing in vowel space, with positions determined by the
vowel sounds they contain. The interactions between parti-
cles are modeled mathematically as physical forces, but are
derived based on our understanding of the language-learning
process. Our work builds on an already substantial collection
of models of vowel system evolution [13,14,18-24,27,30], so
it is important to make clear what we are adding. Because the
mechanisms which control the evolution of sound inventories
are not fully understood, existing models have invoked a
considerable range of mechanisms in order to explain obser-
vations. Many of these mechanisms induce a combination of
attractive and repulsive interactions between vowel sounds.
Since the precise linguistic, social, and cognitive processes
which drive sound change remain unknown, it is difficult
to justify anything other than a phenomenological approach,
that is, one which is consistent with existing theories but
does not rely on a precise scientific hypothesis regarding the
underlying mechanisms. Under these conditions, simplicity
is beneficial. By defining our model using the language of
physics (forces and diffusion), we simplify the conceptual
picture of vowel system dynamics, and allow for a more trans-
parent and thorough analysis of how the system parameters
control predictions. Moreover, these parameters may in some
cases be directly measured or bounded (cloud radius, template
range) or their values inferred from data (diffusion coefficient,
momentum sensitivity).

The simplicity of our model definition has allowed us to
combine quantal and dispersion theory into a single frame-
work [11,43,61] to capture allophonic variation and elucidate
the mechanism of phonemic splitting [35], to explore the
effects of functional load [48], model self-actuating sound
changes [40-42,65], provide a simplified picture of chain
shifting in which the distinction between drag and push
chains becomes redundant [17], explain empirically observed
word-frequency effects in sound change [24], predict the
critical level of stochasticity at which phonemes disintegrate,
predict the maximum number of vowel heights a language
can contain [12,19], and provide a simple picture of the
process of phonemic merger. Its simplicity also allows for
efficient simulation and mathematical analysis. Because it is
derivable by considering the behavior of individual speakers,
it is in principle straightforward to extend the definition to
interacting communities and social networks. Because the
atomic constituents of the model are individual words, it is
also in principle possible to use our approach to model specific
cross-linguistic interactions such as borrowing, where new
phonemes are created by the inclusion of foreign words into a
language (e.g., from French to English [35]).

Our scientific conclusions are as follows. In its simplest
form, our model may be seen as a dynamical dispersion
theory [31], where repulsive interphoneme forces drive vowel
systems toward configurations which maximize contrast. By
comparison to a large database of phonemic inventories, and
by defining of our own system typology, we have shown
that the model captures cross-linguistic relative frequencies
of different sounds to within ~10%, with the exception of the
high central vowel /i/. Moreover, for vowel systems up to
cardinality six, the most common systems generated by the
model are consistent with our typology and that of Crothers
[52]. The over-representation of the high central vowel is seen

in other (nondynamic) dispersion theories [13], and attempts
have been made in the past to correct these predictions by
defining sophisticated perceptual distance metrics [19] which
effectively warp the shape and structure of vowel space. By
their nature these metrics are difficult to rigorously derive
and test. In contrast, the dynamics in our model is driven by
phonemic overlap in acoustic space, which may be quanti-
tatively measured using formants, fixing the aspect ratio of
vowel space unambiguously.

Quantal theory provides an alternative to dispersion theory
for understanding the structure phonetic inventories. We have
shown that the two theories combine in our simple framework,
with quantal effects entering via the articulatory to acoustic
map [11,39,43] which exhibits a pronounced nonlinearity at
the second subglottal resonance. We have shown that this
induces a repulsive force away from the center of vowel
space, reducing the relative frequency of /i/, and stabilizing
the second most common vowel system (the seven-vowel
system of Italian and Yoruba). However, the quantal force also
destabilizes the mid central vowel, and we can only speculate
as to the mechanisms which could counteract this effect. We
note, however, that in real languages /i/ and /o/ are positively
correlated, suggesting that the presence of one may increase
the stability of the other.

Moving beyond the overpreponderance of /i/, examination
of cross-linguistic correlations between phonemes (Table V),
and of the most common empirically observed vowel systems
(Fig. 12) reveals that vowels tend to occur in front-back
pairs of the same height. This symmetry is present, but to a
lesser extent, in our predictions. In dispersion theory, positive
correlations between vowels of the same height occur because
such configurations happen to maximize contrast. Our results
suggest in real vowel systems there may be some additional
mechanism which imposes this symmetry. We will address
this point in further work.

Sporadic sound changes [72], often involving multiple
vowels, are well documented [35,65]. However, the long-
standing actuation problem remains unresolved: “Why do
changes in a structural feature take place in a particular
language at a given time, but not in other languages with the
same feature, or in the same language at other times” [73]?
One possible resolution to the problem is momentum-based
selection [40—42,74], according to which speakers react to
features whose relative frequency has risen in the recent past,
by further emphasizing the use of these features. In the context
of sound change, the analog of an increase in frequency is a
net direction of change with time, which may be realized in
apparent time [35] as a difference between the behavior of
old and young speakers. Inspired by frequency-based models
[40—42] we have incorporated momentum-based change in
our model, showing that when sensitivity to this change ex-
ceeds a critical threshold, long-term sustained shifts in vowel
systems can take place. We find that without such an effect,
natural variations in speaker’s articulatory behavior, which
can be substantial [75], and are captured by our diffusion
coefficient D, are not sufficient to actuate sustained shifts
over realistic timescales, while still preserving the integrity of
phonemes (Fig. 24). Our model of momentum-based change
generates shifts over O(10") lifetimes, with variations depend-
ing on the level of sensitivity, consistent with the durations
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of observed changes such as the Great English Vowel Shift
[68]. In the deterministic setting (D = 0), artificially activated
push chains, described by a system of ordinary differential
equations, show that high-frequency words behave as more
massive particles, responding more slowly to the encroach-
ment of a phoneme (Fig. 26), provided that the self-focus is
positive; that is, when learning how to pronounce the vowel
sound in a word, learners place more emphasis on the word
itself than on other words containing similar vowel sounds.
Our model is by no means a perfect description of vowel
system structure and dynamics. It is best described as a foy
model. However, due to its simplicity and flexibility we have
been able to use it to study and understand a considerable

variety of linguistic processes, providing a simple mathe-
matical picture which we hope may be a useful tool for
understanding the evolution of the sounds of languages. The
model may provide a framework for future predictive model-
ing approaches which use large formant data sets of phonemic
inventories to directly calibrate dynamical models.
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