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Arrested states in persistent active matter: Gelation without attraction
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We explore phase separation and kinetic arrest in a model active colloidal system consisting of self-propelled,
hard-core particles with nonconvex shapes. The passive limit of the model, namely cross-shaped particles on
a square lattice, exhibits a first-order transition from a fluid phase to a solid phase with increasing density.
Quenches into the two-phase coexistence region exhibit an aging regime. The nonconvex shape of the particles
eases jamming in the passive system and leads to strong inhibition of rotations of the active particles. Using
numerical simulations and analytical modeling, we quantify the nonequilibrium phase behavior as a function
of density and activity. If we view activity as the analog of attraction strength, the phase diagram exhibits
strong similarities to that of attractive colloids, exhibiting both aging, glassy states and gel-like arrested states.
The two types of dynamically arrested states, glasses and gels, are distinguished by the appearance of density
heterogenities in the latter. In the infinitely persistent limit, we show that a coarse-grained model based on the
asymmetric exclusion process quantitatively predicts the density profiles of the gel states. The predictions remain
qualitatively valid for finite rotation rates. Using these results, we classify the activity-driven phases and identify
the boundaries separating them.
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I. INTRODUCTION

Active matter, composed of particles that convert ambient
energy to directed motion, has emerged as an important class
of nonequilibrium systems, with examples ranging from bac-
terial suspensions to synthetic colloids. Being driven out of
equilibrium at microscopic scales, the collective dynamics of
these systems are far richer [1–7] than thermal systems, which
are bound by fluctuation-dissipation relations.

A particular collective behavior that has been widely
studied is motility-induced phase separation (MIPS) [8–13].
MIPS, a kinetic phenomenon, is striking in its similarity to
equilibrium phase separation such as in passive colloids with
attractive interactions [14]. The nonequilibrium phases and
transitions between them, while having exact analogs in equi-
librium systems [8–13], exhibit anomalous fluctuations that
can be traced back to their nonequilibrium nature. The univer-
sality of MIPS has led to the proposition that activity mimics
attraction [10]. Under certain conditions, the non-Brownian
random walks representing active-particle dynamics can be
mapped onto systems with detailed balance [15].

In addition to phase separation, passive colloids exhibit
dynamically arrested phases in the form of glasses and
gels. These two types of disordered, amorphous solids have
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distinct structural and dynamical signatures. The glass transi-
tion occurs in both repulsive and attractive colloids at packing
fractions close to random close packing and is structurally
homogeneous on large length scales. Gelation in attractive
colloids leads to strongly heterogeneous states with fluid-
like regions coexisting with an arrested, percolated, dense
phase [14]. Active analogs of the glass transition [16–24]
and jamming [25,26] have been explored extensively in active
Brownian particles (ABPs) interacting via repulsive poten-
tials. A review of the emergent behavior of active particles in
crowded environments appears in Ref. [27]. Recent work on
an extreme limit of ABPs with long persistence time of their
self-propulsion direction has revealed fluctuations in the dense
limit that are qualitatively different from those at short persis-
tence times [28]. In this limit of long yet finite persistence
times, clustering and heterogeneous dynamics analogous to
passive gels have been observed [29], lending further credence
to the idea that activity can act as an effective attractive
interaction. Similarly, soft disks with infinitely persistent ac-
tive motion along quenched random directions also display
a transition to an absorbing jammed phase above a critical
density [30]. Other studies have focused on the variation of
persistence times in such systems using the static fluid struc-
ture as well as nonequilibrium velocity correlations [19–22].
The activity-induced change in the effective attraction in these
systems depends on the microscopic details of the particles
as well as their persistence times, and therefore activity may
enhance or suppress glassy dynamics.

In this paper, we explore the two well-known paradigms
of dynamical arrest in passive colloids, gelation and glass
formation, in a lattice model of ABPs with purely repulsive
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FIG. 1. [(a)–(f)] Snapshots of the system obtained at the end of simulations runs, tmax = 2 × 106. The color bar represents the stationary
time for each particle on log scale, log10(τi(tmax)) (see Sec. III). Unoccupied lattice sites are colored white. Particles that have not taken a single
step through the duration of the simulation are colored darkest. The phases we find by varying the density ρ and activity �v are (a) steady-state
passive fluid, (b) passive fluid-solid/aging glass states, (c) finite-activity states resembling the aging regime of the passive system, and [(d)–(f)]
active phase with void-solid coexistence (see Sec. V). There is a progression from majority nonarrested states (d) to majority arrested states
[(e), (f)] with increasing density. Panel (g) displays a color map of the fraction of arrested states (see Sec. IV). Locations of the snapshots
shown in panels (a)–(f) are marked on the phase diagram with pink circles. ρrcp in the figure denotes the random-close-packing density of hard
crosses: the maximal density that can be reached via the RSAD process [31]. The morphology exhibited by the snapshots at high densities
[(e), (f)] are reminiscent of high-density gels in attractive colloids, while those in panels (c) and (d) resemble the gel-bubble states at low
densities [32].

interactions but with a nonconvex shape that can interlock
and hinder rotations. Using numerical simulations and a
coarse-grained model based on a mapping to an asymmet-
ric simple exclusion process (ASEP) [33], we classify the
activity-induced phases and construct a nonequilibrium phase
diagram. A novel feature of this phase diagram is the appear-
ance of a phase with coexisting voids and solids separated
by an interface wetted by an active fluid. The coarse-grained
model quantitatively predicts the width of this interface,
which combined with conservation laws leads to predictions
of the nonequilibrium phase boundaries separating the ar-
rested states. The main result, summarized in Fig. 1, is that
activity triggers arrest into a percolated phase of immobile
particles akin to a gel in attractive colloids. At high densities,
the transition is from an aging glass, whereas at low densities
it is from an active fluid. To our knowledge, this model
provides the first realization of an activity-induced transition
from a repulsive glass to a gel.

