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Spiral order from orientationally correlated random bonds in classical XY models
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We discuss the stability of ferromagnetic long-range order in three-dimensional classical XY ferromagnets
upon substitution of a small subset of equally oriented bonds by impurity bonds, on which the ferromagnetic
exchange J⊥ > 0 is replaced by a strong antiferromagnetic coupling Jimp < 0. In the impurity-free limit, the
effective low-energy Hamiltonian is that of spin waves. In the presence of a single, sufficiently strongly
frustrating impurity bond, the ground state is twofold degenerate, corresponding to either clockwise or
counterclockwise canting of the spins in the vicinity of the impurity bond. For a small but finite concentration of
impurity bonds, the effective low-energy Hamiltonian is that of Ising variables encoding the sense of rotation of
the local canting around the impurities. Those degrees of freedom interact pairwise through a dipolar interaction
mediated by spin waves. A spatially random distribution of impurities leads to a ferromagnetic Ising ground
state, which indicates the instability of the XY ferromagnet towards a spiral state, with wave vector and transition
temperature both proportional to the concentration of impurity bonds. This mechanism of spiral order by disorder
is relevant for magnetic materials such as YBaCuFeO5, for which our theory predicts a ratio between the spiral
ordering temperature and the modulus of the spiral wave vector close to the measured ones.

DOI: 10.1103/PhysRevResearch.2.013273

I. INTRODUCTION

Insulating magnets supporting long-range magnetic spi-
ral order are of technological interest as they can display
magnetically induced ferroelectricity [1–4]. In prototypical
spin-spiral multiferroics, e.g., RMnO3 (R = Tb3+, Dy3+, etc.)
[5,6], a magnetic spiral phase can be stabilized by the com-
petition between nearest-neighbor and further-neighbor mag-
netic exchange interactions with opposite signs [7,8]. How-
ever, the resulting frustration only induces spiral states if
further-neighbor couplings are sufficiently strong as compared
to nearest-neighbor couplings. The latter are typically much
bigger in magnitude, except under special circumstances that
lead to their suppression. In such exceptional cases, the
characteristic exchange scale is set by the further-neighbor
interactions and is thus very weak, entailing a low spiral
ordering temperature.

In order to engineer magnetic insulators with magnetic spi-
ral order established at high temperatures, it is of fundamental
interest to investigate analogous mechanisms. An interesting
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route was suggested by the study of Ivanov et al. [9], who
considered a Heisenberg antiferromagnet on a square lattice,
in which every other horizontal nearest-neighbor bond in a
staggered pattern was replaced by a ferromagnetic coupling.
Sufficiently strongly frustrating bonds were shown to induce
a magnetic spiral order. From the experimental side, there are
interesting hints that a similar mechanism might be tied to the
presence of disorder. Indeed, certain insulating compounds
containing some degree of chemical disorder were reported to
stabilize magnetic spiral order [10–14] at high temperatures.
For example, the transition temperatures to the magnetic spiral
phase were found to range from 180 to 310 K [12,14–17] in
YBaCuFeO5, whereby several further characteristics of the
spiral depend on the degree of disorder. A recent experimental
study in Ref. [18] demonstrated the same phenomenology
for the family of layered perovskites ABCuFeO5, where A
stands for a rare-earth ion and B stands for Ba or Sr. This
empirical observation suggests the possibility that, for some
materials, a magnetic spiral order might be induced by some
impurity bonds formed by nearest-neighbor magnetic ions
whose exchange coupling frustrates the order that would be
established in their absence. Recent Monte Carlo simulations
have confirmed this conjecture in a model describing the
family of layered perovskites ABCuFeO5 with disorder in
the spatial location of the magnetic Cu and Fe ions [19]. The
latter was assumed to result in a small concentration of locally
frustrating bonds along the c direction, which indeed was
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FIG. 1. Experimental data (circles) from Refs. [13,18] for the
compound YBaCuFeO5 and similarly layered perovskites with the
structure ABCuFeO5. These all contain the magnetic ions Cu and Fe
in bipyramids that are arranged in layered planes. Different annealing
rates lead to varying fractions of bipyramids that host magnetically
frustrating Fe-Fe pairs instead of low-energy Fe-Cu pairs. The tran-
sition temperature to the spiral state is plotted versus the spiral wave
vector measured at low temperature. Our theory explains the linear
relationship between the two and predicts the slope as a function
of the three exchange couplings. We plot the predicted slope for
different values of the exchange on the driving frustrating bonds,
fixing the other two exchanges to the values estimated in Ref. [19].
The larger the frustrating coupling and the higher the fraction of
frustrating Fe-Fe bonds in the bipyramids of the perovskite, the larger
the transition temperature and the spiral wave vector. Each triplet of
triangular symbols joined by a dashed line corresponds to the same
concentration of frustrating bonds in our theory.

shown to induce magnetic spiral order in an experimentally
relevant window of parameters.

In this paper, we describe and study the general mechanism
that renders the ferromagnetic long-range order of classical
XY spins unstable towards spiral order, when a finite fraction
of the ferromagnetic interactions is replaced by sufficiently
strong antiferromagnetic exchange couplings. In the end, we
will confront the theory with experimental data, as shown in
Fig. 1, with good quantitative agreement.

The general physical mechanism at work is the follow-
ing. We consider a geometrically unfrustrated lattice � in
d > 2 dimensions, hosting isotropic spins with a continu-
ous symmetry. The symmetry is broken spontaneously at
low temperatures, which implies the existence of Goldstone
modes. Dilute but strong impurity bonds embedded in this
lattice can induce local cantings which behave as dipole-type
defects with an Ising degree of freedom associated with them.
The Goldstone modes mediate an interaction between the
defects, decaying as r−d for large separation. Correlations in
the distribution of such impurity bonds, e.g., a restriction to

bonds that point in a single direction, may ensure a sufficiently
nonfrustrated pairwise interaction between these defects so as
to favor long-range ferromagnetic order in the orientation of
the local cantings. Such long-range Ising order entails a global
twist of the ferromagnetic order parameter density, and thus a
magnetic spiral, as the local magnetization twists in the same
sense across every impurity bond. The wave vector of the
resulting magnetic spiral is proportional to the magnetization
density of the Ising degrees of freedom and thus to the density
of impurity bonds. We will show that such a spiral state is
the ground state of the XY system for a rather wide range of
parameters of the impurity bond distribution.

For simplicity, we consider a cubic host lattice � embed-
ded in three-dimensional Euclidean space with the Cartesian
coordinates x, y, and z. We impose a tetragonal symmetry by
choosing the ferromagnetic nearest-neighbor exchange to be
J‖ > 0 for couplings in the x-y plane and J⊥ > 0 for bonds
oriented along the z axis. We further consider a set of impurity
bonds, which form a dilute subset of the nearest-neighbor
bonds that are directed along the c direction of the cubic host
lattice �. For each impurity bond, the ferromagnetic J⊥ >

0 is replaced by the antiferromagnetic exchange coupling
Jimp < 0.

A single impurity bond does not destroy the ferromagnetic
long-range order of the ground state. However, it does result
in a canting of the classical XY spins in the vicinity of the
impurity bond, provided the local frustration is sufficiently
strong, i.e., |Jimp| � Jc for some threshold value Jc > 0. Under
these conditions (and with fixed boundary conditions at infin-
ity) the ground state is twofold degenerate, exhibiting either
a clockwise or counterclockwise sense of the local canting.
At low concentration we can thus associate a corresponding
low-energy Ising degree of freedom with every impurity bond.
Apart from these discrete soft degrees of freedom, the back-
ground ferromagnet hosts low-energy spin-wave excitations.
They mediate an effective interaction between the Ising de-
grees of freedom, which results in an effective classical Ising
model with effective two-body interactions of dipolar type.
Their algebraic decay at large distance is a direct consequence
of the gaplessness of the spin waves. A similar effective
interaction results in any system that spontaneously breaks
a continuous symmetry, and thus hosts gapless Goldstone
modes mediating algebraic interactions between impurity de-
grees of freedom. The specific case where the impurity bonds
form a Bravais superlattice, with a unit cell that is large
compared to that of the cubic host lattice �, is analytically
tractable, and for certain classes of superlattices we are able
to rigorously establish the presence of spiral order.

Although the analysis in this paper assumes ferromagnetic
interactions for the host lattice �, we note that our results can
be readily extended to any unfrustrated XY magnet. For exam-
ple, if the lattice is bipartite and Jimp has sign opposite to J⊥,
the system can be mapped to the above-described ferromagnet
as follows. For every spin, a reference frame is chosen such
that the unfrustrated ground state of the impurity-free system
corresponds to a ferromagnetic configuration. By virtue of
this mapping, the low-energy effective theory presented below
extends to this larger class of magnetic insulators.

We emphasize that for the establishment of ferromagnetic
order it is central that the impurity bonds not be randomly
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oriented. Otherwise, the pairwise interactions between the as-
sociated Ising degrees of freedom would be strongly random
in sign, which would most likely lead to spin glass order, as
observed in models of dilute, randomly oriented Ising dipoles
[20,21]. Since an Ising glass state generally carries no net
magnetization, it would not induce a spiral state of the original
XY spins. Also, in the limit of a high density of randomly
oriented impurity bonds, one expects long-range spin-glass
order (observed directly at the level of the XY spins), since
the model becomes that of a random-bond XY gauge glass, as
was studied by Villain [22–24].

The remainder of this paper is structured as follows. In
Sec. II we define the spin lattice model. Section III begins with
the case of a single impurity bond. We then consider a small
concentration of impurity bonds and derive a mapping to an
effective Ising model for low energies. Section IV describes
how to find the ground state of the effective Ising model
when the impurity bonds realize a superlattice. The effective
Ising model is solved by analytical and numerical means. Its
solution is then compared to Monte Carlo simulations of a
model with the same network of exchange interactions, but
in which the classical XY spins are replaced by classical
Heisenberg spins with an additional easy-plane anisotropy.
The latter allows for close contact with experimentally re-
alized magnets, such as YBaCuFeO5 and similarly layered
perovskites, which are believed to embody the physical in-
gredients and mechanisms discussed above. In Sec. V we
study the analytically tractable case of dilute, randomly placed
impurity bonds and conclude that random samples undergo
a ferromagnetic ordering of cantings and thus form a spiral
phase. Section VI addresses the onset temperature of the spiral
phase and predicts it to be proportional to the spiral wave
vector. We compare our quantitative predictions with experi-
mental observations. Section VII summarizes our findings and
discusses how the general mechanism identified here applies
to other systems.

II. LATTICE HAMILTONIAN FOR CLASSICAL XY SPINS

A. Definition of the XY model

We consider a magnet of classical spins, described by
two-dimensional unit vectors Ŝr with Ŝ

2
r = 1. They are located

at the sites r = xx + yy + zz (x, y, z ∈ Z) of a cubic lattice �

made of |�| sites spanned by the orthonormal unit vectors
x, y, and z of R3. In most cases we will impose periodic
boundary conditions on these classical spins. However, as
usual, the choice of boundary conditions does not affect the
bulk properties.

We consider a classical Hamiltonian

HL := H0 + Himp, (2.1a)

containing only nearest-neighbor interactions between spins.
Here L denotes the set of impurity bonds, as we will describe
below.

The exchange Hamiltonian in Eq. (2.1a),

H0 := −1

2

∑
r,r′∈�

J (0)
r,r′ Ŝr · Ŝr′ , (2.1b)

possesses the translation symmetries of the cubic lattice,
since its nearest-neighbor ferromagnetic Heisenberg exchange
couplings depend only on the relative position of the spins,

J (0)
r,r′ := J‖

∑
α=±x,±y

δr,r′+α + J⊥
∑
α=±z

δr,r′+α = J (0)
r′,r. (2.1c)

The in-plane (J‖) and out-of-plane (J⊥) couplings are ferro-
magnetic but can be different, 0 < J‖ �= J⊥, in which case the
cubic point-group symmetry is reduced to the tetragonal one.

The contribution from the disorder in Eq. (2.1a),

Himp := (|Jimp| + J⊥)
∑
r̃∈L

Ŝr̃ · Ŝr̃+z, (2.1d)

describes the presence of antiferromagnetic impurity bonds.
We label the bonds by the coordinate of the end point with
the smaller z coordinate. These end points form a subset L
of the points of the cubic host lattice �. This term breaks
the lattice translational symmetry. On all impurity bonds the
ferromagnetic J⊥ > 0 is replaced by the antiferromagnetic
coupling Jimp < 0, inducing local frustration. The Hamilto-
nian (2.1a) is invariant under any rotation of all spins by
the same orthogonal 2 × 2 matrix, i.e., HL has a global O(2)
symmetry.

B. Impurity-free case

Here we consider an impurity-free system, i.e., an empty
set L,

HL = H0. (2.2)

The ground state is ferromagnetic with all spins parallel. We
choose the polar parametrization

Ŝr := cos θrx̂ + sin θrŷ (2.3)

with the orthonormal basis x̂ and ŷ of R2. In this polar
representation,

H0 = −1

2

∑
r,r′∈�

J (0)
r,r′ cos(θr − θr′ ) (2.4)

has a ferromagnetic ground state defined by

θ ferro
r ≡ const (2.5)

for all lattice sites r. The invariance of HL under any global
O(2) symmetry then becomes the invariance under the sym-
metry transformation

θr �→ εθr + �, (2.6)

where ε = ±1 and � ∈ [0, 2π [ are arbitrary numbers inde-
pendent of r. The angle � ∈ [0, 2π [ parametrizes a proper
rotation in the connected Lie group SO(2). The choice ε = −1
corresponds to an improper rotation, i.e., an orthogonal matrix
in O(2) with negative determinant.

