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The dynamics of a wide range of technologically important quantum systems are dominated by their
interaction with just a few environmental modes. Such highly structured environments give rise to long-lived
bath correlations that induce complex dynamics which are very difficult to simulate. These difficulties are
further aggravated when spatial correlations between different parts of the system are important. By modeling
the dynamics of a pair of two-level quantum systems in a common, structured, environment we show that a
recently developed general purpose numerical approach, the time-evolving matrix product operator, is capable of
accurate simulation under exactly these conditions. We find that tuning the separation to match the wavelength of
the dominant environmental modes can drastically modify the system dynamics. To further explore this behavior,
we show that the full dynamics of the bath can be calculated directly from those of the system, thus allowing us

to develop intuition for the complex dynamics observed.
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I. INTRODUCTION

When a spatially extended quantum system interacts with
a structured environment in which a narrow band of modes
dominate, the resulting dynamics can be very complex and
difficult to simulate accurately. Such environments can retain
a memory of their interactions with the system on a time
scale comparable to that on which the state of the system
changes, and in the face of such memory effects standard open
system techniques can fail. However, reliable simulation of
such environments is vital in order to understand the behavior
of an ever-increasing number of experimental platforms and
quantum devices. For example, in photosynthetic systems the
observation of quantum coherence arises from the interplay
of electronic coupling to groups of vibrational modes [1]
and the coupling between biomolecules [2]. The interplay of
these degrees of freedom has been shown to enhance energy
transport [3-6], where spatial correlations in the environment
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play a crucial role [7-11]. Similar physics can also be found
in, e.g., trapped ions [12] and molecular junctions [13].

The sensitivity of extended quantum systems to memory
effects was recently observed in an experiment on a “giant”
superconducting atom [14], and spatially correlated noise in
quantum registers has been shown to affect quantum error
propagation [15]. Bath memory also plays a key role in the
function of micromechanical resonators, where adjustment
of the environmental noise spectrum is possible [16] and
photonic crystals, where band gaps in the spectral density
give rise to localized modes and dissipationless oscillations
[17-19]. The effect of structured environments has also been
explored with superconducting qubits subject to noise or
varying bandwidth [20].

In order to model these environmental memory effects, we
must go beyond the standard Born-Markov approximations
[21] which lead to time-local master equations for the system
density matrix. The development of techniques to simulate
these non-Markovian dynamics has therefore been the sub-
ject of much recent theoretical effort [22]. These techniques
broadly fall into two categories: First, there are approximate
methods which change the boundary between the system and
environment such that the Born-Markov approximations are
valid for the new system [23-28]; second, there are numer-
ically exact methods which utilize some particular structure
of the bath Hamiltonian to provide exact dynamics [29-35].
These approaches usually work best for models where the
system Hilbert space is quite small, or has a specific form of
spectral density. However, it can often be difficult to know
a priori the range of validity of some of these approaches,
and so accurate and efficient benchmarking procedures are
essential.
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FIG. 1. (a) Cartoon of the dimer system we consider accompa-
nied by schematic plots of (b) the underdamped spectral density J(w)
and (c) the corresponding bath autocorrelation function C(t).

In this paper, we demonstrate that a recently developed
numerically exact approach, the time-evolving matrix prod-
uct operator (TEMPO) [34], can be used to efficiently find
accurate nonlocal system dynamics for highly structured en-
vironments including spatial effects. The TEMPO algorithm
uses a Feynman sum-over-histories approach to the path-
integral formulation of the dynamics of an open quantum
system, using an influence functional to capture environ-
mental memory effects. By writing this path-integral repre-
sentation as a sum over discrete time steps, we can calcu-
late the system quantum dynamics by contracting a tensor
network [34]. The memory effects are then encoded in a
matrix product state which contains information about the
history of the system. This is propagated forward in time
by successive contraction with a matrix product operator.
By performing singular value decompositions and truncation
after each time step [36,37] we can capture bath memory
times orders-of-magnitude beyond those possible with previ-
ous approaches [30,31]. The similarities between TEMPO and
the process tensor [38] have recently been explored [39], and
TEMPO has been used to model dynamics in optomechanical
systems [40]. Further details on TEMPO can be found in
Appendix A.