As described in detail below, we study an active lattice-
gas model [11,34] of hard-core, cross-shaped particles on a
square lattice, which is also referred to as the N3 model since
each cross prevents the occupation of the first, second, and
third neighbors of its central square, as shown in Fig. 2. In
the passive limit, this is the simplest lattice-gas that exhibits
a finite-density first-order transition from a fluid phase to
a sublattice-ordered phase with tenfold symmetry [35]. The
sublattice-ordered states can be further grouped into right-
handed and left-handed chiral orders. In continuum, experi-
ments have demonstrated the emergence of long-range chiral
order in crystals of cross-shaped particles [36]. As the density
is quenched into the two-phase coexistence region [31,37],

one observes a crossover from a simple fluid to a slowly
coarsening or aging regime in which concentrated immobile
clusters with local crystalline order emerge. There is evidence
for the existence of a glass transition [38] in this passive
system in the form of diverging timescales and the appearance
of dynamical heterogeneities [39,40].

This paper is organized as follows. Section II describes
our model and the simulation methodology. In Sec. III, we
quantify the spatially heterogeneous dynamics that is visible
in the snapshots shown in Fig. 1. Next, in Sec. IV, we classify
the states into two categories, arrested and nonarrested, based

(a) (b)

FIG. 2. (a) Nearest-neighbor labels and hopping rates for our
active hard-cross model on a square lattice. The particles can perform
thermal moves in any of the four directions with a rate v0 (black
arrows), and active moves with a rate v0 + �v along the direction of
their orientation (red arrow). (b) The cross at the central site (green)
is prevented from rotating by the presence of neighboring crosses
occupying the fourth and fifth nearest-neighbor sites.
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on measurements of the mean-squared displacements (MSDs)
of the particles. The MSD measurements also distinguish
between aging, glassy states, and gel-like arrested states. This
classification is used to construct the phase diagram shown
in Fig. 1(g). In Sec. V, we present a coarse-grained model of
the dynamics that leads to a prediction of the density profile.
We compare these results to the density profiles obtained
in our numerical simulations in Sec. VI, and construct a
nonequilibrium phase diagram that delineates states based on
the density profiles of the arrested states. This classification
connects the dynamical signatures of arrest shown in Sec. IV
to phase separation. Lastly, in Sec. VII, we consider the effects
of finite persistence times. The appendixes provide further
details of the passive, glassy dynamics and discussion of
finite-size effects.

II. MODEL AND SIMULATIONS

We study a model of hard-core particles on the square
lattice with exclusion up to the third nearest-neighbors
[35,38,41–43]. Each particle can be represented as a hard,
cross-shaped object occupying five lattice sites; see Fig. 2.
The highest possible density of ρ = 0.2 is achieved for a
perfectly ordered arrangement of crosses. This equilibrium
model is the simplest hard-core exclusion model on a lattice
that exhibits a first-order transition from a fluid to solid
phase, with coexistence of fluid at density ρfluid ≈ 0.16 with
a crystalline solid at ρsolid ≈ 0.19 [35,38,41–43]. There are
10 distinct sublattice orderings possible for the crystalline
packings. The competition between these phases leads to
frustration at high densities, and indeed this model displays
a glass transition at higher densities [31,39,40]. By adding
activity we can, therefore, study active analogs of the glass
transition and gelation in passive colloids [14,32,44].

In the active generalization of the model [45], each particle
is assigned an active direction which can point along any of
the four lattice directions (0, π

2 , π, 3π
2 ). The particles perform

active Brownian walks on the lattice with a rate v0 + �v

along the active direction, where v0 is the “thermal” hopping
rate along each of the four lattice directions. Each particle
can change its active direction by ±π

2 with a rotation rate
DR. The thermal diffusion coefficient, DT = a2v0, where a
is the lattice spacing, is set to unity in our simulations.
Since there is no energy scale in this model, the only role
of temperature is to set the magnitude of the diffusion co-
efficient, which simply fixes the unit of time. The expected
self-propulsion velocity for a single cross in the dilute limit is
vp = a�v [45], and hence the translational Peclet number is
given by Pet = vpa

DT
= �v

v0
. Since we fix v0 = 1, we use �v to

represent Pet .
The active dynamics we prescribe for hard crosses are

identical to those implemented in simulations of MIPS for a
simple-exclusion lattice-gas model [11]: squares on a square
lattice, which do not exhibit an equilibrium phase transition
or glassy dynamics. Further, we consider rotation of the
active direction and require a rigid rotation of the whole
cross. Consequently, rotations are disallowed for crosses that
have neighboring crosses which occupy either the fourth or
fifth nearest-neighbor site; see Fig. 2(b). We note that unlike
simulations of continuum active dynamics, DT cannot be set

to zero because of a kinetic trap which only exists for random
walks on a lattice [11]. This is especially true for nonrotating
active particles: Without thermal moves to free them, non-
rotating active particles become immediately trapped upon
collision [46,47].