At low temperatures T 
 J⊥, J‖, we can use the spin-
wave approximation, which assumes that the deviations from
the ferromagnetic ground state (2.5) are small. In that case,
the Hamiltonian (2.4) can be expanded to quadratic order in

013273-3



ANDREA SCARAMUCCI et al. PHYSICAL REVIEW RESEARCH 2, 013273 (2020)

the angle differences,

H0 ≈ EFM + 1

4

∑
r,r′∈�

J (0)
r,r′ (θr − θr′ )2

= EFM + 1

2

∑
r,r′∈�

θrD
(0)
r,r′θr′ , (2.7a)

where

EFM ≡ −1

2

∑
r,r′∈�

J (0)
r,r′ (2.7b)

is the energy of the ferromagnetic ground state and

D(0)
r,r′ :=

(∑
r′′∈�

J (0)
r,r′′

)
δr,r′ − J (0)

r,r′

= (4J‖ + 2J⊥)δr,r′ − J (0)
r,r′

= D(0)
r′,r ≡ D(0)

r′−r ≡ D(0)
r−r′ (2.7c)

is the symmetric spin-wave kernel. It only depends on the dif-
ference r′ − r, which we henceforth use as the only subscript.

The spin wave encoded by the angle θr is the gapless
Goldstone mode associated with the spontaneous breaking of
the O(2) spin symmetry by the ferromagnetic ground state. On
general grounds, its Fourier mode θk is expected to disperse
quadratically with momentum as k approaches the center of
the magnetic Brillouin zone, k = 0. Accordingly, the response
to a local perturbation at r and temperature T is governed by
the Green’s function

T −1〈θrθr′ 〉 ≡ (D(0) )−1
r,r′ , (2.8)

which decays like |r − r′|−1 at large separations |r − r′| � a,
where a is of the order of the lattice spacing. We close Sec. II
by establishing a few important properties obeyed by the spin-
wave kernel D(0).

We observe that D(0)
r obeys∑

r′∈�

D(0)
r′ = 0. (2.9)

This is a consequence of spin rotational symmetry, which
implies that any global orthogonal transformation (2.6) leaves
the bilinear form (2.7a) invariant. Moreover, if we impose
that the angles θr obey periodic boundary conditions, we then
have the Fourier transform

D(0)
k := 1

|�|
∑
r∈�

e−ik·rD(0)
r

= 2J‖(2 − cos kx − cos ky) + 2J⊥(1 − cos kz ) (2.10)

for any k belonging to the Brillouin zone of the host cubic
lattice �. We will denote this Brillouin zone by BZ(�).
Finally, it is convenient to introduce the inverse of the spin-
wave kernel D(0) as the Green’s function G(0), which satisfies∑

r′∈�

G(0)
r−r′D

(0)
r′−r′′ = δr,r′′ ∀ r, r′′. (2.11a)

Due to the zero mode (2.9), G(0)
r−r′ is defined up to a constant,

which we fix by requiring that∑
r∈�

G(0)
r = 0 (2.11b)

such that both G(0) and D(0) annihilate constant functions. As
the inverse of a symmetric kernel, G(0)

r−r′ is symmetric,

G(0)
r−r′ = G(0)

r′−r. (2.11c)

Imposing periodic boundary conditions, we have

G(0)
r = 1

|�|
∑

k∈BZ(�)\{0}

eik·r

D(0)
k

. (2.11d)

The asymptotic large distance behavior of the Green’s
function is

G(0)
r ≈

|r|→∞

∫
d3k

(2π )3

eik·r

J‖
(
k2

x + k2
y

)+ J⊥k2
z

= 1

4π
√

J‖

1√
J⊥(x2 + y2) + J‖z2

. (2.12)

On the right-hand side of Eq. (2.12), we recognize the three-
dimensional Coulomb potential for the rescaled coordinates

x̄ = √
J⊥x, ȳ = √

J⊥y, z̄ = √
J‖z. (2.13)

We will see in the next section that impurities couple to
each other through the combination of Green’s functions

�(0)
r := 2G(0)

r − G(0)
r+z − G(0)

r−z

= 1

|�|
∑

k∈BZ(�)\{0}
�̂

(0)
k eik·r (2.14a)

with the Fourier transform of �(0)
r ,

�̂
(0)
k �=0 := 1 − cos kz

J‖(2 − cos kx − cos ky) + J⊥(1 − cos kz )
. (2.14b)

Note that �̂
(0)
k=0 does not enter the sum. It is therefore conve-

nient to define

�̂
(0)
k=0 := 0. (2.14c)

Asymptotically, �(0)
r decays algebraically, like a dipolar

interaction with opposite sign,

�(0)
r ≈

|r|→∞
−∂2

z G(0)
r ≈

√
J‖

4π

|r̄|2 − 3z̄2

|r̄|5 , (2.15)

where we use the notation of Eq. (2.13).

III. MAPPING TO AN EFFECTIVE ISING HAMILTONIAN

A. Periodic boundary conditions

We are ultimately interested in describing states with a
spiraling magnetic order, where the angles of the local magne-
tization grow linearly with distance. However, before dealing
with this possibility, we first analyze a situation anticipating
no spiraling. In this case we can impose periodic boundary
conditions on the spin angles.
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We recall that the set of all directed impurity bonds defines
the set L ⊂ � consisting of all the sites r̃ ∈ � such that
〈r̃, r̃ + z〉 is a directed impurity bond. We anticipate that the
twist angles across bonds are relatively small, except on the
impurity bonds. We therefore make the approximation

HL ≈ EFM + 1

2

∑
r,r′∈�

θrD
(0)
r−r′θr′

−
∑
r̃∈L

[
J⊥
2

(
θr̃)2 − |Jimp| cos 
θr̃

]
, (3.1a)

where 
θr̃ is the canting angle across the impurity bond,


θr̃ ≡ θr̃ − θr̃+z. (3.1b)

This approximation is certainly valid on the majority of
bonds in the limit of a dilute concentration of impurity bonds,

nimp := |L|
|�| 
 1, (3.2)

which we will assume from now on.
We are going to establish under what conditions there is a

configuration of angles other than the ferromagnetic one that
minimizes the energy (3.1a) in the presence of impurity bonds
anchored on the set L. First, we keep fixed all the angles θr̃

and θr̃+z with r̃ ∈ L and integrate out the angles on all other
sites, i.e., on all sites from � \ (L ∪ L + z). Within our spin-
wave approximation, and treating the angles as noncompact
variables, this can be done exactly (at any temperature where
the spin-wave approximation is justified) since those angular
variables enter the Hamiltonian quadratically. Here we carry
out the calculation at T = 0 by solving the saddle-point equa-
tions for all angles on the sites � \ (L ∪ L + z). In this way,
we will find the angles θr, as well as an effective Hamiltonian,
expressed solely in terms of the angles {θr̃, r̃ ∈ L ∪ L + z}.

The minimization over all r ∈ � \ (L ∪ L + z) requires∑
r′∈�

D(0)
r−r′θr′ =0. (3.3a)

We supplement the set (3.3a) of linear equations by∑
r′∈�

D(0)
r̃−r′θr′ = χr̃, (3.3b)

whereby r̃ ∈ L ∪ L + z runs over all sites in � that are end
points of an impurity bond (two sites per impurity bond).
Here χr̃ has to be chosen in such a way that the saddle-point
equations (3.3) are satisfied as θr̃ and θr̃+z take their prescribed
values.

Inverting Eqs. (3.3a) and (3.3b) for any r ∈ �, we obtain

θr = θ0 +
∑

r̃′∈L∪L+z

G(0)
r,r̃′χr̃′ , (3.4)

where θ0 ∈ [0, 2π [ is the angle of the magnetization far away
from impurities. Restricting ourselves to the subset r̃ ∈ L ∪
L + z, Eq. (3.4) can be inverted to yield

χr̃ =
∑

r̃′∈L∪L+z

G̃(0)−1
r̃,r̃′ (θr̃′ − θ0), (3.5)

where G̃(0) is the 2|L| × 2|L| matrix obtained by restricting
G(0)

r,r′ to the sites belonging to the impurity bonds [G̃(0)
r̃,r̃′ ≡

G(0)
r̃,r̃′]. Combining Eqs. (3.4) and (3.5), we obtain, for any

r ∈ �,

θr = θ0 +
∑

r̃′,r̃′′∈L∪L+z

G(0)
r,r̃′G̃

(0)−1
r̃′,r̃′′ (θr̃′′ − θ0). (3.6)

The algebraic decay of G(0)
r ensures that the distortions in the

angular pattern also have algebraic tails.
Second, we evaluate the energy (3.1a) at the saddle point

(3.6). We thereby obtain the effective energy

Heff({θr̃, θr̃+z, r̃ ∈ L})

:= 1

2

∑
r̃,r̃′∈L∪L+z

θr̃G̃
(0)−1
r̃,r̃′ θr̃′

−
∑
r̃∈L

[
J⊥
2

(θr̃+z − θr̃)2 − |Jimp| cos(θr̃+z − θr̃)

]
, (3.7)

where we have assumed that the magnetization far away from
the impurities are oriented along θ0 = 0, making use of the
fact that the constant θ0 can be chosen freely, since rotating
all spins by the same angle does not affect the energy. In
what follows, we will drop such additive constants. Note that
the derivation of the effective action (3.7), starting from the
Hamiltonian (3.1a), is exact at any temperature, if we use the
Gaussian approximation and treat the domain of the angles θr

as noncompact, ignoring that the energy is in fact 2π periodic
in the angles.

For the third and last step we assume T = 0. We minimize
the effective action (3.7) with respect to the impurity bond
angles θr̃ and θr̃+z with r̃ ∈ L. This can be done exactly for a
single impurity bond and approximately in the case of a dilute
set of impurities.

Case of a single impurity bond

In the case of a single impurity bond 〈r̃, r̃ + z〉 represented
by the single site L = {r̃}, the inverse of the 2 × 2 symmetric
matrix with elements G̃(0)

r̃,r̃ , G̃(0)
r̃,r̃+z, G̃(0)

r̃+z,r̃, and G̃(0)
r̃+z,r̃+z is

G̃(0)−1
r,r′ = G(0)

0 δr,r′ − G(0)
z (δr,r′+z + δr,r′−z)(

G(0)
0

)2 − (
G(0)

z
)2 , (3.8)

where r, r′ ∈ {r̃, r̃ + z}. If we use Eq. (3.8) in the Hamiltonian
(3.7), we find the effective energy

H (1)
eff (θr̃, θr̃+z) = 1

4

(θr̃ + θr̃+z)2

G(0)
0 + G(0)

z

+ 1

4

(θr̃ − θr̃+z)2

G(0)
0 − G(0)

z

− J⊥
2

(θr̃ − θr̃+z)2 + |Jimp| cos(θr̃ − θr̃+z).

(3.9)

The center-of-mass angle θr̃ + θr̃+z and the relative angle θr̃ −
θr̃+z are decoupled in H (1)

eff (θr̃, θr̃+z). The effective Hamiltonian
(3.9) is invariant under the transformation

θr̃ + θr̃+z �→ θr̃ + θr̃+z, θr̃ − θr̃+z �→ −(θr̃ − θr̃+z). (3.10)

This symmetry is inherited from the fact that the Hamiltonian
(3.7) is invariant under the inversion symmetry with respect to
the bond center R = r̃ + (z/2).

Minimization over θr̃ + θr̃+z imposes the condition that the
two angular distortions away from the asymptotic θ0 on either
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FIG. 2. Cantings of the spins induced by a single strong impurity bond with |Jimp| > Jc. The two degenerate ground states correspond to
the two solutions (a) σr̃ = +1 and (b) σr̃ = −1 of Eq. (3.15). Red circles indicate sites in the x-z plane (red reference frame). The black arrows
represent the Ŝx and Ŝy components of the spins (black reference frame). The blue line indicates a frustrating antiferromagnetic bond embedded
in the network of ferromagnetic couplings. The green circles indicate the inversion center with respect to which the Hamiltonian is symmetric.
The operation of inversion maps the spin configurations (a) and (b) onto each other.

side of the impurity bond are opposite,

θr̃ = −θr̃+z. (3.11)

The remaining degree of freedom is the canting angle across
the impurity bond,


θr̃ ≡ θr̃ − θr̃+z, (3.12)

with −π < 
θr̃ � π , in terms of which the effective re-
stricted Hamiltonian becomes

H (1)
eff/res(
θr̃) := 1

2 Jc(
θr̃)2 + |Jimp| cos(
θr̃), (3.13a)

where we have introduced the shorthand notation

Jc := 1

2
(
G(0)

0 − G(0)
z
) − J⊥. (3.13b)

The coupling Jc depends parametrically on J‖ and J⊥. The
rationale for the subscript in Jc is the following. For small
|Jimp|, i.e., |Jimp| < Jc, H (1)

eff/res(
θr̃) has a single minimum at


θr̃ = 0. (3.14)

However, for |Jimp| > Jc, H (1)
eff/res(
θr̃) develops a double well

with two degenerate minima. The two degenerate minima
occur at the relative canting angles


θr̃ = σr̃
θ, (3.15a)

with σr̃ = ±1 and 
θ being the positive solution of


θ = |Jimp|
Jc

sin 
θ. (3.15b)

When |Jimp| > Jc and the temperature T is sufficiently
small, namely,

kBT 
 Jc − |Jimp| cos(
θ ), (3.16)

thermal fluctuations around the minima of the double well are
small. We will thus call |
θr̃| a hard degree of freedom, while

we refer to the Ising variable sgn(
θr̃) = σr̃ as a soft degree of
freedom. This terminology is motivated by expanding about
the minimum of the double potential well σr̃
θ , which is
closest to 
θr̃,

H (1)
eff/res(
θr̃) − H (1)

eff/res(
θ )

= 1
2 [Jc − |Jimp| cos(
θ )](|
θr̃| − 
θ )2 + · · · . (3.17)

When the temperature is small compared to the curvature
at the two minima, thermal fluctuations of the hard degree
of freedom |
θr̃| are much smaller than fluctuations due to
the soft degree of freedom σr̃. We will thus ignore the latter
in the range (3.16) of temperatures. If we use the values
of the relative angle (3.1b) at the pair of minima (3.15) in
combination with Eqs. (3.11) and (3.6) with θ0 = 0, we obtain
the two canting patterns shown in Fig. 2.