We use TEMPO to study a pair of spatially separated two-
level subsystems interacting with a common environment, in
which a narrow band of modes dominate the interaction. The
complex environmental structure and spatial correlations give
rise to highly non-Markovian system dynamics and we find
that by tuning the separation between the subsystems, it is
possible to control their interaction with the environment. We
also show how we may obtain the dynamics of the environ-
ment by appropriate analysis of purely system observables.
This then allows us to develop a more complete picture of
the complex quantum dynamics of this model using TEMPO,
going beyond the calculation of expectation values of system
operators that is typically done using exact approaches.

II. MODEL

Figure 1(a) shows a schematic cartoon of the model we
consider and highlights how the pair of two-level systems in-

+ Z Ozi Z(gi,kak + &) + Z wajar. (1)
i k k

The two-level system (TLS) at site i and position r; has energy
splitting €; and an excited (ground) state denoted |X;)(]0;)).
The pair of TLSs form a dimer with a coherent coupling of
strength Q2. The environment consists of bosons confined to
one dimension where az creates an excitation in the mode
with wave vector k. We also introduce the Pauli operators
o, = |Xi)(Xi| —10;)(0;]. By assuming that the environment
is uniform then the coupling g; x = gx exp(—ikr;) consists of
a position independent part g; and a phase that depends on
the site i. This kind of model can underpin a wide range
of physical systems, for example biological or molecular
systems undergoing energy transport and interacting with vi-
brational modes [5,41], energy transfer in solid-state systems
[42], superconducting qubits in microwave resonators [43], or
quantum dots interacting with a micromechanical resonator
[44].

The bath can be completely characterized by its spectral
density J(w) =), |gx]?8(w — wy), from which we can cal-
culate its autocorrelation function in thermal equilibrium at
temperature 7':

Ct) = / b da)J(a))[coth (3) cos(wr) — isin(a)t)]. )
A 2T

If this function decays slowly compared to the system time
scales then the bath memory is important.

We consider a bath in which a narrow band of modes dom-
inate the interaction with the system. The TEMPO method
is not limited to studying such forms of spectral density;
it has already been well tested for relatively flat functional
forms [34,40]—instead the long-lived correlations provide a
challenge for the method to capture. The specific form of
spectral density we use is [45]

al"a)ga)

(a)g - a)z)2 + Mw?

Jo(w) = 3

Here o gives the coupling strength, w is the frequency charac-
terizing the dominant mode, and I' provides a measure of the
width of the dominant band. Figure 1(b) shows a schematic
plot of this spectral density and Fig. 1(c) the correspond-
ing correlation function highlighting the long memory times
present with such environments.

The Hamiltonian, Eq. (1), does not couple states with a
different total number of system excitations and so we restrict
ourselves to the single excitation subspace, the only one where
nontrivial dynamics are observed. Within this subspace it is
possible to map the problem onto that of a single spin coupled
to a bosonic environment [46]. The mapped Hamiltonian is
then a spin-boson Hamiltonian,

Q €
H=—o0+ -

5 0x+ 50z + 0 ij(gkak + &) + ; wiajay, (4)
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FIG. 2. (a) Underdamped spectral density, given by Eq. (3),
with the different frequencies used. (b) Corresponding correlation
functions. (c)-(e) Dynamics calculated using TEMPO (dots) and
RC (solid lines) for wy = 2/4, 2/2, Q. The other parameters are
ma =0.05Q, T =0.05Q2, T = Q,e =0.59.

where € = €; — €1 and g, = 2igy sin[k(r; — r»)/2]. We also
define new Pauli operators: o, = (0,2 —0;,1)/2 and o, =
[X2)(X1] + |X1)(Xz2]. This modification to the coupling con-
stants results in a renormalization of the spectral density,

J(@) = 2Jo(@)[1 — cos(wR)], 5)

where R = |r; — r;| is the dimer separation and we have as-
sumed a linear dispersion w(k) = c|k| with ¢ = 1. The cosine
term arises from the phase factors in the original coupling
terms.