We use a continuous-time, rejection-free, kinetic Monte
Carlo algorithm to implement the active dynamics [48–50].
All allowed events in the system are assigned a rate, and the
relative weight of each rate determines the probability for
the event to occur. Time proceeds by randomly selecting an
event and then advancing the clock by an interval − log(r)/R,
where r is a uniform random variable and R is the sum
of all nonzero rates for the allowed events at a give time
t . The time increments after each event are exponentially
distributed with mean 〈�t〉 = 1

R . This algorithm is especially
efficient for simulations at large densities, where most moves
are disallowed by the excluded volume constraint.

The initial states of the system are prepared using a random
sequential adsorption and diffusion (RSAD) process [37],
which can generate disordered packings up to a maximum
density of ρrcp = 0.1717... [38], corresponding to the random-
close-packing density for hard crosses. We study a range of
global densities between ρ = 0.10 and ρ = 0.17 and a range
of activity values �v from 0 to 1. Note that even though �v is
a dimensionless activity, it may take values larger than unity
[45].The system domain is a two-dimensional square box of
linear length L, periodic boundary conditions, and a fixed total
number of particles N = ρL2. Unless otherwise stated, we
present results for L = 450. The longest simulation time is
set to t = 2 × 106, which is much larger than the α-relaxation
time at ρ = 0.16, τα ≈ 100 (see Appendix A).

In this work, we focus primarily on the limit DR → 0,
where the persistence of the active motion becomes infinite.
In this limit, the self-propulsion directions of the particles are
quenched random variables, and we assign these uniformly
with an equal number of the particles having an active di-
rection along each of the four lattice directions. Studying
active matter in this limit provides us with the opportunity
to probe the strongest departures from equilibrium systems
[28], and as we show in Secs. V and VI, allows us to construct
a coarse-grained model and obtain quantitative estimates of
the density profiles observed in the arrested states. Because
of the nonconvex shape of the particles, we expect that even
for finite rotation rates (DR > 0), neighboring crosses should
inhibit one another from rotating [45]. Therefore, including
rotational locking is important for modeling cases in which
nonconvex self-propelled particles must reorient their body
axis in order to change their direction of motion. In the
presence of this rotational locking effect, small but finite DR

leads to qualitatively similar results as the infinite persistence-
time limit, including overall global arrest due to percolating
gel-like structures, as shown in Sec. VII.

III. DYNAMICAL HETEROGENEITY
AND ACTIVITY-INDUCED AGING

Our measure of dynamical heterogeneity is based on the
definition of “stationary times” for each cross. The stationary
time τi(t ) at the observation time, t , is defined to be the time
that cross i has spent at its currently occupied site, �ri, namely
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FIG. 3. Distributions of stationary times, P(log10 τi ). In the pas-
sive system (�v = 0), a signature of the crossover from the steady-
state passive liquid to an aging glass regime is the appearance of
a bimodal distribution, indicating two populations of particles with
mobilities that differ by several orders of magnitude. This bimodal
distribution appears at lower densities when persistent active motion
is introduced. The different figures represent (a) passive crosses
�v = 0 and (b) the transition to an “active glass” with increasing
density at a small activity �v = 0.025. The transition at a fixed
density (c) ρ = 0.14 and (d) ρ = 0.16 with increasing activity.

τi(t ) = t − ti, where ti is the time at which particle i arrived at
�ri. Distributions of τi(t ) provide a quantitative measure of the
spatial heterogeneity of the dynamics and are closely related
to the distribution of persistence times used to analyze the
glass transition in kinetically constrained models [51–53]. In
the aging regime and at large activities, the distributions of
τi depend explicitly on time; therefore, spatial configurations
of τi(tmax) are used to construct the color bar in Fig. 1. The
distributions of τi(tmax) are shown in Fig. 3.

We first discuss the nature of dynamical heterogeneities in
the passive system. The RSAD protocol generates, at time t =
0, a uniform configuration with density ρ in which crystalline
order is minimized. In the passive system, the diffusion of
the crosses at t > 0 leads to equilibrium configurations for
ρ � 0.1625. As shown in Fig. 1(a), these equilibrium states
have very little dynamical heterogeneity. The probability dis-
tribution of the stationary times, P(log10 τi ), has a single peak
with an increasingly broad tail at large τi as ρ → 0.1625
[Fig. 3(a)]. For ρ > 0.1625, the equilibration process is in-
terrupted by an aging-coarsening process in which clusters
of increasingly immobile particles grow at an exceedingly
slow rate, which prevents the system from reaching a time-
translationally invariant state. The onset of aging is indicated
by the appearance of a bimodal distribution [Fig. 3(a)] and
distinct clusters of particles with τi(tmax) � tmax appearing
within a background of particles with 101 < τi(tmax) < 104

[Fig. 1(b)]. Bimodal distributions of persistence times have
been used to identify dynamical heterogeneities in several
glass-forming kinetically constrained models [51,54]. We
show in Appendix A that standard measures such as the
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FIG. 4. Time series of the ensemble averaged stationary time
variance, 〈Q(t )〉, for the same data sets as in Fig. 3. (a) Passive
system: 〈Q(t )〉 increases with time for ρ � 0.1650, indicating the
emergence of aging states. (b) �v = 0.025: 〈Q(t )〉 increases with
time at densities ρ � 0.1600. (c) ρ = 0.1400: 〈Q(t )〉 increases with
time for �v � 0.050. (d) ρ = 0.1600: 〈Q(t )〉 increases with time for
�v � 0.025. The onset time of active dynamics, τactive, is marked by
black arrows in panels (b)–(d).

self-intermediate scattering function also indicate the onset of
aging at ρ ≈ 0.1650.