The combination 2(G(0)
0 − G(0)

z ) = �
(0)
r=0 entering Jc in

Eq. (3.13b) can be expressed with the help of Eq. (2.14a) as

�
(0)
r=0 = 2

(
G(0)

0 − G(0)
z

)
= 1

Jc + J⊥

= 1

|�|
∑

k∈BZ(�)\{0}

(1− cos kz )

J‖(2− cos kx− cos ky)+J⊥(1− cos kz )
.

(3.18)

For isotropic couplings J‖ = J⊥ = J , this evaluates to

�
(0)
0 = 1

3J
, (3.19)

which yields the critical coupling

Jc = 2J. (3.20)

For general couplings with the ratio

α ≡ J‖
J⊥

, (3.21)
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FIG. 3. Critical impurity bond strength Jc [Eq. (3.13b)] (blue
dots), as a function of the ratio of couplings α ≡ J‖/J⊥. The
inset shows the same function on a logarithmic plot. For
strong anisotropies, one finds the asymptotics Jc(α 
 1)/J⊥ ≈
C1

√
α (blue line) and Jc(α � 1)/J⊥ ≈ 2πα/[ln(α) + C2] (yellow

curve), where C1 = ∫ π

0 dx dy
√

sin2 x + sin2 y/π 2 ≈ 0.958 and C2 =
(5 ln 2 − 1) ≈ 2.47.

we plot the threshold value of Jc/J⊥ in Fig. 3 together with
asymptotic expressions that become valid in the limit of strong
anisotropy.

The spontaneous canting induced by a single impurity
bond is a special case of a so-called canted local state,
as described by Villain in Ref. [25]. He pointed out that
in a magnet with continuous spin symmetry and a pristine
collinear long-range-ordered ground state, local imperfections

such as clusters of frustrating exchange couplings can cause
spins in their neighborhood to cant. Thereby, the canting angle
only decays algebraically with distance from the impurity.
As already noted by Villain for random bond impurities in
a collinear magnet, a critical strength of the impurity bond
is necessary to induce canting. Since canting spontaneously
breaks the inversion symmetry of the pristine ground state in
our problem, there is a degenerate set of canted local states
associated with each impurity. This is in contrast to frustrated
O(N )-symmetric magnets with noncollinear ground states and
no inversion symmetry for which any local deviation in the
bond strength induces a unique canting deformation, with
similar algebraic decay of canting angles. Those algebraic
tails destroy long-range order even if the disorder is very weak
(see Ref. [26]).

B. Case of a dilute set of impurity bonds

When the density of impurity bonds is finite, we cannot
rely on the explicit representation (3.8). However, at a small
impurity concentration, the interaction between the angles on
the same impurity bond is much stronger than the coupling
between angles on different impurity bonds. It thus makes
sense to split G̃(0) into a bond-local term [with the inverse on
every bond given by Eq. (3.8)] and a bond–off-diagonal term
according to

G̃(0) ≡ G̃(0)
loc + G̃(0)

nonloc (3.22)

and to approximate its inverse as

G̃(0)−1 ≈ G̃(0)−1
loc − G̃(0)−1

loc G̃(0)
nonlocG̃(0)−1

loc . (3.23)

This yields the Hamiltonian

Heff ({θr̃, θr̃+z, r̃ ∈ L}) ≈
∑
r̃∈L

H (1)
eff (θr̃, θr̃+z) − 1

2

∑
r̃,r̃′∈L∪L+z

θr̃
[
G̃(0)−1

loc G̃(0)
nonlocG̃(0)−1

loc

]
r̃,r̃′θr̃′ , (3.24a)

where H (1)
eff (θr̃, θr̃+z) is given by Eq. (3.9).

Since this term is dominant at low impurity concentration, it is again reasonable to restrict the angular configurations to the
subspace given by

θr̃ = −θr̃+z = 
θr̃

2
�⇒ θr̃ + θr̃+z = 0, θr̃ − θr̃+z = 
θr̃, (3.25)

as in the single impurity-bond problem of Eq. (3.9). This leads to the effective restricted Hamiltonian [compare with Eq. (3.13)]

Heff/res({
θr̃}) :=
∑
r̃∈L

H (1)
eff/res(
θr̃) − 1

2

∑
r̃�=r̃′∈L


θr̃

2
(
G(0)

0 − G(0)
z
) (2Gr̃,r̃′ − Gr̃+z,r̃′ − Gr̃,r̃′+z)


θr̃′

2
(
G(0)

0 − G(0)
z
)

=
∑
r̃∈L

H (1)
eff/res(
θr̃) − 1

2
(
�

(0)
0

)2

∑
r̃�=r̃′∈L


θr̃�
(0)
r̃−r̃′
θr̃′ , (3.26)

where the interaction �
(0)
r̃−r̃′ is seen to be mediated by the

combination of Green’s functions introduced in Eq. (2.14a)
that scales like an antidipolar interaction at long distances. As
it should be, the effective Hamiltonian is invariant under both
the global rotation θr̃ �→ θr̃ + �, � ∈ [0, 2π [, and the global
Ising symmetry θr̃ �→ −θr̃ for all r̃ ∈ L.

It remains to minimize Heff/res({
θr̃}) with respect to the
canting angles 
θr̃ on the impurity bonds. The corresponding
saddle-point equation reads


θr̃ = |Jimp|
Jc

sin 
θr̃ + �r̃, (3.27a)
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where

�r̃ := 1

Jc

∑
r̃′∈L\{r̃}

�
(0)
r̃−r̃′(

�
(0)
0

)2 
θr̃′ . (3.27b)

As before, the ferromagnetic state (3.14) is a solution of
Eqs. (3.27a) and (3.27b), but it becomes unstable for suffi-
ciently large |Jimp|.

The term �r̃ is expected to be dominated by the closest-
neighbor bonds, since the sum is over a set of decreasing
terms, which, for a valid saddle point, contribute with alter-
nating signs. Using Eqs. (2.15) and (3.27b), one expects that
�r̃ scales as nimp. In that case, the condition

|Jimp|
Jc

� �r̃ (3.28)

will be met for sufficiently large values of Jimp and suf-
ficiently small values of nimp. Under the condition (3.28),
local minima of the Hamiltonian (3.1a), i.e., solutions to
Eq. (3.27), exist, which locally look like the solution for a
single antiferromagnetic impurity bond.

In the dilute impurity regime, a low-energy state will have
a canting of angles across the impurities bonds close to the
single impurity case, i.e.,


θr̃ ≈ σr̃
θ. (3.29a)

Inserting this ansatz into the effective Hamiltonian (3.26), we
obtain the effective Ising model

HL[σr̃] := EFM + E (
θ )|L|

− 1

2

(

θ

�
(0)
0

)2 ∑
r̃�=r̃′∈L

σr̃�
(0)
r̃−r̃′σr̃′ . (3.29b)

This effective Ising model is invariant under the global Ising
symmetry σr̃ �→ −σr̃ for all r̃ ∈ L. Equation (3.29b) is the
main result of Sec. III B.

The interaction �
(0)
r̃ between a pair of Ising variables a dis-

tance r̃ apart that enters on the right-hand side of Eq. (3.29b)
was derived in Eq. (2.15). Its asymptotic behavior is that of
Ising dipoles (σr̃ oriented along the direction z), albeit with the
opposite sign as compared to the usual dipolar interaction. In
the dilute impurity limit, the sign of the two-body interaction
�(0)

r depends on the relative position r̃ (see Fig. 4). It is
ferromagnetic when

x̃2 + ỹ2 >
2J‖
J⊥

z̃2, (3.30a)

vanishing on the conical surface

x̃2 + ỹ2 = 2J‖
J⊥

z̃2, (3.30b)

and antiferromagnetic when

x̃2 + ỹ2 <
2J‖
J⊥

z̃2. (3.30c)

C. Boundary conditions along the z axis

So far, we have considered the ferromagnetic state, θr = 0
for all r ∈ �, of H0 defined in Eq. (2.4) and performed a

ρ

z J / 2J
||

2

2

F

AF

AF

F
~

~

FIG. 4. Sign of the (anti)dipolar interaction �
(0)
r̃ [Eq. (2.15)]

between cantings, in the ρ̃2-z̃2 plane (with ρ̃2 ≡ x̃2 + ỹ2). Along the z
axis the interactions are antiferromagnetic, while for separation along
the x-y plane they are ferromagnetic. The sign change occurs on
the cone described by J⊥ρ̃2 = 2J‖z̃2. In the quasi-one-dimensional
limit J‖/J⊥ → 0 the interaction �

(0)
r̃ is ferromagnetic for any ρ̃2 > 0.

In the quasi-two-dimensional limit J⊥/J‖ → 0, �
(0)
r̃ is antiferromag-

netic for any z̃2 > 0.

spin-wave expansion about it, imposing periodic boundary
conditions. Imposing periodic boundary conditions precludes
an instability to a spiral state within our self-consistent ap-
proximation. To overcome this technical limitation, we allow
for a linear growth of

θr = φr + Q(r · z), (3.31)

along the z direction. Here the global degree of freedom
Q ∈ [−π, π [ describes a constant twist rate, while the local
degrees of freedom φr obey periodic boundary conditions. In
finite systems, the twist rate Q along the z direction should be
an integer multiple of 2π/Lz if we impose periodic boundary
conditions on the original spins Ŝr = cos θrx̂ + sin θrŷ, but
this discrete constraint is irrelevant in the thermodynamic
limit. With the change of variables (3.31), the spin-wave
approximation (3.1a) becomes

HL ≈ EFM + 1

2

∑
r,r′∈�

φrD
(0)
r−r′φr′ + J⊥Q2

2
|�|

−
∑
r̃∈L

(
J⊥
2

(
φr̃ − Q)2 − |Jimp| cos(
φr̃ − Q)

)
,

(3.32a)

where we recall that |�| is the number of sites in the host
cubic lattice � and we again define by


φr̃ := φr̃ − φr̃+z (3.32b)

the twist of φ across the impurity bond labeled by r̃.
For a low impurity concentration 0 < nimp 
 1, we assume

and will verify a posteriori that

|Q| ∼ nimp 
 
θ, (3.33)

where 
θ� 0 is the modulus of the canting angle across an
isolated impurity bond. The leading effect of the emerging
spiral order will appear at O(n2

imp) in the energy per spin.
We therefore expand the impurity bond terms in Eq. (3.32a),

013273-8



SPIRAL ORDER FROM ORIENTATIONALLY CORRELATED … PHYSICAL REVIEW RESEARCH 2, 013273 (2020)

i.e., the second line on the right-hand side of Eq. (3.32a), up
to linear order in Q. In this approximation, the saddle-point
values for 
φr̃ are therefore again given by


φr̃ ≈ σr̃
θ (3.34)

up to corrections of O(Q). We can neglect those since they
lead to corrections to the energy per spin of O(n3

imp). The
angles of spins that do not belong to impurity bonds are again
given by Eq. (3.27), with 
φr̃ replacing 
θr̃. However, min-
imizing over the twist rate Q after linearization with respect
to Q of the second line on the right-hand side of Eq. (3.32a)
yields the nontrivial saddle-point value

Q = − 1

|�|
∑
r̃∈L

( |Jimp|
J⊥

sin(
φr̃) + 
φr̃

)

= − 
θ
Jc + J⊥

J⊥

1

|�|
∑
r̃∈L

σr̃, (3.35)

where we have used the saddle-point equation (3.15) to reach
the second equality. A spontaneous net winding (Q �= 0) of
the spins along the z direction thus occurs for canting con-
figurations {σr̃} with a net bias. An Ising configuration {σr̃}
with a net uniform magnetization thus corresponds to a spiral
state for the XY spins. Note that the wave vector Q of the
spiral is proportional to the magnetization density of the Ising
variables.

We can now verify a posteriori the validity of the assump-
tion (3.33). The maximal value of |Q| is given by

|Q|max = nimp
Jc + J⊥

J⊥

θ. (3.36)

Thus, for

nimp 
 J⊥
Jc + J⊥

, (3.37)

our assumption is certainly self-consistent. In the opposite
regime, as nimp approaches 1 from below, the interaction
between the planes starts to be dominated by the impurity
bonds, which may induce an entirely different ground state
with no spiral order.

Injecting the saddle-point value of Q [Eq. (3.35)] into
Eq. (3.32) and expressing the energy as a function of the Ising
variables σr̃ leads to the same effective Hamiltonian as in
Eq. (3.29b), except for an additional term − J⊥Q2

2 |�|, which
expresses the lowering of the total energy due to the coupling
of the canting pattern to the spiral order,

HL[σr̃] := EFM + E (
θ )|L|

− γ

2

∑
r̃ �=r̃′∈L

σr̃�
(0)
r̃−r̃′σr̃′ − J⊥Q2

2
|�|

= EFM + E (
θ )|L|

− 1

2

∑
r̃ �=r̃′∈L

σr̃J
(I)
r̃−r̃′σr̃′ − γ nimp

2J⊥
, (3.38a)

where we have introduced the constant

γ := (
θ )2(Jc + J⊥)2 =
(


θ

�
(0)
0

)2

(3.38b)

and the effective Ising interaction

J (I)
r̃−r̃′ :=γ

(
�

(0)
r̃−r̃′ + 1

J⊥|�|
)

. (3.38c)

Note that the last term in Eq. (3.38a) is nonextensive and thus
irrelevant in the thermodynamic limit.