III. BENCHMARKING

In order to check that TEMPO remains effective for highly
structured environments we first benchmark it for a simplified
case of a single spin described by Eq. (4) interacting with
a bath with the unmodified spectral density, Eq. (3). In this
limit it is possible to simulate the dynamics using other
techniques. In particular we compare the TEMPO simulations
with those obtained using a reaction-coordinate (RC) master
equation, which has been rigorously benchmarked for similar
problems [26-28], allowing us to verify that TEMPO is able to
accurately simulate dynamics in structured environments. The
RC mapping takes a single collective mode of the environment
into the system definition; then the rest of the bath, which
is assumed to be Markovian, couples to the now augmented
system. This gives rise to a standard Born-Markov master
equation for the system dynamics. More details can be found
in Appendix B.

In Fig. 2 we compare dynamics generated by TEMPO with
those of the RC master equation for this simplified model, test-
ing three different values of wy. We find excellent agreement
between the two algorithms for all sets of parameters. The
RC approach is accurate for these parameters and this form of
spectral density, and so is able to capture the complex dimer
dynamics. In this simple case the RC approach requires sig-
nificantly reduced numerical resources compared to TEMPO,
though we find that both techniques take longer to converge
at lower mode frequencies and higher temperatures. For the
RC algorithm the reason for this is clear: the occupation of the
mode included in the system increases in these regimes and so
a larger system Hilbert space is needed for convergence. For
TEMPO we find that the number of singular values that need
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FIG. 3. Effect of the mapping, Eq. (5), on the spectral density.
(a) The unmapped spectral density (grey shaded) and an example
of the mapped case (solid black). (b)—(d) Mapped spectral densities
for the three cases considered in the main text from top to bottom:
R =271 /wy, 2 /1.1wy, and 277 /0.9wy. The dashed black lines depict
the frequencies described in the main text.

to be retained for convergence increases—i.e., more system
paths gain a significant amplitude. This is expected when
the environment becomes more occupied. These results show
both that TEMPO is able to deal with such structured spectral
densities and the RC approach can be used to accurately
simulate dynamics for this model [28].

IV. EXACT SYSTEM DYNAMICS

We now turn to analyzing the full model including the
spatial modifications to the spectral density present in Eq. (5).
Previous studies have shown that spatial correlations in the
bath can have a significant effect on population transfer
between localized systems [7-9,34]. However, these studies
focused on the case where the original spectral density Jy(w)
is much broader than that given in Eq. (3)—they do not
include systems where just a narrow band of modes dominate
the system interaction—and so the modification due to the
spatial structure of the system is not as pronounced.

Since we are now using the general mapped spectral den-
sity in Eq. (5), treating the dynamics using the RC formal-
ism becomes much more difficult: to accurately capture the
dynamics it would be necessary to include more modes in
the system than is computationally feasible. This means that
for the remainder of this paper all results are obtained using
TEMPO.

In this model there are now three possible resonance con-
ditions which can be met by matching two of the following:
the bare system frequency €2, the characteristic frequency
of the environment wy, and the frequency corresponding to
the separation between the TLSs wgr = 27 /R. In Fig. 3 we
show how choosing wg = wq leads to a complete suppression
of the main peak of the bare spectral density, and choosing
wgp = (1 £0.1)wy leads to a very asymmetric line shape. In
the single line plots of Fig. 4 we show how these differences in
spectral density manifest themselves in the system dynamics.
We show results for the three TLS spacings wg = wy, (1 £
0.1)wq and for bare system frequencies €2 tuned to the same
three possible values, resulting in nine sets of results.

The system dynamics are complex and difficult to inter-
pret, with multiple oscillation frequencies appearing in the
dynamics. These are not only due to the peaked structure of
the original spectral density (as occurred for the simplified
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FIG. 4. Spin dynamics (single line plots) and corresponding environment displacement (main panels) at position x over time as calculated
with Eq. (16) for various separations and dimer frequencies. Displacements are normalized to the maximum displacement across all plots. The
dashed black lines correspond to the positions of the TLSs. For all of the dynamics we have set 7 = Oand e = 0, I" = 0.05wy, and ror = 0.1y

for the unmapped spectral density.

single spin model) but also because of the spatial correlations.
However, we next show that TEMPO can be used not only
to extract system dynamics, as discussed in Ref. [34], but
also to find evolution of bath degrees of freedom. This will
enable us to gain more insight into how the interplay between
the bath and system leads to the complex dynamics shown
in Fig. 4.