At nonzero activity, P(log10 τi(tmax)) can develop a bi-
modal structure at densities lower than 0.165, as seen in
Figs. 3(b)–3(d). Our results, therefore, indicate that activity
leads to a lowering of the onset-density for glassy dynamics,
in agreement with the results of continuum active glass-
forming models [18,55]. As in the passive, aging system,
these bimodal distributions are associated with states that
do not have time-translational invariance. However, in the
active fluids we observe two distinct classes of such states. At
densities ρ � 0.16, the states [Fig. 1(c)] resemble the passive
aging fluid [Fig. 1(b)] with growing clusters of immobile,
solid-like regions suspended in a fluid. Increasing the activity
in this density regime leads to states with percolated clusters
of immobile particles as seen in Figs. 1(f). At densities lower
than this regime of activity-induced aging, the appearance
of a bimodal distribution in P(log10 τi(tmax)) with increasing
activity is accompanied by a clear spatial separation of the
particles into “voids” and dense regions accommodating the
most immobile particles [Figs. 1(d) and 1(e)]. In this regime,
we observe large variations in the final structures from one
simulation run to another.

The variance of the stationary times, Q(t ) = 〈[τi(t ) −
〈τi(t )〉]2〉, provides a global measure of the time evolution
of spatial heterogeneity in our dynamics. Figure 4 shows the
ensemble averaged time series, 〈Q(t )〉, of Q(t ) at different
densities and activities. In the passive system, 〈Q(t )〉 rapidly
reaches a small steady-state value in the nonaging regime of
densities [Fig. 4(a)]. Both the equilibration time and the mag-
nitude of the steady-state dynamical heterogeneity grow with
density, until for ρ > 0.1625, the equilibration time surpasses
the maximum simulation time. In this aging regime, 〈Q(t )〉
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grows indefinitely. Activity drives strong growth of 〈Q(t )〉 at
lower densities. However, as shown in Figs. 4(b)–4(d), there
is a delay time, τactive, before which the system dynamics
match the passive system. To quantify this delay time, we
define τactive to be the time at which the derivative of the
stationary-time variance becomes greater than a small thresh-
old, d〈Q(t )〉/dt > ε. For any activity, the derivative is positive
for t > 0, but it may remain small for some time: We find ε =
102 gives a robust signature for the approximate time when the
growth rate of 〈Q(t )〉 first becomes significantly different from
zero; see Fig. 4. We have checked that the choice of ε does not
significantly change our results other than providing a scale.
This delay time increases with decreasing activity or density.
At very weak activities, therefore, we observe the passive
behavior of 〈Q(t )〉 since τactive increases beyond our maximum
simulation time. For instance, at ρ = 0.1600, Fig. 4(c) shows
that the growing dynamical heterogeneity only appears for
activities �v � 0.025.

In attractive colloids, the long-time behavior of MSDs has
been used to analyze the gel-glass transition [44]. In the next
section, we quantify the dynamical arrest of the active states
using this measure. The phase diagram shown in Fig. 1(g) is
constructed from these measurements. The states with perco-
lated regions of immobile particles, seen in Figs. 1(e) and 1(f),
are dynamically arrested gel-like states [32]. The nonarrested
states [Fig. 1(d)] resemble fluids with suspended “beads” of
gels [32]. In the arrested states, the long time behavior of
Q(t ), which is the analog of the zero-wave-vector, four-point
susceptibility, χ4(q = 0, t ) [56], resembles that observed at
small wave vectors in a model of chemical gelation [57].
A striking feature of the arrested and nonarrested states at
high activities is the appearance of “voids.” We show below
that the appearance of these voids is a manifestation of an
extreme form of MIPS for these nonrotating particles that can
be understood from ASEP dynamics. Physical gels arise from
arrested phase separation [14], the gel-like states in our active
lattice gas similarly seem to arise from arrested MIPS.