There are two additive contributions to the Ising exchange
coupling J (I)

r̃−r̃′ . The contribution �
(0)
r̃−r̃′ represents an antidipo-

lar two-body interaction between the effective Ising degrees
of freedom σr̃ associated with the dilute antiferromagnetic
bonds. This interaction is long ranged and frustrated, owing
to the indefinite sign of the kernel �

(0)
r̃−r̃′ . The coupling of

the canting pattern to the spiral order instead favors a net
(ferromagnetic) bias of the cantings σr̃ and contributes an all-
to-all interaction of strength 1

J⊥|�| , proportional to the inverse
volume.

According to the saddle-point equation (3.27a), a uniform
magnetization of the Ising spins σr̃ favors a spiral state
with a nonvanishing Q for the original O(2) spin degrees of
freedom. Hence, if the ground state of Eq. (3.38) supports a
nonvanishing magnetization σr̃, the frustration induced by the
dilute impurity bonds turns the pristine ferromagnetic order
of the impurity-free ground state into spiral order. If instead
the ground state supports no net bias of the Ising spins σr̃,
a state with Q = 0 is favored, and thus no net winding of
the O(2) spins is induced. An example of a possible resulting
ground state is a fanlike magnetic state where the Ising spins
order in a layered antiferromagnetic pattern. This translates
into a pattern of the original O(2) spins ordering essentially
ferromagnetically, but with orientations that alternate slightly
between successive layers.

The Ising Hamiltonian with antidipolar coupling (3.38) is
structurally very similar to Ising systems with standard dipolar
couplings, as are realized, e.g., in rare-earth compounds with
strongly localized magnetic moments, such as LiHoxY1−xF4

at moderate to low dilution x [27]. It has been theoretically
and experimentally well established that such random dipolar
Ising systems exhibit a glass transition towards an amorphous
magnetic order at low temperature [20,28]. It may thus come
as a surprise that in our case we find that a change of sign
of the dipolar term, in conjunction with the additional term
arising from the coupling to the spiral, suffices to induce fer-
romagnetic Ising order, in spite of the positional randomness
of the Ising spins. This difference is presumably largely due to
the additional mean-field-like interaction mediated by the for-
mation of the spiral, which stabilizes the ferromagnetic phase.
That type of interaction is absent in systems of elementary
magnetic dipoles, which therefore fall much more easily into
a glassy phase.

IV. SUPERLATTICES OF IMPURITY BONDS

As Eq. (3.38) involves long-range two-body interactions
whose sign depends on the relative positions of the impurity
bonds, the ground state cannot be found explicitly for an
arbitrary choice of L, so in general one has to resort to
numerical methods or to approximate treatments. However,
if the set of impurity bonds L realizes certain Bravais super-
lattices, it is possible to establish a sufficient condition for the
ground state of the effective Ising Hamiltonian (3.38) to be
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ferromagnetic and thus for the ground-state spin configuration
of the Hamiltonian (3.1a) to sustain spiral order.

A. Analytical considerations

We consider the case when the subset L of the cubic host
lattice � forms a Bravais lattice with the basis vectors A, B,
and C given by three independent linear combinations with
integer-valued coefficients of a ≡ (1, 0, 0)T, b ≡ (0, 1, 0)T,
and c ≡ (0, 0, 1)T. The concentration of the impurity bonds
is

nimp ≡ 1

|A · (B ∧ C)| . (4.1)

In reciprocal space, the superlattice L defines a small first
Brillouin zone BZ(L), which is 1/nimp times smaller than the
first Brillouin zone BZ(�) of the cubic host lattice �.

For the |L| Ising degrees of freedom σr̃ associated with
impurity bonds anchored at r̃ ∈ L, we use the Fourier repre-
sentation

σr̃ = 1

|L|
∑

q∈BZ(L)

eiq·r̃σq, (4.2)

where BZ(L) is the first Brillouin zone associated with the
lattice L. For any p ∈ R3, we will make use of the identity

1

|L|
∑
r̃∈L

eip·r̃ =
∑
G∈L�

δp,G, (4.3)

where L� denotes the reciprocal lattice of L. The effective
Ising Hamiltonian (3.38) can now be written in reciprocal
space as

HL = EFM + E (
θ )|L| + γ

2|L|
∑

q∈BZ(L)

ϒqσ+qσ−q, (4.4a)

where γ is defined by Eq. (3.38b) and

ϒq := −
∑

r̃∈L\{0}
e−iq·r̃�(0)

r̃ − nimp

J⊥
δq,0. (4.4b)

Using Eq. (4.3), we obtain

ϒq = −nimp

∑
G ∈ L�

q + G ∈ BZ(�)

�
(0)
q+G + �

(0)
r̃=0 − nimp

J⊥
δq,0. (4.4c)

For a generic choice of the Bravais lattice L and of the
couplings J⊥, J‖, and Jimp, the ground state of the Ising Hamil-
tonian (4.4) cannot be found in closed form. However, an
analytical solution is available in certain cases. For instance, if
over the reduced Brillouin zone BZ(L) the kernel ϒq assumes
its global minimum at a unique momentum qmin such that for
all r̃ ∈ L,

σ min
r̃ = eiqmin·r̃ = ±1, (4.5)

the ground state of the Ising Hamiltonian is then given by
the configuration described by Eq. (4.5). Inserting Eq. (4.5)
into Eqs. (3.31), (3.34), and (3.35) and using the Fourier
representation (2.14a) and (2.14b), one finds

θmin
r = φmin

r + Qmin(r · z), (4.6a)

where

φmin
r := nimp

√
γ

∑
{k∈BZ(�)|k−qmin∈L�\{0}}

(1 − e−ikz )eik·r

2J‖(2 − cos kx − cos ky) + 2J⊥(1 − cos kz )
, (4.6b)

with γ defined by Eq. (3.38b) and

Qmin := −
√

γ

J⊥
nimpδqmin,0. (4.6c)

Examples of qmin for which Eq. (4.5) holds are

qmin = 0 (4.7a)

and

qmin ∈ {± 1
2 A�,± 1

2 B�,± 1
2C�

}
, (4.7b)

where A�, B�, and C� are the basis vectors of the reciprocal
lattice L�. In the former case (4.7a), Qmin �= 0 and the ground
state is an O(2) magnetic spiral, while in the latter case (4.7b),
Qmin = 0 and thus there is no spiral.

B. Comparison between analytical and numerical
results for superlattices

To illustrate that the effective Ising Hamiltonian (3.38) cap-
tures the low-energy physics of the microscopic Hamiltonian
(2.1), we consider several superlattices L of impurity bonds
and compare their microscopic ground state to the ground

state of the effective Ising Hamiltonian (4.4). Instead of
directly studying the ground state of the microscopic Hamil-
tonian (2.1), we actually study the microscopic Hamiltonian

HHeis := − 1

2

∑
r,r′∈�

J (0)
r,r′ Sr · Sr′

+ (|Jimp| + J⊥)
∑
r̃∈L

Sr̃ · Sr̃+z + 

∑

r

(
Sz

r

)2
, (4.8)

which is closer to experimental realizations. Here we have
replaced the classical XY spins from Eq. (2.1) with classical
Heisenberg spins Sr (being unit vectors in R3). A single-ion
anisotropy 
 > 0 penalizes a spin orientation along the z
axis. We apply open boundary conditions along all principal
directions of the cubic lattice. To approximately find the
ground state, we perform parallel tempering Monte Carlo
(MC) simulations. We use 140 temperatures Ti with a constant
ratio Ti+1/Ti, covering a range from T � 4 × 10−3J‖ up to
temperatures well in the paramagnetic phase. The ground
state is obtained by keeping track of the minimal-energy
state visited during the Monte Carlo evolution for the lowest
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|Jimp| = 2.4J⊥

|Jimp| = 4.8J⊥

FIG. 5. Spin configurations of the ground state in an x-z plane of the cubic host lattice �. Black arrows represent the O(2) (XY ) spins
defined in Eq. (2.3) (black reference frame). Red dots represent the sites in a cross section of the cubic host lattice � (red reference frame).
Blue lines represent the impurity bonds. Results are obtained for J‖/J⊥ = 1. Each panel (a)–(d) shows a comparison between approximate
analytical results based on the effective model, and MC results from the full spin model. In panels (a) and (b) a superlattice with the basis
A = (5, 3, 2)T, B = (3, 4, 4)T, and C = (4, 5, 2)T is chosen, in panels (c) and (d) the superlattice has the basis A = (3, 3, 2)T, B = (0, 4, 2)T,
and C = (4, 0, 2)T. The impurity strengths are |Jimp/J⊥| = 2.4 ((a) and (c)) and |Jimp/J⊥| = 4.8 ((b) and (d)). In all cases the effective Ising
Hamiltonian (4.4) correctly predicts a spiral state. However, the accuracy of the predicted value of Q significantly improves with increasing
|Jimp/J⊥| away from the critical value of 2, where canting sets in. This can be seen by comparing the relative orientations of the spins in the
lattice corners.

temperature. The single-ion anisotropy is restricted to 0 <


 � 0.02|J‖|. For T 
 
, the low-energy states are essen-
tially coplanar with spins lying in the x-y plane. At T = 0 the
ground state of the XY Hamiltonian (2.1) is identical to that
of the anisotropic Heisenberg Hamiltonian (4.8). The typical
size of the cubic host lattice � used in the MC simulations is
14 × 14 × 32 lattice spacings.

To obtain the corresponding effective model in terms of
cantings, we take the following steps. First, we verify that
the exchange couplings allow for a nontrivial solution 
θ �=
0 of Eq. (3.15). Second, we solve for the ground state of
the effective Ising Hamiltonian (4.4). To this end we minimize
the function ϒq in Eq. (4.4c) with respect to q. If the absolute
minimum in the Brillouin zone BZ(L) occurs at q = 0, we

predict a spiral ground state (Q �= 0). If the absolute minimum
occurs at qmin = C�/2, a ground state with Q = 0 is predicted.
If instead qmin does not satisfy Eq. (4.5), the ground state has
more than one Fourier component and we would need to solve
the effective Ising model numerically. Third, from the Ising
ground state of the Hamiltonian (4.4), the microscopic pattern
(2.3) of the O(2) spins is finally obtained from Eq. (4.6), using
the value of 
θ obtained from solving Eq. (3.15).

The effective Ising Hamiltonian (4.4) is found to be very
accurate once the impurity coupling |Jimp| sufficiently exceeds
the critical value Jc. This is illustrated by Fig. 5. Its four
panels compare the approximate ground state obtained via the
effective Ising Hamiltonian (4.4a) (shown on the left) with
the ground state of the Hamiltonian (4.8) obtained via MC
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FIG. 6. Comparison between the approximate analytical (circles) and numerical (squares) values of the spiral order parameter |P| [cf.
Eq. (4.11)] for XY spins on a cubic lattice with Lx = 14, Ly = 14, and Lz = 32. The impurity bonds form a superlattice. (a) Results for
the isotropic case J‖/J⊥ = 1 for three superlattices with the following basis vectors: A = (3, 3, 2)T, B = (0, 4, 2)T, and C = (4, 0, 2)T, with
nimp = 1/16 (blue); A = (5, 3, 2)T, B = (3, 4, 4)T, and C = (4, 5, 2)T, with nimp = 1/32 (red); and A = (4, 3, 0)T, B = (0, 4, 3)T, and C =
(5, 0, 2)T, with nimp = 1/77 (purple). Note that the magnitude |P| of the spiral order parameter P increases approximately linearly with nimp.
(b) Dependence of |P| on |Jimp|, for the parameters of YBaCuFeO5 [cf. Eq. (4.12)], and a superlattice of density nimp = 1/56, with the basis
A = (4, 3, 0)T, B = (0, 4, 2)T, and C = (4, 0, 2)T.

simulation (shown on the right). This is done for two strengths
of impurity couplings and two different superlattices. We
choose parameters such that both methods yield a spiral
state, with qmin = 0 minimizing the kernel ϒq. No coupling
anisotropy (J‖/J⊥ = 1) was assumed in all these cases. Fig-
ures 5(a) and 5(b) correspond to the same superlattice, but
different impurity strengths |Jimp|/J⊥ = 2.4 and 4.8, respec-
tively. A spiral ground state is correctly predicted in both
cases. However, while the canting angle 
θ at the impurity
bonds and especially the spiral wave vector Q are rather ac-
curately predicted for strong impurity couplings |Jimp|/J⊥ =
4.8, they are underestimated by the effective theory when
the impurity coupling |Jimp|/J⊥ = 2.4 comes relatively close
to the threshold strength Jc/J⊥ = 2 [cf. Eq. (3.13b)]. The
agreement between the analytical approximation and the MC
simulations improves with increasing |Jimp|/J⊥. This agrees
with what one expects from the considerations of Sec. III B.
Indeed, assuming that all canting angles take the same value

θr̃ = 
θ and assuming a superlattice of impurities, Eq.
(3.27) takes the form


θ = |Jimp|
Jc − (

�
(0)
0

)−2 ∑
r̃∈L\{0}

�
(0)
r̃

sin 
θ. (4.9)

As compared to the saddle-point equation for a single impu-
rity [Eq. (3.15)], the denominator Jc is shifted by the small
correction(

�
(0)
0

)−2 ∑
r̃∈L\{0} �

(0)
r̃ ∼ nimp O(J⊥, J‖) 
 Jc. (4.10)

When |Jimp|/Jc is large, this renormalization has little effect
on the solution of the saddle-point equation 
θ , which will be
close to π in any case. However, when |Jimp|/Jc is close to the
threshold of 1, an effective reduction of Jc (which is expected
for superlattices that favor ferromagnetic Ising order) leads to
an increase of 
θ . For example, in Fig. 5(a), the value of the
canting angle would 
θ = 1.02 according to Eq. (3.15), but
increases to 
θ = 1.15 after correcting it by Eq. (4.9).