V. BATH DYNAMICS

In this section we show that it is possible to calculate bath
operator expectation values in terms of system dynamics. To
do this we formally solve the Heisenberg equations of motion
[47,48] for the expectation value of, e.g., the annihilation
operator for a particular bath mode, and obtain an expression
entirely in terms of the expectation of the system operator
which couples to the bath.

Consider general interaction and bath Hamiltonians given
by

Hi(t) + Hp = A1) ) (awa) + gla) + )_ xajax,  (6)

k k

for a system operator A() in the system interaction picture.
The time evolution of the annihilation operator a;(¢) can be

found from the Heisenberg equation of motion:

d
Jra(t) = iLH| (1) + Hp, ax(0)] (N
= —lgkA(t) — ia)kak(t), (8)
d. . A
— [ ar ()] = —igre™ A). (€))

dt

Formally integrating this and taking the expectation with
respect to the total density matrix p gives (assuming

(ar(0)) = 0)

(a(0)) = —igre / areént Ay, (10)
0

t
(al (1) = igie'™ / dt'e " (A(t")). (1)
0
Thus the dynamics of any bath mode can be found from know-
ing the exact system dynamics up to the time . Calculations
of higher-order moments are much more involved requiring
multiple numerical integrals to be performed and so for now
we only consider quantities that can be constructed from the
expressions above.
The quantity we consider is the displacement of a one-
dimensional field [49] given by

1 )
® , — T lk.X.
(x, 1) Ek M[(ak(t)) + (al ())]e

12)

013265-4



EXACT QUANTUM DYNAMICS IN STRUCTURED ...

PHYSICAL REVIEW RESEARCH 2, 013265 (2020)

Now for the A = o coupling from Eq. (4) we have 8", = & and wy = |k| = w_; such that

d(x, 1) = Xk: %[—e_iwk’-/o dr' e (o,(1")) +ei“’k’/0 dt/e‘i“’k”<6z(t/))]eikx (13)
_ ﬁikxftd/' ot 14
; =) t' sin[wg(t — t)](0,(t")) (14)
— 4 / " k= sin (ﬁ)e""x f "t sinfox(t — )](0,") (15)
_ N 2 0 :

o0 Wy
= 8/ooda),/ (@) sin <w—R> sin(wx)/ dt’ sin[w(t —t) {0, (")), (16)
0 w 2 0

where between the last two lines we have discarded the odd
component of the integrand and halved the integration domain
since everything remaining is even.

We show the real-space displacement of the bath as a
function of time and position as a color map beneath the
corresponding system dynamics in Fig. 4. The black dotted
lines indicate the positions of the two TLSs. In the fully
resonant case (the center plot) we see that most of the bath
excitation gets trapped between the two TLSs which simply
show oscillations which decay away at a very slow rate. We
also see slow decay in the other two plots where Q2 = wg;
this is because J(2) = 0 in these cases and hence a simple
Markovian treatment would predict no decay at all.

When at least one of the frequencies is detuned from this
condition we see a more pronounced propagation of bath
excitations away from the system as the trapping effect is
reduced. In these cases the overall decay rate of the TLS is
gradually enhanced as the detuning is increased, since now
the value of J(2) is larger. The detuning can also introduce
a beat frequency into the bath dynamics, most clearly seen
in the bath population trapped between the two TLSs, and
most pronounced in the most detuned cases, i.e., in the bottom
right and top left panels of Fig. 4. This beating gives rise to
distinctive revivals in the TLS dynamics.

At very short times all of the dynamics are very similar.
On time scales t < w;l each TLS only senses its own local
environment and hence behaves as if it were interacting with
bosons described by the unmapped spectral density. How-
ever as soon as the influence of the other TLS is felt the
dynamics become radically different to those predicted by an
independent environment model. These dynamics are highly
sensitive to the relative detunings of the three frequencies
described above, becoming significantly different even for the
very small detunings studied here.