IV. COLLECTIVE ARREST, PRESENCE
OF “ABSORBING STATES”

In this section, we explore the appearance of arrested states
through measurements of the MSD of individual particles.
The MSD of all particles (i = 1, ..., N) in the system is
defined as

R2(t ) = 1

N

i=N∑
i=1

|�ri(t ) − �ri(0)|2. (1)

In order to determine if states are arrested, we study the log-
derivative of this MSD for each system, defined as

γ (t ) = d log R2(t )

d log t
, (2)

which has been used for studying dynamics in a model of
gelation [44]. This observable is an instantaneous exponent
that indicates whether the MSD is diffusive (γ = 1), ballistic
(γ = 2), or arrested (γ = 0). If there is percolation of a dy-
namically arrested phase, then γ (t ) → 0 at long times. Since
the percolated phase acts as a solid boundary for the fluid-like
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FIG. 5. Mean-squared displacements (MSD) R2(t ) (insets) and
their logarithmic derivatives γ (t ) (main panels) at (a) ρ =
0.14, �v = 0.2, (b) ρ = 0.13, �v = 0.07, (c) ρ = 0.15, �v =
0.07, and (d) ρ = 0.12, �v = 0.05. Blue curves show “arrested”
states (γ < 0.5), while red curves show nonarrested states. The
ensemble average 〈γ (t )〉 is shown in black, and the mean-field
prediction for a single active tracer is shown in green. The single
tracer prediction crosses over from diffusive (γ = 1) to ballistic
(γ = 2) at a characteristic time t∗ (black arrows), which we estimate
from γ (t∗) = 3/2.

particles, this is expected: For a random walk confined within
a box, it is well known that the MSD crosses over from
diffusive growth R2 ∼ t to a flat plateau R2 ∼ t0 once the
walker reaches the walls.

Figure 5 shows MSD and γ (t ) measurements for individual
runs at large and intermediate activity values, �v = 0.20 and
�v = 0.07. We can construct a mean-field model for the
behavior of γ (t ) in the nonarrested states by using known
results about the dynamics of a single nonrotating active tracer
moving in a background of passive particles with density ρ

[45]. For a nonrotating active tracer moving on a lattice at ρ =
0, the MSD is given by �r2

i (t ) = D0(4 + �v)t + D2
0�v2t2

[11]. This form may be generalized to higher densities by
introducing a density-dependent diffusion coefficient D(ρ),
giving

�r2
i (t ) = D(ρ)(4 + �v)t + D(ρ)2�v2t2. (3)

Note that this requires a measurement of D(ρ) for the passive
lattice gas. For a single active tracer, therefore, γ (t ) displays
a smooth crossover from 1 to 2 at a characteristic timescale,
which we can estimate from γ (t∗) = 3/2, yielding t∗ = (4 +
�v)/[�v2D(ρ)]. This crossover time increases as the density
is increased or activity is decreased. This is the same trend as
exhibited by τactive. Thus, any nontrivial collective behavior
arising from the activity appears once the ballistic motion
takes over.

We define arrested runs to be those for which γ (tmax) <

0.5. For strong activities, all runs fall into the arrested class,
whereas at lower values of �v only a finite fraction of runs
become arrested. When considering the ensemble of possible
dynamical trajectories, we observe two different types of
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activity-driven behavior: arrested states for which γ (t ) → 0
at long times and active states with γ (t ) fluctuating around
a value of 2. It is clear from Fig. 5 that the differentiation
between arrested and nonarrested runs emerges only at times
longer than t∗.

The behavior of γ (t ) offers the clearest contrast be-
tween activity-induced arrest, as seen in our model, and the
attraction-induced gelation seen in passive colloids. In passive
colloids, diffusing particles become arrested either to indicate
a glass or gel transition. In contrast, as seen from Fig. 5, it is
the persistent motion, indicated by the ballistic behavior, that
leads to arrest in the active hard crosses. The coarse-grained
model for density inhomogeneity that we present in the next
section is consistent with this picture.

In passive systems, low-density gels can exhibit subdiffu-
sive behavior at intermediate times but γ (t ) asymptotes to
unity since there are always particles that have finite mobility
and can diffuse [44]. In fact, the MSD exhibits only weak
signatures of gelation in passive colloids [14,58,59]. The
behavior we observe is akin to colloids trapped in a porous
environment [60]. Since the arrested states [Figs. 1(e) and
1(f)] are characterized by a percolating network of immobile
particles with no gaps between them, all the active crosses
are effectively trapped and thus γ (t ) → 0 at long times. A
similar suppression of diffusion was demonstrated in the two-
dimensional (2D) kinetically constrained model studied in
Ref. [61] and also in the context of diffusion through biolog-
ical anisotropic fibrous environments [62]. In the nonarrested
states [Fig. 1(d)], there are pores through which the particles
can escape and thus they exhibit subdiffusive behavior at
intermediate times, as seen in Fig. 5, but γ (t ) → 2 at long
times as the particles recover their persistent, ballistic motion.

The color map of arrested and nonarrested states shown in
Fig. 1(g) was constructed from a measurement of the prob-
ability of becoming arrested at different values of (ρ,�v).
Between 10 to 35 runs were conducted at each set of pa-
rameter values, and the color bar indicates the fraction of
those runs for which γ (tmax) < 0.5. Figure 1(g) shows that
larger activity is required to generate arrested states at lower
densities. For states in the range (ρ > 0.16,�v < 0.03), none
of the states become arrested within our simulation time since
the time t∗ needed for the active particles to exhibit ballistic
motion is dramatically slowed down by both the small value
of the diffusion coefficient D(ρ), as well as the very weak
activity �v. Consequently, the states in this range of densities
resemble those found in the passive system.