Similar results are found for other superlattices. For in-
stance, Figs. 5(c) and 5(d) show results for a denser superlat-
tice, but with the same exchange couplings as in Figs. 5(a) and
5(b), respectively. In all panels of Fig. 5, the deviations from

the local ferromagnetic order at nonimpurity bonds are small,
justifying a posteriori the spin-wave approximation used to
derive the effective Ising Hamiltonian (4.4).

To quantify the quality of the approximations incurred
when trading the microscopic Hamiltonian (4.8) for the ef-
fective Ising Hamiltonian (4.4), we compare the quantity

P := 1

LxLy(Lz − 1)

∑
r ∈ �

1 � rz � Lz − 1

sin(φr+z − φr), (4.11)

obtained from both Hamiltonians for several superlattices and
various ratios |Jimp|/J⊥ in Fig. 6(a). Here Lx, Ly, and Lz in
Eq. (4.11) are the linear dimensions of the lattice, while P
is an order parameter for the magnetic spiral phase. On the
right-hand side, the sine of the relative angle between Ŝr and
Ŝr+z is summed over all sites of the cubic host lattice �.

Figure 6(a) shows how the value of |P|, evaluated on
the minimal-energy configuration, increases with increasing
|Jimp|/J⊥ � Jc/J⊥ for three superlattices of impurity bonds in
an isotropic cubic lattice (J‖/J⊥ = 1), whereby all superlat-
tices are chosen so that they induce a spiral state. At relatively
large |Jimp|/J⊥, the results for |P| from the effective Ising
Hamiltonian (4.4) (circles) are close to those obtained from
the microscopic simulation of Hamiltonian (4.8) (squares), up
to corrections of order nimp, as anticipated in the discussion
around Eq. (3.28). However, as |Jimp| approaches Jc from
above, deviations become stronger, as we discussed after
Eq. (4.9). In this regime the double-well potential defining
the Ising degrees of freedom associated with the canting
pattern becomes very shallow. Thus, even relatively weak
contributions from neighboring impurities, �r̃, can stabilize
and enhance the local canting 
θ and strengthen the spiral
wave vector beyond the approximations we use to derive the
effective model. For the same reason of mutual stabilization,
we still find a finite spiral order P �= 0 even when Jimp/J⊥ �
Jc/J⊥ = 2.

C. Spiral phase in a realistic model for YBaCuFeO5

It was argued in Ref. [19] that the magnetic degrees of
freedom in the insulator YBaCuFeO5 (and analogously for
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related layered perovskites) realize a close cousin of the
Hamiltonian (4.8), in that J⊥ > 0 is to be replaced by two
distinct values J ′

⊥ > 0 and J ′′
⊥ > 0 depending on the parity of

the z component of the coordinate r of the cubic lattice. From
the estimates for J‖ > 0, J ′

⊥ > 0, J ′′
⊥ > 0, and Jimp < 0 made

in Ref. [19] we have borrowed the values

J‖ = 28.9 meV,

Jimp = −95.8 meV,

J⊥ ≡ (J ′
⊥ + J ′′

⊥)/2 = 4.1 meV.

(4.12)

Figure 6(b) compares the dependence of the magnitude |P|
of the spiral order parameter P defined in Eq. (4.11) on Jimp for
the microscopic Hamiltonian (4.8) (squares) with that for the
effective Ising Hamiltonian (4.4) (circles) for the case when
the impurity bonds form a superlattice that stabilizes a long-
range spiral order. Again, good agreement is found once the
impurity bond strength is sufficiently stronger than the thresh-
old, in which case the two possible canting patterns form
robust local minima of the Hamiltonian. This is indeed the
case in YBaCuFeO5, where |Jimp|/J⊥ ≈ 23 > Jc/J⊥ ≈ 9.4. In
Ref. [19] we have reported numerical finite-temperature re-
sults for such a model. Those showed the expected continuous
phase transition from a collinear ferromagnetic phase to a
low-temperature spiral state.

D. Dependence of the ground state on the superlattice
of impurity bonds

We now illustrate how the choice made for the superlattice
of impurity bonds affects the ground state. We use again the
values (4.12) corresponding to ideal YBaCuFeO5 when defin-
ing the effective Ising Hamiltonian (4.4) and the microscopic
Hamiltonian (4.8).

We consider two superlattices of impurity bonds. They are
chosen such that ϒq has a global minimum at qmin = 0 for
one and at qmin = C�/2 for the other (cf. Fig. 7). Further-
more, both superlattices are chosen such that they share with
YBaCuFeO5 the additional property that impurity bonds only
occur between every other plane (namely, the planes hosting
bipyramids).

The essential difference between the two superlattices lies
in the relative position of nearest-neighbor impurity bonds.
In the first lattice, the majority of nearest-neighbor impurity
bonds is ferromagnetically coupled. This favors a ferromag-
netic Ising phase in the effective Ising Hamiltonian (4.4), i.e.,
a spiral magnetic phase. In the second lattice, the majority
of nearest-neighbor impurity bonds is antiferromagnetically
coupled. This favors a layered antiferromagnetic Ising ground
state of the effective Ising Hamiltonian (4.4) and thus a fanlike
magnetic order with no net winding of the spins, whereby
the orientation of the magnetization of the layers alternate
between even and odd pairs of planes. We have verified
using MC simulations of the microscopic Hamiltonian (4.8)
that the long-range spiral order, which is present when the
impurity bonds are arranged in certain Bravais superlattices,

is robust to weak distortions of that superlattice, as expected
on theoretical grounds.

E. Limit of dilute impurities

Next we analyze the limits of very dilute tetragonal, face-
centered-cubic, and body-centered-cubic superlattices of im-
purity bonds. These are tractable analytically. We will show
that ferromagnetic order prevails at the level of the Ising
degrees of freedom associated with local cantings for dilute
face-centered-cubic and body-centered-cubic superlattices of
impurity bonds. This is to say that spiral order for the under-
lying XY spin degrees of freedom prevails for these diluted
superlattices of impurity bonds. The results obtained here will
also be useful for the study of random impurity bonds in
Sec. V.

1. Cubic superlattices

We assume that the impurity bonds occupy a cubic sublat-
tice L of the cubic host lattice �. As it turns out, this case
supports antiferromagnetic order in the Ising model. Some
results of this calculation will later help us to establish that
the disordered case, in contrast, orders ferromagnetically.

If the cubic host lattice � and the superlattice L are finite
and not too large, it is possible to calculate the energy (3.38a)
for all Ising spin configurations by exact evaluation of the
Ising kernel J (I)

r̃−r̃′ defined in Eq. (3.38c). In the thermodynamic
limit |�| → ∞, with nimp held fixed, this approach is not
possible anymore. Instead, we will restrict ourselves to a
few long-range-ordered Ising configurations that are likely
candidates for the ground state and compare their energies.

The ferromagnetic Ising configuration is described by

σ F
r̃ := 1,

1

|�|
∑
r̃∈L

σ F
r̃ = nimp. (4.13a)

The most relevant competing states have ferromagnetic order
in plane (as favored by the ferromagnetic interactions in the
x-y plane), but antiferromagnetic order along the z axis. We
consider the family of states defined by [r̃ = (x̃, ỹ, z̃)]

σ
AF(m)
r̃ := (−1)�z̃/m��,

1

|�|
∑
r̃∈L

σ
AF(m)
r̃ = 0, (4.13b)

which describes a sequence of stacks of m � 1 layers, whose
magnetization alternates. Here

� ≡ n−1/3
imp (4.13c)

denotes the lattice spacing of the cubic superlattice and
�z̃/m�� returns the integer part of the fraction z̃/m�.

After subtraction of the three constants EFM, E (
θ )|L|,
and −γ nimp/2J⊥ on the right-hand side of Eq. (3.38a), the en-
ergy per impurity bond of the configurations C ∈ {F, AF(m)}
is given by

εC
L = −γ

2

⎛
⎝ ∑

r̃∈L\{0}
�

(0)
r̃ f C (z̃) + nimp

J⊥
δC,F

⎞
⎠, (4.14a)
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Spiral state

z
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Nonspiral (fanlike) state

^
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FIG. 7. Ground states obtained from the microscopic Hamiltonian (4.8). We choose the values of the exchange couplings motivated by
those calculated for YBaCuFeO5 [cf. Eq. (4.12)] and with impurity bonds forming a regular superlattice. The ground state depends qualitatively
on the superlattice. (a) A superlattice with basis vectors A = (4, 3, 0)T, B = (0, 4, 2)T, and C = (4, 0, 2)T (nimp = 1/56) results in a magnetic
spiral. (b) A superlattice with basis vectors A = (5, 0, 0)T, B = (0, 5, 0)T, and C = (0, 1, 2)T (nimp = 1/50) results in a nonspiral (fanlike)
ground state. In this case, ϒq [Eq. (4.4c)] takes its minimum at qmin = C�/2, which yields a nonspiral ground state (with Q = 0).

where the spin autocorrelation function

f C (r̃) ≡ 〈σr̃′σr̃′+r̃〉r̃′ = f C (z̃) (4.14b)

only depends on the difference in the z̃ coordinate, owing to
Eq. (4.13). Here 〈· · · 〉r̃′ denotes the average over the sites r̃′ of
the superlattice L. For configurations F and AF(1), it is given
by

f F (z̃) = 1, f AF(1)(z̃) = (−1)z̃/�. (4.14c)

In the dilute limit nimp → 0, the typical distance between a
pair of nearest-neighbor impurities is large. Hence, the typical
pairwise interaction �

(0)
r̃ tends to the dipolar form (2.15)

and can be safely used to evaluate ε
AF(m)
L up to corrections

which are subleading in the limit nimp → 0. The case of the
ferromagnetic configuration is more subtle however. Indeed, a
naive use of Eq. (2.15) would suggest that the first term on
the right-hand side of Eq. (4.14a) vanishes due to the sum
over symmetry related directions, while in fact it does not.
This is due to corrections to the dipolar interaction (2.15)
that scale as the inverse of the volume, but add up to a
finite contribution when summed with equal signs over the
whole superlattice. In the case of an isotropically shaped
cubic sample with Lx = Ly = Lz and isotropic interactions
J‖ = J⊥ ≡ J , the computation can be done exactly, using the
fact that upon averaging over all the permutations kx → ky →
kz → kx the kernel �̂

(0)
k [Eq. (2.14b)] reduces to 1/3J . Using
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f F (z) = 1, this allows us to evaluate the lattice sum exactly
for any impurity density as∑

r̃∈L\{0}
�

(0)
r̃ f F (z̃) = 1

3J|�|
∑

r̃∈L\{0}

∑
k∈BZ(�)\{0}

eik·r̃

= 1

3J|�|
∑

r̃∈L\{0}
(|�|δr̃,0 − 1)

= − 1

3J

|L| − 1

|�|

= −nimp

3J
+ O

(
1

|�|
)

. (4.15)

This finite negative contribution disfavors the ferromagnet, in
analogy to demagnetizing factors known from standard mag-
netic dipolar systems. Restricting ourselves to the isotropic
case and inserting Eq. (4.15) into Eq. (4.14a), we obtain the
energy per impurity

εF
L = −1

3

γ nimp

J⊥
. (4.16)

More generally, it is useful to cast the energy (4.14a) for
the ferromagnetic configuration (4.13a) of the Ising variables
in a different form, namely,

εF
L

(γ /2)
= −

∑
r̃∈L

�
(0)
r̃ + �

(0)
r̃=0 − nimp

J⊥

= − 1

|�|
∑
r̃∈L

∑
k∈BZ(�)

eik·r̃�̂(0)
k + �

(0)
r̃=0 − nimp

J⊥

= − |L|
|�|

∑
k∈BZ(�)

k∈L�

�̂
(0)
k + �

(0)
r̃=0 − nimp

J⊥
, (4.17)

where the reciprocal lattice L� of L enters through the identity
(4.3), �̂

(0)
k �=0 has been defined in Eq. (2.14b), and we recall

that �̂
(0)
k=0 = 0. The sum over k thus contains |�|/|L| − 1 =

1/nimp − 1 terms. Note that the self-interaction �
(0)
r̃=0 [cf.

Eq. (3.18)], which appears also in the single impurity energy,
is subtracted on the right-hand side of Eq. (4.17).

We point out an important difference between the present
effective dipolar problem and genuine magnetic dipoles. Gen-
uine dipolar interactions are mediated by magnetic fields
which extend everywhere in space, beyond the boundaries
of the sample. Therefore, they only depend on the relative
position of two spins, irrespective of where the spins are deep
in the bulk or close to a surface of a finite sample. However,
this is not so in our case where the dipolar interactions arise
through the mediation of spin waves, which are confined to the
sample. Accordingly, the interactions involving Ising spins at
the periphery of the sample are not exactly the same as those
for bulk Ising spins with the same relative position. More
importantly, there are no magnetic stray fields beyond the
sample. In real dipolar magnets those store a lot of magnetic
energy, which is avoided in the ground state by domain
formation. The unavoidable presence of domains complicates
the computation of the energy density. In particular, the
evaluation for a homogeneously magnetized sample yields a

shape-dependent result, a fact that is reflected in the ambiguity
of the value of the Fourier transform of the dipolar interactions
(2.14b) in the limit k → 0. In the present case, however,
such problems do not arise, since the spin-wave-mediated
interaction is such that �̂

(0)
k=0 = 0. This eliminates the potential

ambiguity and therefore eliminates the shape dependence. We
also do not expect the effective dipolar interactions to induce
domains, in contrast to genuine ferromagnets.