VI. CONCLUSION

In conclusion, we have shown that TEMPO can provide
accurate simulations of quantum systems in structured envi-
ronments. We first validated the technique by checking that
TEMPO simulations for a simple model agree with the RC
approach. We then presented TEMPO simulations of the more
complex dynamics that result from the interplay between a
highly structured spectral function and spatial correlations be-
tween different parts of the system. This shows that TEMPO is

(

not limited to specific forms of spectral density: it should be
straightforward to go from single to multiple peaks, so long
as the memory time of the bath can still be captured. TEMPO
therefore provides a versatile method for simulating systems
coupled to an environment with arbitrary structure.

In addition, we have shown that it is possible to find the
full dynamics of the environment directly from the system
dynamics. This enabled us to explore how it is possible to
tune the separation between the spins such that one can ef-
fectively remove the coupling to the dominant environmental
mode and how the resultant dynamics are highly sensitive to
slight variations in parameters around this point. Such exact
environmental tracking can help to explain the behavior of
open quantum systems in general, and so aid in the design of
future quantum devices. This greater insight into the dynamics
of open quantum systems could also lead to the development
of new approximation schemes and to the self-consistent
verification of others.

The research data supporting this publication can be found
in Ref. [50].
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APPENDIX A: TIME-EVOLVING MATRIX
PRODUCT OPERATORS

In this Appendix we outline the implementation of the
time-evolving matrix product operator (TEMPO) algorithm.
For full details we refer the reader to Ref. [34].

The TEMPO algorithm is built upon the quasiadiabatic
path-integral (QUAPI) method [30]. To calculate the non-
Markovian evolution of the system time is discretized using
steps of size At. Then by assuming the system operators
are constant over each time step the evolution up to time
tv = NAt may be calculated by summing over all possible
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paths the system has taken to that point from initial time #;. In
practice this can be done through an iterative tensor propa-
gation routine where the object propagated is the augmented
density tensor (ADT). The ADT is grown up to time ty
from an initial physical density matrix p;, (¢;) through iterative
application of tensors:

N
AMDay) = [ T8 o @),

[N i1
n=2

(A)

The form of the B tensor depends only on the influence
functional of the Gaussian bath and can be found in Ref. [34].
The reduced system density matrix at time ¢y is then given by
summing over all indices except for the current time pj, (ty) =
> i jn.y A7J1(ty). For a harmonic bath linearly coupled to
the system, the B tensor is composed of influences across
all pairs of time points from #; to #y, as well as time-local
components due to the coherent Hamiltonian evolution. The
discretization time step Af needs to both resolve the features
of the correlation function and ensure that the Trotter errors
are negligible. Without further considerations the exponential
growth of the ADT only allows memory lengths of order
~20At to be simulated. This restricts QUAPI to baths with
relatively short-lived and/or slowly varying autocorrelation
functions.

In TEMPO the ADT is built in the form of a matrix prod-
uct state (MPS) [36,37] and a singular value decomposition
(SVD) sweep is carried out at each time step. The B tensors
are composed of a product of time-local operators and keeping
these components separate leads to the natural formation of an
MPS representation for the A tensor given by

APy = 1@ ey [0 a0 o,

o] ...0N

(A2)

where the tensors at the two ends of the chain are rank 2, and
those in between are rank 3. In this notation the superscripts
are the “physical” index which connects to the propagation
tensor while the subscripts link adjoining a tensors. At each
step of the propagation an SVD is performed on each a and
singular values below a fixed precision x (relative to the
largest) are discarded. This leads to a reduced dimension of
the internal indices « and a significant improvement on the
exponential scaling present in QUAPI. The truncation acts
to remove the least important internal degrees of freedom
that are not needed for achieving converged dynamics. This
procedure has been shown to reduce the scaling of the required
computational resources to polynomial with memory length
for smooth spectral densities [34].