V. COARSE-GRAINED DENSITY PROFILES
AND HYDROSTATIC LENGTHSCALE

Since dynamic differentiation emerges between different
realizations of the simulations over a range of activity and
density values, a further question arises about how these
different classes of states differ structurally at long times.
For our system of nonrotating, infinitely persistent active
crosses, the morphology of the arrested states (see Figs. 1
and 6) depict voids coexisting with a solid-like (ρsolid ≈ 0.19),
highly immobile system spanning network, and a “wetting”
layer of particles with intermediate mobility and density. The

appearance of voids seem to be a feature of MIPS in the
zero-rotation limit [28,63].

Starting from a random orientation of particles, as the dy-
namics of the system progresses, clusters of particles emerge
with opposing active orientations, i.e., oriented toward each
other, forming a solid-like high-density region. At large times,
mobile particles have an average active drift toward fluid-solid
interfaces, as the particles oriented away from an interface
have had sufficient time to travel to the other boundaries in
the system. This active flux toward the interface causes an
increasing density in the vicinity of the solid, giving rise to
a diffusive current away from the solid. In order to model this
process, we coarse grain the system to construct a spatially
varying density field ρ(x, y). We consider a one-dimensional
(1D) section of the system perpendicular to an interface
(oriented in the y direction for convenience) between an active
fluid and the solid, giving rise to a linear density profile ρ(x).
The exclusion due to particles in adjacent rows as well as their
lateral diffusion give rise to correlations, which we ignore
for large enough coarse-graining blocks. This preference for
biased motion perpendicular to the interface can also be mod-
eled using the well-known ASEP model, which incorporates
both the hard-core exclusion along with diffusion and biased
motion. The steady-state density profile in the arrested states
can then be derived from a hydrodynamic treatment of the
ASEP [33], as we show below.

The ASEP is a paradigmatic model where many exact
statements can be made regarding the coarse-grained dynam-
ics in a nonequilibrium system. We can therefore, through
this mapping, write equations for the coarse-grained densities
appearing at late times in our active crosses system. In steady
state, the density ρ(x) is independent of time, and there is
no net particle current between the different coarse-grained
blocks. There are two components to this current determined
by the density profile ρ(x): (1) A diffusive (or thermal) current
JT arising due to the spatial variations in density, which to
lowest order is

JT = −D
∂ρ(x)

∂x
, (4)

and (2) an active current JA proportional to the density of
particles. However, if neighboring blocks are at high densities,
this current decreases due to exclusion. Once again to lowest
order we have

JA = α�vρ(x)[ρsolid − ρ(x)], (5)

where α is an as yet undetermined proportionality constant.
These are essentially the mean-field currents in ASEP [64].

In the steady state, the net currents are zero. Hence, com-
bining Eqs. (4) and (5), we obtain

∂ρ(x)

∂x
= α�v

D
ρ(x)[ρsolid − ρ(x)]. (6)

The only two homogeneous solutions to this equation
are voids with ρ = 0 and the solid state with ρ = ρsolid.
Equation (6) is the logistic equation in space, which generates
sigmoidal solutions. The saturation values represent the solid
and void regions, whereas the decaying part represents the
wetting active fluid. At large distances, this solution decays
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FIG. 6. Contour maps of the coarse-grained density profile of arrested states at the longest simulation time tmax = 2 × 106. We used a
coarse-graining box size with area L2/900, so that each box encloses 152 lattice sites. The color bar represents the local density which varies
from 0 � ρ � 0.2. The arrows represent the gradient of the density field, and the lowest density point for each figure has been shifted to the
center of the frame (making use of the periodic boundary conditions). Rows show fixed activity �v = 0.20, 0.09, 0.05, and columns show
densities increasing left to right ρ = 0.13, 0.14, 0.15, 0.16. Density fluctuations for a typical nonarrested active liquid state (ρ = 0.12, �v =
0.040) are shown in the lower left corner. As the density is increased at a fixed activity, the width of the solid phase increases, and the active
liquid fills the void region until it disappears. We observe that the width of the interface region is controlled solely by the activity �v.

as exp[−(α�v/D)x], implying a wetting length scale

ξ = D

α�v
. (7)

We note that this “hydrostatic length scale” diverges in the
limit of zero activity. This divergence as the activity is de-
creased is shown in Fig. 8 along with the theoretical prediction
from Eq. (7) showing near perfect agreement with the �v−1

decay. Note that Eq. (7) does not involve the global density
of the system, and the correlations between rows in our two-
dimensional lattice can provide nontrivial corrections to the
derived behavior for larger densities.

VI. NONEQUILIBRIUM PHASE DIAGRAM

As seen in Fig. 6, two types of profiles are observed in
the arrested states: coexistence of an “active liquid” with
solid regions (bottom row), and a solid network, punctuated
by voids that have a characteristic size, and an active liquid
interface separating the two. In addition, there are nonarrested,
active liquid states with density fluctuations of amplitude
much smaller than the solid density. In the previous section,
we showed that our theory correctly predicts the variation
of the width of the interface. In this section, we extend our
analysis to construct a nonequilibrium phase diagram of the

arrested states, and provide a theory for the emergent length
scales characterizing the voids and the solid regions.