Performing a calculation analogous to the one above
yields, for the antiferromagnet AF(1),

ε
AF(1)
L
γ /2

= −
∑
r̃∈L

�
(0)
r̃ (−1)�z̃/�� + �

(0)
r̃=0

= − |L|
|�|

∑
k∈BZ(�)

k + (0, 0, π/�)T ∈ L�

�̂
(0)
k + �

(0)
r̃=0. (4.18)

Even though the quantitative mapping from the XY Hamil-
tonian (2.1) to the effective Ising Hamiltonian (3.38) only
holds for low densities of impurity bonds, it is useful to study
the effective Ising Hamiltonian (3.38) in its own right, i.e.,
without requiring the impurity bonds to be dilute.

A maximally dense superlattice is defined by

� = 1, L = �, nimp = |L|
|�| = 1. (4.19)

For such a lattice, one finds the ferromagnetic F and antifer-
romagnetic AF(1) states to be degenerate,

εF
L − ε

AF(1)
L

(γ /2)nimp
= �̂

(0)
k=(0,0,π )T − �̂

(0)
k=0 − 1

J⊥
= 0, (4.20)

since [cf. Eqs. (2.14b) and (2.14c)]

�̂
(0)
(0,0,kz )T = 1 − δkz,0

J⊥
. (4.21)

The identity (4.21) obeyed by the kernel (2.14b) can be used
together with the expression (4.4a) and the fact that only q
of the form (0, 0, kz )T enter it, to show that for a maximally
dense superlattice all antiferromagnetic states AF(m) are de-
generate with the ferromagnet. More generally, it is shown
in the Appendix that the ferromagnet is degenerate with any
Ising configuration in which the spins in every given plane at
fixed z coordinate are ferromagnetically aligned, irrespective
of the relative orientation of the magnetization of different
planes.

This degeneracy is however lifted at finite dilution, where
the way in which the dilution is realized is crucial. For
example, diluting the impurity density nimp by maintaining a
cubic superlattice but increasing its integer lattice spacing �

disfavors the ferromagnetic state. This is illustrated in Fig. 8,
where we plot the energies per impurity as a function of
superlattice spacing �. For small �, the energy difference is
obtained from the representations (4.17) and (4.18). In the
dilute limit, nimp = �−3 → 0, the reciprocal lattice L� only
contains small wave vectors, and we may replace 1 − cos ki

013273-15



ANDREA SCARAMUCCI et al. PHYSICAL REVIEW RESEARCH 2, 013273 (2020)

FIG. 8. Dependence of the energy difference between the Ising
ferromagnetic F and antiferromagnetic AF(1) states on the linear
size � of the unit cell of the superlattice for different classes of
superlattices. Blue circles represent a simple cubic (sc) superlattice
with the basis vectors (�, 0, 0), (0, �, 0), and (0, 0, �). Yellow squares
represent a face-centered-cubic (fcc) superlattice with lattice vectors
(�, �, 0), (�, 0, �), and (0, �, �). Green diamonds represent body-
centered-cubic (bcc) superlattices with the lattice vectors (�, �, �),
(�, −�, �), and (�, �, −�). The correspondingly colored horizontal
solid lines represent the dilute limit � → ∞ of these energy differ-
ences for each superlattice.

(where ki = 2πni/�) in the kernel (2.14b) by (2πni )2/2�2

with ni ∈ Z for i = x, y, z, i.e.,

εF
L − ε

AF(1)
L

(γ /2)nimp
→ δ(α)

J⊥
, (4.22a)

where the exchange anisotropy parameter α was defined in
Eq. (3.21) and

δ(α) := − 1 −
∑

n∈Z3\{0}

n2
z

α
(
n2

x + n2
y

)+ n2
z

+
∑
n∈Z3

(nz − 1/2)2

α
(
n2

x + n2
y

)+ (nz − 1/2)2
. (4.22b)

The sum over nz can be carried out explicitly,

δ(α) =
∑

n∈Z2\{0}

2π

√
α
(
n2

x + n2
y

)
sinh

[
2π

√
α
(
n2

x + n2
y

)] . (4.23)

Hence, δ(α) is always positive. For the isotropic limit α = 1,
one finds δ(1) ≈ 0.1042.

Alternatively, one can calculate the antiferromagnetic en-
ergy directly in real space using the dipolar form (2.15). This
can be used to calculate the energies of other antiferromag-
netic states AF(m), which all scale as

ε
AF(m)
L

(γ /2)nimp
= −cm

J⊥
. (4.24)

From the results (4.16) and (4.22a) it follows that c1 = δ(1) +
2/3, while one finds the higher cm’s to decrease monotonically
with increasing m. From this we conclude that a dilute cubic
superlattice orders antiferromagnetically with layer magneti-
zations that alternate in sign (m = 1).

2. Dilute, face-centered, and body-centered
tetragonal superlattices

One readily generalizes the above calculation to tetragonal
superlattices L with unit vectors (A�, 0, 0)T, (0, A�, 0)T, and
(0, 0,C�)T, where A and C are fixed integers while the integer-
valued dilution parameter � will be taken to infinity. This case
is obtained from that of a cubic lattice by substituting

nimp → 1

A2C�3
, α → J‖

J⊥

C2

A2
(4.25)

in Eqs. (4.22a) and (4.22b). Independently of the ratio C/A of
the tetragonal superlattice, the Ising antiferromagnetic state
AF(1) is favored over the Ising ferromagnetic state F .

However, similarly as in lattice problems of physical elec-
tric or magnetic dipoles [29] where the interactions have
reversed global sign, a different ground state is found in dilute
body-centered or face-centered tetragonal lattices. The differ-
ence arises because closest neighbors in these lattices have
a stronger tendency to have ferromagnetic interactions than
in simple tetragonal lattices. For the face-centered tetragonal
lattice, the basis vectors are (A, A, 0), (A, 0,C), and (0, A,C).
The corresponding dual basis vectors in reciprocal space are
e1 = π (1/A, 1/A,−1/C), e2 = π (1/A,−1/A, 1/C), and e3 =
π (−1/A, 1/A, 1/C). Their linear combinations with integer
coefficients span the reciprocal lattice L�. It is convenient to
represent a generic reciprocal lattice vector G ∈ L� as G =
n1e1 + n2e2 + n3(e2 + e3). With this choice, the asymptotic
energy difference between the ferromagnetic and the antifer-
romagnetic states in the infinite dilution limit nimp → 0 can be
written as

εF
L − ε

AF(1)
L

(γ /2)nimp
= − 1

J⊥
−

∑
n∈Z3\{0}

gn

J⊥
+
∑
n∈Z3

g(n1,n2,n3+1/2)

J⊥
,

(4.26a)

where

gn := (n1 − n2 − 2n3)2

α[(n1 + n2)2 + (n1 − n2)2] + (n1 − n2 − 2n3)2
,

(4.26b)
where for vanishing wave vector we have to set g0 = 0.
Carrying out the sum over n3, one finds

εF
L − ε

AF(1)
L

(γ /2)nimp
=

∑
n∈Z2\{0}

(−1)n1−n2

J⊥

π

√
2α
(
n2

1 + n2
2

)
sinh

(
π

√
2α
(
n2

1 + n2
2

)) .
(4.27)

In the isotropic case α = 1, the energy difference is negative
J (εF

L − ε
AF(1)
L )/(γ /2)nimp = −0.3218, so the ferromagnetic

order prevails. For body-centered tetragonal lattices one finds
the same expression, but with the replacement 2α → α. The
energy difference turns out to be always negative for any value
of α, as seen in Fig. 9. Thus, in both these types of super-
lattices the ferromagnetic state is favored over the layered
antiferromagnetic state, whatever the tetragonal aspect ratio.

V. RANDOM IMPURITIES: DILUTE LIMIT

In this section we study randomly distributed impurities
that occupy a fraction nimp of the sites of the cubic host
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FIG. 9. Shown on the right is the dependence of the energy
difference between the Ising ferromagnetic state F and antiferro-
magnetic state AF(1) as a function of α ≡ J‖/J⊥ [recall Eq. (3.21)]
for a simple cubic superlattice in the large dilution limit. On the
left is the energy difference between the Ising antiferromagnetic
state AF(1) and ferromagnetic state F for face-centered superlattices
(yellow squares) and a body-centered superlattice (green diamonds).
Independently of the value of α, the antiferromagnetic state has lower
energy for simple cubic superlattices while the ferromagnetic state
has lower energy for face- and body-centered superlattices.

lattice �. We assume again that the relevant contenders for
the ground state are given by Eqs. (4.13a) and (4.13b). In
Eq. (4.13b) we set � = 1, since only the lattice constant of
the cubic host lattice � is relevant. These configurations are
expected to come reasonably close to the true ground state and
the relevant competing metastable configurations. However,
they will differ in the orientation of a few spins from the sim-
ple configurations (4.13a) and (4.13b). The relative fraction
of these spins becomes increasingly small as nimp → 0, as
discussed below.

If the impurities are distributed randomly according to a
Poisson process, the average energy per impurity bond of the
trial configurations C = F, AF(m) is given by

εC
dis = −γ

2
nimp

(∑
r∈�

�(0)
r f C (z) + 1

J⊥
δC,F

)
, (5.1)

since any site r of the cubic host lattice � is the lower end
of an impurity bond with probability nimp, independently of
the location of other impurities. From this observation, one
might at first conclude that the antiferromagnetic state should
dominate again. However, the above consideration does not
treat correctly impurities located at short distances from each
other. On the one hand, rare pairs of impurities that are located
much closer to each other than the average separation n−1/3

imp do
not follow the pattern (4.13a) and (4.13b), but simply optimize
their mutual interaction energy, irrespective of the global
ordering pattern. Since such pairs nevertheless contribute a
finite fraction to the total energy estimated above, they must
be corrected for, which will turn out to favor the ferromagnetic
ordering. This conclusion will become clear below, as a
corollary to the discussion of another short-distance effect,
which we will consider first.

FIG. 10. Dependence on R of εC
dis(R)/γ nimp defined in Eq. (5.2)

for isotropic couplings J⊥ = J‖ ≡ J for the ferromagnetic (C = F ,
blue dots) and the layered antiferromagnetic state [C = AF(1), yel-
low squares]. Energies are given in units of J .

Impurity distributions in real materials are usually not
simply governed by a Poisson process, but rather one should
expect them to exhibit some short-range correlations. For
example, in the case of YBaCuFeO5 and related layered
perovskites the impurity bonds arise due to chemical disorder
which occasionally replaces the usual Cu-Fe pairs on bonds
along its crystallographic c axis by impurity configurations
consisting in Fe-Fe or Cu-Cu pairs. Fe-Fe pairs differ from Fe-
Cu pairs by the sign and magnitude of the resulting magnetic
exchange constant. Moreover, both Fe-Fe and Cu-Cu pairs
differ from Fe-Cu pairs in their local charge density. The
resulting Coulomb repulsion between such impurity configu-
rations thus suppresses the occurrence of pairs of impurities
at short distances. In a crude manner, we can mimic this
effect by a hard constraint on the minimal distance between
impurities, excluding distance vectors with |r| � R. With such
a constraint the average energy per impurity (5.1) is modified
to

εC
dis(R) = −γ

2
nimp

⎛
⎜⎜⎜⎝
∑
r ∈ �

|r| > R

�(0)
r f C (z) + 1

J⊥
δC,F

⎞
⎟⎟⎟⎠. (5.2)

Note that for R = 0 these energies are simply nimp multi-
plying the energy per impurity εC

L=�(R) of a maximally dense
system of impurities [recall Eq. (4.14a)]. As we have shown
in the preceding section, those energies are all degenerate.
Since the sum over r in Eq. (5.2) is dominated by small
|r|, even a small R of the order of one lattice constant will
have a decisive effect and lifts this degeneracy. In Fig. 10 we
plot as a function of R the average energies 2εF

dis(R)/γ nimp

and 2ε
AF(m=1)
dis (R)/γ nimp of the two most relevant competing

states. Already, for the smallest effective exclusion radius of
R � Rc = 1 (in units of the host cubic lattice spacing), we
find that the ferromagnetic state (and thus XY spiral order)
wins over the antiferromagnetic state, i.e., XY fan order.
This numerical result can be understood by recalling that εF

and εAF(1) are degenerate for R = 0. Upon barring impurities
on nearest-neighbor sites on the host cubic lattice, the two
states receive a relative energy shift 4nimp�r=z = 4nimp( A

J ),
which stabilizes the ferromagnetic state (A ≈ 0.123). Larger
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exclusion radii tend to reinforce this trend, as shown in
Fig. 10. In the limit of large R, the energy per impurity bond of
the ferromagnetic state is more favorable than that of the an-
tiferromagnetic one by γ nimp/3J in the case of isotropic cou-
plings. This can be understood as follows. For isotropic cou-
plings, the ferromagnetic energy per bond, εF = −γ nimp/3J ,
remains unchanged upon excluding the interactions with a
set of sites that is invariant under the cubic symmetry group,
as seen in Fig. 10. In contrast, in an antiferromagnetic state,
the interactions with the neighbors in thin spherical shells of
approximately fixed radius r > R come with alternating signs.
Those tend to cancel more effectively the larger R is, such that
εAF(1)/γ nimp → 0 as R → ∞.