In practice there are two convergence parameters associ-
ated with TEMPO which must be adjusted to produce the
exact results in the main text:

(i) The size of the discretization time step Af, decreased
until convergence.

(i1) The singular value cutoff y reduced until convergence.
This is the ratio between the largest singular value and the
smallest which we retain.

Further to these, with TEMPO a memory cutoff is also
possible such that the growth of the ADT is stopped once
it covers enough of the system’s history to capture all rele-
vant memory effects. For the results presented in the main

TABLE I. Convergence parameters used for figures in the main
text.

Result Time step At Cutoff x
Fig. 2 0.2/Q 1078
Fig. 4 0.1/ 1077

text, however, the long correlation times associated with the
structured environments make this kind of memory cutoff
impossible and as such none were used for generating any of
the results. Table I gives the convergence parameters used for
each of the results.

APPENDIX B: REACTION COORDINATE
MASTER EQUATION

In this Appendix we outline how the reaction coordinate
(RC) mapping is implemented to obtain a time-local master
equation for the two-level system-RC (TLS-RC) reduced den-
sity matrix. The RC is the coordinate corresponding to the
direction the bath equilibrium position is displaced when the
system transitions between o, eigenstates. It corresponds to a
superposition of normal modes of the bath, and is defined by
the following mapping:

Hy =0, gila) +a) = roo(c! + o).
k

B

Here, ¢’ (¢) create (destroy) an excitation in the reaction
coordinate mode. The form of the transformation results in
coupling between the RC and the residual modes by. The
spin-boson Hamiltonian is then mapped to the following form:

Hge = Hs + H; + Hg + He, (B2)
Q € T T
Hs = —0c + 50: +hox(c’ +0)+ Qrec’e,  (B3)
H, = (C-i‘ +C)de(b]t +bk)9 (B4)
k
Hy = 3 wblby, ®5)
k

d2
He=(c"+¢) ) =~ (B6)

Wi

k

where the last term exists to counter a renormalization of
the RC’s potential that arises from the interaction term. Here
the TLS-RC coupling is given by A> = )", ¢ and this form
ensures that the canonical bosonic commutation relation is
satisfied. This coupling leads to an RC frequency of Qgrc =
A2 Y, oxg:. The residual environment is characterized by
a new spectral density Jre(w) =), |di|>8(w — wy) which
can be found by replacing the TLS in both the mapped
and unmapped Hamiltonians with a classical coordinate [51].
The spectral density does not contain any information about
the system itself and therefore can be found, in both cases,
through the classical equations of motion of this coordinate
[26,52]. The underdamped spectral density considered in the
main text leads to Qrc = wp, A = /Taypwy/2 and Jrc =
yow where y =T' /2 wy.
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Once this mapping has been performed we follow the pro-
cedure outlined in Ref. [26] applying both Born and Markov
approximations to arrive at the Schrodinger picture master
equation for the reduced TLS-RC density operator p(¢):

0 00 00
8—/: = —i[Hs, p(t)] — )//0 dr/o dww cos(wt) coth (%)

* [CL1C(—1), p)T] — ¥ / Y / ~ dow cos(or)
0 0
x [C{[C(=1), Hs], p(O}], (B7)

where we have defined C = c¢" 4+ ¢ and C(r) is the same
operator in the interaction picture at time ¢. Truncating the
Hilbert space of the RC down to n basis states, i.e., permitting
a maximum of only »n excitations, allows us to numerically
diagonalize Hs. This gives us a set of basis states |¢;) which
satisfy Hs|g;) = ¢;|¢;) allowing us to express the interaction

picture operators as

2n

Ct) =" Cixe ' |¢;) (. (B8)

k=1
where Cj = (¢‘,»|CA’|¢k) and wj; = ¢; — ¢r. We can then
rewrite Eq. (B7) as

a A A A
a—f = —i[Hs, p(O] = [C, [X, pOI1 + [C, {E, p(1)}] (BY)

with rate operators:
= %ZJRC(;,wcoth (%’i)qm»m (B10)
Jk
&= 2 D IreEn)Cild) (il (B11)
Jk

The resulting master equation can then be solved using stan-
dard open systems approaches for Markovian systems [21].
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