We can derive phase boundaries between the three types of
states by considering the conditions that must be satisfied at
a given density and activity to create each of these configu-
rations. For the arrested states at strong activities, the dense
immobile solid (ρsolid ≈ 0.19) is bordered by an active liquid
interface that can be fit by a linear profile [as an approximation
to the sigmoidal solutions of Eq. (6)] with slope m = dρ

dx
and width ξ , such that ξm = (ρsolid − ρvoid) = 0.19. We use
these linear density profiles (as shown in Fig. 7) for all states,
including the active liquid, in the computation of the phase
diagram. The total length of the system is fixed at L, and
the total number of particles in the system is conserved as
N = ρL.

The first condition needed to create a solid region along
with an active liquid interface is that there must be enough
mass available in the system to populate both these regions
[as in Fig. 7(a)]. The total area under the trapezoid must
conserve the total number of particles in system at a given
global density ρ, yielding

N = ρL = (ρsolid)(ξ + lsolid). (8)

Since the interface width is determined by the activity
[Eq. (7)], the active liquid region can only contain a fixed
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ARRESTED SOLIDALVOID VOIDAL

ACTIVE LIQUID ACTIVE LIQUIDARRESTED SOLID

ρsolid

ρ(x)

x0 L

ρ(x)

x0 L

(b)

(a) ρsolid

lvoid lsolidξ

FIG. 7. One-dimensional linear density profiles illustrating the
nonequilibrium phase classification based on the observed config-
urations and local density distributions. (a) A dense solid region
along with an active liquid interface which fills the remaining space
available in the system (see, for example, bottom row in Fig. 6).
(b) Solid region, bordered by a narrow active liquid (AL) interface
of total width ξ . The remaining area in the system is left empty of
particles, creating a void (see, for example, top two rows in Fig. 6).

activity-dependent mass, and consequently the width of the
solid region depends on both the density and the activity as

lsolid = ρ

ρsolid
L − D

α�v
. (9)

The solid first appears at the point where lsolid = 0, yielding
the equation for the solid-active liquid phase boundary

�v = D

αL

ρsolid

ρ
. (10)

10-2 10-1
101

102

103

FIG. 8. The divergence of the length scale of the “wetting active
liquid” as the activity is decreased along with the theoretical pre-
diction in Eq. (7). The data display good agreement with the �v−1

decay. The dashed black line shows the best fit ξ = 10
�v

.

Below this activity value, the interface width is larger than
L/2, and therefore we expect the active liquid phase to contain
all the mass in the system.

So far, we have only imposed conservation of mass on
the system. To determine when voids first appear, we must
also consider whether the shape of the trapezoidal solid-active
liquid profile can fit within the total space of the system. Since
none of the regions overlap, their lengths sum to the system
size L. We therefore have [see Fig. 7(b)]

L = lsolid + lvoid + 2ξ . (11)

Since the thickness of the solid region is constrained by
conservation of mass, Eq. (9), we can solve for how much
space remains available for the void region,

lvoid =
(

1 − ρ

ρsolid

)
L − D

α�v
. (12)

To determine when a void region may first appear, we find
the point lvoid = 0. This yields the second phase boundary
between states containing voids and those without voids

�v = D

αL

1

1 − ρ/ρsolid
. (13)

Below this activity the active liquid is confined within a space
smaller than its preferred width ξ .

Phase boundaries based on the 1D linear profile analysis,
presented above, are shown in Fig. 9(a). In Fig. 9(b), we
show that a numerical classification of the three types of
nonequilibrium phases agrees qualitatively with the 1D the-
ory. It is straightforward to extend the treatment developed
in this section to a derivation of the phase boundaries based
on 2D density profiles. We find that the qualitative features
of the resulting phase diagram do not change as compared to
the 1D case studied here. The states in the phase identified
as the solid-active liquid, based on the density profiles, are
dynamically the aging glassy states shown in Fig. 1. The
arrested, gel-like states, shown in Fig. 1 are in the solid-active
liquid-void region of Fig. 9.

In Appendix C, we show that the variation of the phase
boundaries with system size is consistent with the predictions
of the theory derived above. In the infinite system-size limit,
the ASEP analysis implies that voids can be accommodated at
any density and activity, as the phase boundaries become lines
with infinite slopes at ρ = 0 and ρ = ρsolid. This feature is a
consequence of the simple exclusion process, which cannot
describe the nontrivial correlations in the passive, hard-cross
system [cf. Fig. 9(b)]. We are currently exploring avenues for
incorporating these effects, possibly through the construction
of a large-deviation function that incorporates the physics in
of void-solid coexistence of persistent hard crosses, encapsu-
lated in the ASEP model, and the glass transition physics of
passive hard crosses.

VII. EFFECT OF FINITE ROTATION RATE

In this section, we discuss the effect of a finite but small
rotation rate on the arrested phase separation observed for
nonrotating hard crosses (DR = 0) derived above. We perform
simulations for a range of activity values between �v = 0.005
and �v = 1.0, as displayed in the phase diagram in Fig. 11.
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FIG. 9. (a) Classifications of the activity-induced phases, based
on linear density profiles. The solid lines indicate the theoretically
predicted boundary between the active liquid and solid + active
liquid regions in Eq. (10), and the activity beyond which void
regions open up [predicted by Eq. (13)]. We have used the observed
value D

α
= 10, ρsolid = 0.19, and the simulated system size L = 450.