Even without any repulsive short-range correlations be-
tween impurity locations, one expects Ising ferromagnetism to
prevail at sufficiently low impurity densities. This is because
rare impurities with a neighboring impurity much closer than
n−1/3

imp should effectively be taken out of the calculation for
the average energy. Indeed, if the close pair is antiferromag-
netically coupled, it will antialign, have no net moment, and
thus essentially decouples from the global ordering pattern. If
instead the pair is ferromagnetically coupled, it forms a bigger
spin that can then be incorporated in the consideration like any
other typical spin. The net effect of treating such close pairs in
this way is in essence a matter of considering only original or
effective spins with pairwise separations of the order of Reff �
cn−1/3

imp with some constant c of order 1. The competition for
the global ordering pattern then becomes essentially identical
to the one of the constrained superlattice above, with Reff now
taking the role of the exclusion radius in Eq. (5.2). From
these considerations we predict that for sufficiently dilute
concentrations nimp � (c/R)3

c the Ising ferromagnetic order
prevails.

VI. FINITE-TEMPERATURE TRANSITION
TO THE SPIRAL PHASE

In Ref. [19] it was established numerically for O(3)-
symmetric spin models described by Eq. (4.8) that a con-
tinuous phase transition to a spiral phase occurs when the
impurities were randomly distributed and their density was not
too high. In this section we aim at an analytical understanding
of the phase transition as a function of the exchange couplings.
This can be achieved in the limit of low impurity density.

The effective Ising model (3.38) undergoes ordering at a
critical temperature TIsing ∝ nimp.1 As long as TIsing lies in the

1One might worry that a critical temperature TIsing for the effective
Ising model (3.38) is not well defined in the thermodynamic limit in
view of the long-range nature of the kernel (3.38c). In particular, TIsing

might depend on the aspect ratio of the lattice � as |�| → ∞. We
argue that this is not the case as follows. Since the Hamiltonian (2.1)
has only short-range magnetic interactions, any ordering temperature
that it supports is well defined (independently of how the limit |�| →
∞ is taken) and of order unity, as guaranteed by Griffith’s theorem
[31]. We first rescale the coordinate axes and then take any reference
shape for which a single ferromagnetic domain is expected, i.e., a
prolate rather than a needlelike sample, so that we can safely assume
a single global spiral to emerge. We then integrate out the spin

range of low temperatures (3.16), the Ising approximation is
well justified. This is certainly the case for nimp 
 1. Since the
reduction to the Ising model neglects some fluctuations, we
expect TIsing to be an upper bound to the actual spiral transition
temperature Tspi. However, the bound should become increas-
ingly tight as the impurity concentration decreases towards
nimp → 0.

A. Mean-field theory

We first estimate TIsing using mean-field theory, which
should work well as three-dimensional space is the upper
critical dimension for the Ising model with dipolar interac-
tions [30,32–35]. However, we will focus on the case of
randomly distributed impurities, where the mean field actually
depends on the site that is considered. This will require a
number of additional approximations. In the next section, we
will follow an alternative and complementary approach that
instead makes use of the dipolar nature of the interactions and
exploits their covariance under spatial rescalings. This allows
us to predict how TIsing depends on the couplings, without
resorting to a mean-field approximation.

To implement a mean-field treatment, we replace the Ising
Hamiltonian (3.38) by the mean-field Hamiltonian

HMF
L := −

∑
r̃∈L

BMF
r̃ σr̃, (6.1a)

where the effects on σr̃ from all the Ising spins σr̃′ is approxi-
mately captured by the mean magnetic field

BMF
r̃ :=

∑
r̃′∈L\{r̃}

J (I)
r̃−r̃′ 〈σr̃′ 〉MF. (6.1b)

The mean-field magnetic moments 〈σr̃〉MF are subject to the
nonlinear constraint (kB = 1)

〈σr̃〉MF = tanh

⎛
⎝ 1

T

∑
r̃′∈L\{r̃}

J (I)
r̃−r̃′ 〈σr̃′ 〉MF

⎞
⎠. (6.1c)

The mean-field transition temperature is obtained in two
steps. First, we linearize the constraint (6.1c), assuming a
small order parameter

〈σr̃〉MF = 1

T

∑
r̃′∈L\{r̃}

J (I)
r̃−r̃′ 〈σr̃′ 〉MF. (6.2)

If translational symmetry were to hold and 〈σr̃〉MF were inde-
pendent of r̃, the critical temperature

T MF
Ising =

∑
r̃∈L\{0}

J (I)
r̃ (6.3)

would follow. However, translational symmetry breaks down
when the impurity bonds are distributed randomly, in which

waves. In this way, we eventually end up with the global energy scale
κnimp multiplying a dimensionless Hamiltonian with unit density
of impurity sites, as is done to obtain the Hamiltonians (6.11) and
(6.14), the critical temperature of which serves as a reference for all
antidipolar systems.
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case we estimate the critical temperature by the disorder
average

T MF,av
Ising := 1

|L|
∑
r̃∈L

∑
r̃′∈L\{r}

J (I)
r̃−r̃′ . (6.4)

Substituting the definition of J (I)
r̃−r̃′ in Eq. (6.4) yields

T MF,av
Ising = γ

|L|
∑
r̃∈L

∑
r̃′∈L\{r̃}

(
�

(0)
r̃−r̃′ + 1

J⊥|�|
)

,

= γ nimp

⎡
⎣ ∑

r∈�\{0}
�(0)

r + 1

J⊥
+ O

(
1

|�|
)⎤⎦,

= γ nimp

[
−�

(0)
r=0 + 1

J⊥
+ O

(
1

|�|
)]

= nimp(
θ )2 Jc

J⊥
(Jc + J⊥) + O

(
1

|�|
)

. (6.5a)

To reach the second equality, we have used the fact that in
a random, uncorrelated set of points L the distance vectors
r̃ − r̃′ appear with the same relative frequency as in the
translationally invariant host lattice �. More precisely, we
used

1

|L|
∑
r̃∈L

∑
r̃′∈L\{r̃}

(· · · ) = nimp

|�|
∑
r∈�

∑
r′∈�\{r}

(· · · ). (6.6)

To reach the third equality, we have used that∑
r∈�

�(0)
r = �̂

(0)
k=0 = 0. (6.7)

The fourth equality follows from the relations

γ := (
θ )2(Jc + J⊥)2,
1

J⊥
− �

(0)
r=0 = Jc/J⊥

Jc + J⊥
(6.8)

[see Eq. (3.18) for �
(0)
r=0].

Next we compare the transition temperature T MF,av
Ising with

the absolute value of the spiral twist rate at zero temperature

|Q| = 
θ
Jc + J⊥

J⊥

1

|�|
∑
r̃∈L

σr̃ � 
θ
Jc + J⊥

J⊥
nimp, (6.9)

as follows from Eq. (3.35). Equality holds when the canting
degrees of freedom σr̃ order ferromagnetically. In that case we
find that both the transition temperature and the twist rate of
the spiral are proportional to the impurity concentration nimp,
with a ratio

T MF,av
Ising

|Q| = 
θJc. (6.10)

Note that this ratio is independent of nimp. It only depends
on the coupling strengths J⊥, J‖, and Jimp via Jc [recall
Eq. (3.13b)] and 
θ [recall Eq. (3.15b)]. In experiments,
this ratio can be measured without knowing the density of
impurity bonds [18].

B. Dipolar approximation

The mean-field theory of the preceding section has at least
two drawbacks. As usual, the neglect of fluctuations will lead

to an overestimate of the critical temperature by a certain
factor O(1), which might itself be a function of the ratios
between the couplings. This makes it difficult to predict the
precise dependence of TIsing on the couplings. A second and
more serious drawback of these approximations is the fact that
the site-averaged mean field of Eq. (6.4) receives rare but large
contributions from pairs of sites that are nearest neighbors
on the underlying lattice �. This contribution represents a
nonvanishing fraction of the resulting mean field. However,
physically it is clear that the Ising spins on very close pairs
of sites will lock strongly together and either act as an ef-
fective spin with a doubled moment for ferromagnetic pairs
or essentially decouple from the rest for antiferromagnetic
coupling. In either case, these strong short-range couplings
have essentially no influence on the long-range ordering, and
thus it seems unphysical that such strong couplings should
enter in our mean-field estimate of TIsing at all.

Here we follow a different approach to establish the de-
pendence of TIsing on the couplings. Let ξ be the length scale
beyond which we can approximate the interactions J (I)

r̃−r̃′ as
being antidipolar, i.e., given by Eq. (2.15). We assume that we
can safely neglect pairs of Ising spins that are within a distance
of order ξ of each other [the probability to find another Ising
spin a distance ξ from a given one is of O(ξ dnimp), a negligible
probability as nimp → 0]. If so, we may replace the Ising
Hamiltonian (3.38) with the effective Ising Hamiltonian given
by

H (eff )
L [σr̃] := − 1

2

∑
r̃,r̃′∈L

σr̃J
(adip)
r̃−r̃′ σr̃′ − κnimp

1

|L|
∑

r̃,r̃′∈L
σr̃σr̃′ .

(6.11a)

The parameter

κ := 1

2

(

θ

Jc + J⊥
J⊥

)2

J⊥ (6.11b)

determines the characteristic energy due to the coupling to
the spiral twist (the infinite-range contribution to the Hamilto-
nian). The antidipolar interaction is

J (adip)
r̃ := J0

2π

r̃2
x + r̃2

y − 2αr̃2
z(

r̃2
x + r̃2

y + αr̃2
z

)5/2 , (6.11c)

with the anisotropy of exchange couplings α ≡ J‖/J⊥ [recall
Eq. (3.21)] and the prefactor

J0 := 1

2

√
J‖
J⊥

(

θ

Jc + J⊥
J⊥

)2

J⊥ = √
ακ. (6.11d)

We expect that, for the purpose of determining the critical
temperature, replacing Hamiltonian (3.38) with the Hamilto-
nian (6.11) is an excellent approximation.

We now claim that the critical temperature TIsing is well
approximated by

TIsing ≈ cκnimp + O(nimp), (6.12)

with c a number of O(1), independent of J⊥, J‖, and 
θ . In-
deed, by assumption, TIsing is well approximated by the critical
temperature of the Hamiltonian (6.11). Now we may trade the
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scaling transformation (2.13) for the scaling transformation⎛
⎝ r̃x

r̃y√
αr̃z

⎞
⎠ =..

(√
α

nimp

)1/3
⎛
⎝rx

ry

rz

⎞
⎠, (6.13)

which preserves the Poissonian nature of the impurity distri-
bution and is equivalent to replacing J0 by J0nimp/

√
α = κnimp

in Eq. (6.11). After this rescaling, we can factorize out the
common energy scale κnimp from both the dipolar and the
spiral twist contributions to the Hamiltonian. The putative
ordering temperature is then encoded in the dimensionless
Hamiltonian

1

2

∑
r,r′∈L

σr

[
− 1

2π

r2
x + r2

y − 2r2
z(

r2
x + r2

y + r2
z

)5/2 − 2

|L|

]
σr′ , (6.14)

which has a dimensionless ordering temperature c = O(1)
and in turn confirms our claim in Eq. (6.12). Numerical
simulations of the antidipolar Ising model yield an estimate
of the dimensionless prefactor to be c ≈ 1.5.2

The above prediction for TIsing differs from the mean-field
theory result (6.5a) by a factor of (J⊥ + Jc)/Jc and additional
numerical factors that in the case of mean-field theory might
depend on the ratio of couplings. The deviation between the
two approaches traces back to the various approximations
made in the mean-field theory. From the result (6.12) we
deduce that the ratio of the transition temperature to the spiral
twist rate has the dependence

TIsing

|Q| = c

2

θ (Jc + J⊥) (6.15)

on the exchange couplings, where we recall that 
θ depends
on all couplings J⊥, J‖, and Jimp through the solution of
Eq. (3.15b).

C. Comparison to simulations in the XY model
and to experiments

We can now compare our theoretical predictions
with experimental findings. Reference [13] reports a
ratio3Tspi/|Q| ≈ 60 meV in YBaCuFeO5, while our theory
predicts TIsing/|Q| ≈ 68 meV in the limit of low impurity
density, upon using the couplings given in Eq. (4.12) (see
Fig. 1). It is encouraging that our theory overestimates
Tspi/|Q| only by approximately 13%, considering the
simplifications that go into the modeling of the spin system

2We caution that rather large system sizes are necessary to reach the
thermodynamic limit, as was already observed in Ref. [19], where
the simulated system sizes for the full XY model were insufficient
to reach the thermodynamic limit. Indeed, the apparent finite-size
transition temperature exhibited a very significant size dependence.
Here we have directly simulated the effective Ising model. While
we reproduced the results of the full model for small samples, we
were now able to reach much bigger sizes, where the transition
temperature was found to saturate eventually, as expected. That
saturation value was taken to estimate the value of c.

3References [13,18] use a different convention for the spiral wave
vector. Their wave vector qG is related to our Q via the conversion
Q = πqG.

and the uncertainty in the value of the exchange couplings.
As noted above, the ordering temperature is proportional to
the concentration of impurity bonds. For the concrete case of
YBaCuFeO5, our theory predicts that a small fraction of 1%
of the oxygen bipyramids realizing the strongly frustrating
Fe-Fe magnetic interactions induces a transition to the spiral
phase at an ordering temperature of approximately 85 K (see
Fig. 1). Note that at those temperatures the constraint of
Eq. (3.16) is satisfied by a large margin and the mapping to
the effective Ising model is thus well controlled.

A subsequent experimental study investigated a family of
layered perovskites that all share the structural element of Cu
and Fe hosting bipyramids with YBaCuFeO5 [18]. In those
materials the lattice parameters were altered by chemical
substitutions, which affect the exchange constants, especially
the perpendicular coupling J⊥. Alternatively, one can use
uniaxial pressure to alter the lattice spacings. The concomitant
changes to observables such as Tspi/|Q| were recorded. The
experiments of Ref. [18] show that the ratio Tspi/|Q| is only
very weakly sensitive to the modification of the interlayer
spacing and thus of J⊥.

These empirical findings can be rationalized by analyzing
Eqs. (6.10) and (6.15). In layered perovskites, the exchange
anisotropy between intra- and interlayer couplings is large.
We model this empirical fact by requiring that α ≡ J‖/J⊥ � 1
[recall Eq. (3.21)]. Furthermore, the impurity coupling
strength turns out to be large as well, |Jimp|/J‖ � 1 [recall
Eq. (4.12)]. In this limit, Jc ≈ 2πJ‖/(ln α + 2.47) � J⊥ [re-
call the approximation mentioned in the caption of Fig. 3].
The canting angle between the XY spins on either end of an
impurity bond comes close to 
θ ≈ π [recall Eq. (3.15b)].
More precisely, the deviation from π is

π − 
θ ≈ 2π2 J‖
Jimp[ln(J‖/J⊥) + 2.47]

. (6.16)

After dropping this correction, to a first approximation, the
ratio between the critical temperature and the spiral twist rate
at zero temperature can be approximated by

TIsing

|Q| ≈ cπ2J‖
ln(J‖/J⊥) + 2.47

, (6.17)

with the constant c ≈ 1.5.
The degree to which the ratio TIsing/|Q| depends on the

coupling J⊥ can be quantified by the logarithmic derivative

∂ ln(TIsing/|Q|)
∂ ln J⊥

≈ 1

ln(J‖/J⊥) + 2.47
. (6.18)

For large anisotropy α, this becomes small. For the exper-
imental values of Eq. (4.12), the logarithmic derivative of
Eq. (6.18) evaluates to approximately 0.2, implying that a
50% change in J⊥ only results in a 10% change of the
ratio TIsing/|Q|, in qualitative agreement with the experimental
observations in Ref. [18].

VII. CONCLUSION AND OUTLOOK

Any three-dimensional lattice hosting XY spins that
interact through ferromagnetic nearest-neighbor exchange

013273-20



SPIRAL ORDER FROM ORIENTATIONALLY CORRELATED … PHYSICAL REVIEW RESEARCH 2, 013273 (2020)

interactions display a ferromagnetic long-range order below
some critical temperature. We have given sufficient condi-
tions under which the replacement of a dilute fraction of the
ferromagnetic bonds by antiferromagnetic bonds destabilizes
the ferromagnetic order in favor of noncollinear long-range
order in the form of a spiral phase. A necessary but not suffi-
cient condition for spiral order is that the antiferromagnetic
exchanges along the impurity bonds be sufficiently larger
than the ferromagnetic couplings. This induces local canting,
which lowers the energy close to the frustrating bond. If this
condition is met, a sufficient condition for spiral order is
a strong correlation between the impurity bonds such that
(i) they all point along a preferred direction and (ii) they
are distributed in space such that ferromagnetic interactions
dominate between the Ising degrees of freedom associated
with the local canting patterns around the impurities. We
showed rigorously that (ii) is satisfied for impurities located
on Bravais superlattices whose shortest lattice vectors tend to
point in directions in which the effective Ising interactions
are ferromagnetic, while neighboring impurities along the z
axis, for which the interactions are antiferromagnetic, appear
only at larger distance. Small distortions away from a per-
fectly regular Bravais lattice (with displacements significantly
smaller than the linear dimensions of a Voronoi unit cell of the
superlattice) would in general not destroy the spiral order. In-
deed, such small perturbations alter the effective interactions
between the cantings only by a small fraction, which is not
expected to destabilize the ferromagnetic ordering of cantings,
if this ordering is a stable global minimum of the effective
Ising model defined on the superlattice.

Superlattices do not arise very easily however. In supercon-
ducting analogs, which we will discuss below, superlattices of
frustrated links could be nanofabricated. In magnetic materi-
als superlattices of defects might form naturally if one changes
the relative fraction of magnetic ions in perovskites (cf., for
example, Ref. [36]) so as to induce a finite concentration
of impurity bonds. Upon careful annealing, those can be
expected to organize in spatially regular structures resembling
a superlattice. However, since a change in ion composition
may accompany a change in the valence of the ions on those
bonds, it is not a priori clear whether they would still have a
magnetically frustrating character.

So far, however, superlattices of impurity bonds have not
been realized in actual materials. It is therefore an important
result of the present work to show that completely randomly
distributed impurities are always prone to stabilize spiral
order, provided the impurity density is low enough. At higher
impurity densities, a short-range repulsion among impurity
bonds, e.g., due to Coulomb constraints in real materials,
has the main effect of reducing the stability of fan states
(layered antiferromagnetic orderings of the canting degrees of
freedom), and thus also stabilizes spiral order. Hence, once the
orientational correlation (i) is ensured, the tendency towards
spiral order is rather strong. Below we review how property
(i) arises in perovskite systems.

On the other hand, if the impurity bonds and their orienta-
tions are white-noise correlated in space, the microscopic XY

Hamiltonian belongs to the family of three-dimensional ran-
dom XY models introduced by Villain, which he predicted to
generically host amorphous glassy order (dubbed a semi-spin-
glass). From this it follows that the zero-temperature phase
diagram of three-dimensional random-bond XY magnets (as
characterized by the strength of the frustrating antiferromag-
netic interactions and their spatial correlations) contains at
least four stable phases: the ferromagnetic phase, the spiral
phase, the fan phase (i.e., ferromagnetic in plane order with
orientation oscillating from plane to plane), and the semi-spin-
glass phase.

From the perspective of the original microscopic XY spins
in the Hamiltonian (2.1), the phenomenology for small con-
centrations nimp 
 1 is the following. Upon lowering the
temperature in the XY paramagnetic phase, a continuous
phase transition takes place in the three-dimensional XY
universality class to a ferromagnetic phase at the temperature
TXY . This ferromagnetic phase becomes further unstable at the
temperature Tspi 
 TXY [as estimated by TIsing in Eq. (6.12)],
where an XY spiral phase emerges via a continuous phase
transition. It is driven by the dilute concentration nimp 
 1 of
impurity bonds that are orientationally correlated. The spiral
wave vector Q may serve as an order parameter for this Ising
transition. The associated critical exponents are expected to
take mean-field values, given the dimensionality and the long-
range nature of the dipolar interactions.

What happens as nimp is increased so that T MF
spi ∼ TXY ?

In this limit, the effective Ising model (3.38) is no longer a
valid approximation of Hamiltonian (2.1), so at this stage we
cannot make controlled predictions. However, it seems very
likely that at large enough nimp � 1, the impurity bonds will
dominate the coupling between adjacent ab planes, inducing
a layered antiferromagnetic state. Upon increasing nimp this
state might be reached either continuously, with the spiral
wave vector saturating at Q = π , or discontinuously, via a
first-order transition at some critical value of nimp. In the
regime of smaller nimp � 1, the critical temperature of the
ferromagnetic instability will decrease with increasing nimp,
while the spiral instability temperature is expected to continue
to increase. They might merge into a single direct transition,
if this is not preempted by the emergence of a layered anti-
ferromagnetic phase. An approach that is nonperturbative in
nimp is needed to address these questions. It remains an open
challenge to determine optimal combinations of exchange
couplings that would allow one to maximize Tspi by increasing
nimp, and thereby extend the regime of the incommensurate
spiral magnetic phase to high temperatures.

In our earlier paper [19] it was argued that YBaCuFeO5 and
related layered perovskites unite all the essential ingredients
of the Hamiltonian discussed in this work and thus could
realize the spiral XY phase described above. Indeed, chemical
disorder is believed to lead to occasional substitutions of Fe
for Cu (and vice versa) in the bipyramids that are aligned
along the z axis. In the pristine material, those host a Cu-Fe
pair. By far the most pronounced effect of such substitutions
is the fact that an impurity Fe-Fe pair has a much stronger
exchange of opposite sign as compared to a usual Cu-Fe
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pair. The effect of such substitutions on the exchanges with
neighboring magnetic ions is instead much smaller in com-
parison. These properties lead to the directional correlation
(i) of impurity bonds, which are essential to stabilize a spiral
phase. The supporting evidence is as follows. On the one
hand, Monte Carlo simulations for realistic values of the
magnetic exchange couplings in YBaCuFeO5 yield transition
temperatures to the magnetic spiral phase as high as 250 K.
On the other hand, it was reported in Ref. [13] that tuning
the degree of occupational disorder by changing the annealing
procedure of YBaCuFeO5 affects the transition temperature
and the wave vector of the spiral in a way that is qualitatively
and quantitatively consistent with Eq. (6.15). Finally, we point
out that a mechanism very similar to the one described here
might be at work in hole-doped cuprates, where pairs of holes
might take the role of the frustrating impurity bonds [37].

Applications to other systems

The main physical mechanism we discussed in this work
applies to other systems as well. First, we point out that the
restriction to XY spins is not essential. Indeed, we expect
that Heisenberg spins with an O(3) symmetry (or any other
set of continuous degrees of freedom undergoing spontaneous
symmetry breaking) would exhibit essentially the same phe-
nomenology: At low temperatures the unfrustrated system
will order ferromagnetically. Frustrating antiferromagnetic
impurity bonds induce local canting patterns that are subject
to effective pairwise interactions upon integrating out spin
waves. A ferromagnetic order of the canting degrees of free-
dom again implies spiral order for the original Heisenberg
spins. If the canting induced by a local impurity bond pre-
serves the coplanarity of the background ferromagnetic order,
the problem simply reduces to an effective XY model. This is
what we found to happen in the presence of nearest-neighbor
Heisenberg interactions. However, with more complex inter-
actions, it might occur that the local canting pattern is non-
planar. This would imply that the canting does not only have
a discrete Ising degree of freedom, but rather a continuous
XY -like degree of freedom. Indeed, for an isolated impurity,
any rotation of all spins around the direction of the back-
ground ferromagnetic magnetization yields an energetically
equivalent canting pattern. Upon integrating out spin waves,
these effective XY canting degrees of freedom will be coupled
through dipolelike interactions and their ferromagnetic order
will again induce a spiral of the original Heisenberg spins.

The phenomenology of magnetic XY spins immediately
carries over to superconducting systems too. There the role
of XY spins is taken by the phase of superconducting islands
with a well established amplitude of the superconducting
order parameter, and Josephson couplings replace the mag-
netic exchange couplings. Frustration could be induced by
Josephson couplings with a negative sign (based on ferro-

magnetic materials, for example). However, a much simpler
way to achieve frustration consists in threading a homogenous
magnetic flux through a Josephson junction array. The recent
advances in fabrication techniques and nanolithography for
such devices should allow one to artificially design and con-
trol XY systems with a desired spatial pattern of frustrated
plaquettes that emulate the presence of the antiferromagnetic
impurity bonds in the magnetic analog. A magnetic spiral
phase with ferromagnetic order of the Ising degrees of free-
dom of the canting patterns then translates into a system of
vortices of the same vorticity (sense of circulation), entailing
a global supercurrent in the system. Exploration of this is left
for future work.
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APPENDIX: DEGENERACY OF ALL CONFIGURATIONS
WITH FERROMAGNETIC ORDER IN THE PLANES

Let us consider a maximally dense lattice of impurity
bonds, i.e., L = �, with � the host cubic lattice. By compar-
ing the interaction energies of various candidates for ground
states we will establish that, in the dense limit, an infinite
family of spin configurations is degenerate. These degenerate
configurations are such that the Ising degrees of freedom take
values that depend solely on the z component of their position
r = (x, y, z),

σr ≡ sz = ±1. (A1)

Within any x-y plane of the cubic lattice the Ising degrees of
freedom are ferromagnetically ordered, but they are uncorre-
lated among different planes. According to Eq. (3.38), up to
a global constant, the total energy per lattice site of such a
configuration is

ε[sz] = −1

2
× 1

|�|
∑

r′,r′′∈�

J (I)
r′−r′′sz′sz′′ . (A2)

We now focus on the interaction Ez′′ |z′ between two layers
with z coordinates z′ and z′′, respectively. It is proportional to
sz′sz′′ , with

−sz′sz′′Ez′′ |z′ := 1

2

∑
x′,y′,x′′,y′′

J (I)
r′−r′′ =

∑
x′,y′,x′′,y′′

γ

2|�|
∑

k∈BZ(�)\{0}
�̂

(0)
k eik·(r′−r′′ ) + γ LxLy

2J⊥Lz
, (A3)
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where Lx, Ly, and Lz are the numbers of lattice sites along the x, y, and z directions, respectively, and |�| = Lx × Ly × Lz. With
the help of [recall Eq. (2.14b)]

�̂
(0)
(kx=0,ky=0,kz �=0)T = 1

J⊥
, (A4)

we can perform the sums over x and y coordinates. This sum gives

−sz′sz′′Ez′′ |z′ = γ LxLy

2Lz

∑
kz

kzez ∈ BZ(�) \ {0}

eikz (z′−z′′ )

J⊥
+ γ LxLy

2J⊥Lz
= γ LxLy

2J⊥
δz′,z′′ . (A5)

The energy per spin in all configurations of arbitrarily layered, ferromagnetically ordered planes is thus −γ /2J⊥, independently
of the magnetization structure sz.
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