(b) Phase diagram obtained from the numerically sampled phase
space of the active lattice gas, including the passive and the active
states. Each point is classified as either pure active liquid, solid +
active liquid, or solid + active liquid along with void regions. Open
symbols denote the transition from the passive liquid to the aging
glassy regime. These classifications are based on ensemble-average
density profiles. The topology of this phase diagram is the same
as that observed in attractive colloids [14,32,65]. The black region
denotes densities larger than ρsolid = 0.19. Note that the predicted
phase diagram shown in panel (a) is valid only at finite activities
and is expected to accurately capture the physics only at large
enough activities where activity-induced correlations overwhelm the
correlations intrinsic to the passive hard crosses at ρ ≈ ρrcp. This is
because, as discussed in the text, the coarse-grained model includes
only simple exclusion, not the extended N3 exclusion.

It should be noted that DR is the attempted rotation rate. The
nonconvex shape of the hard crosses leads to strong rotational
locking that leads to a smaller effective rotation rate, which
also decreases as the density increases.

We find that at large activities �v � 0.5, a percolated,
globally arrested solid network, similar to the ones observed
at DR = 0, is able to form in the same regime of densities as
shown in Fig. 1. However, there are structural differences be-
tween the arrested states at zero and nonzero DR. Specifically,
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0 0.05 0.1 0.15 0.2
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 = 0.1400

 = 0.1500
 = 0.1600

0 0.05 0.1 0.15 0.2
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 = 0.1300
 = 0.1400

 = 0.1500
 = 0.1600

0 0.05 0.1 0.15 0.2
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102
 = 0.1300
 = 0.1400
 = 0.1500
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(a) (b)

(d)(c)

FIG. 10. Comparison of the local density distributions for per-
sistent (DR = 0) and finite rotation rate (DR = 0.005) active hard
crosses. At �v = 0.5, the zero density peak corresponding to the
empty void regions at DR = 0 (a) is replaced by a well-defined low
density peak at DR = 0.005 (b). For the smaller activity value, the
nonrotating crosses show phase separation into solid and void-like
regions, with an intervening active liquid region (c). In contrast, at
DR = 0.005, there is a simpler fluid-solid coexistence indicated by a
clearly bimodal distribution (d).

the voids observed at DR = 0 are replaced by a low-density,
gaseous fluid at DR = 0.005, as seen in Fig. 20. The fluid
phase still exhibits an inhomogeneous density profile with the
highest densities occurring at the interface with the solid. In
addition, a finite rotation rate seems to create a rounding of the
facets separating the solid from the fluid. At lower activities,
the fluid density becomes homogeneous, as seen in Fig. 21.
The morphology of these states resemble those observed in

0 0.05 0.1 0.15 0.2
10-2

10-1

100

FIG. 11. Phase diagram at DR = 0.005 showing the binodal con-
structed from the peaks in ensemble density distributions with trian-
gles marking the high-density peak and circles the low-density one.
Crosses indicate phase space points (�v, ρ ) at which the system is in
a homogeneous fluid state with a single peak at the global density in
the density distribution. Colors indicate the global density ρ. Density
distributions were averaged over five runs for each sampled phase
space point.
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FIG. 12. Mean-squared displacements (MSD) of passive hard
crosses starting from (a) the initial state produced by the RSAD pro-
tocol, tw = 0, and (b) tw = 200 000, showing significant dependence
on tw , for densities ρ � 0.1650: Note the absence of the plateau
observed in panel (a) at longer waiting times (b).

the active-aging regime [Fig. 1(c)] rather than the percolating
arrested solid observed at DR = 0, seen in Fig. 21(a).

The ensemble-averaged density distributions shown in
Fig. 10, demonstrate that at DR = 0.005, the “void” peak
disappears. In addition, there is a clear signature of two-
phase coexistence between a fluid and a solid, with little
dependence of the peak positions on the global density [66].
With increasing activity, the peak marking the fluid density
shifts significantly to lower densities whereas the solid peak
stays roughly pinned ρ ≈ 0.19. Since the ensemble-averaged
density distributions do not depend on the global density at a
fixed activity (Fig. 21), a binodal line can be constructed from
the positions of the peaks, as shown in Fig. 11. Interestingly,
this phase diagram looks different from that of spherical
ABPs [66] and remarkably similar to the one observed in
actively driven dumbbell-shaped particles, which are also
nonconvex [12].

We can analyze the stability of the DR = 0 phase diagram
to small but nonzero DR. On the lattice, since the particles
can only have discrete orientations, we can compute the mean
free path of the particles in the persistent direction. Since
the density of rotation events in time have a gap distribution
DR exp(−DRt ), and the average time between successful rota-
tion events scales as 1/DR [45], the average length traveled

100 101 102 103 104 105 106
0

0.5

1

100 101 102 103 104 105 106
0

0.5

1

(a)

(b)

FIG. 13. Self-intermediate scattering functions (ISF) of passive
hard crosses starting from (a) the initial state produced by the RSAD,
tw = 0, and (b) tw = 200 000, showing significant dependence on tw ,
for densities ρ � 0.1650: note the absence of the plateau observed in
panel (a) at longer waiting times (b).

without a rotation move is given by ξR ∼ (�v)(1/DR). In
order for the rotational diffusion to affect the motion of the
particles, there must be a sufficient time for the particles to
move before reaching the dense regions and become a part of
the wetting fluid. Therefore, when the average length traveled
in the persistence direction is comparable to the size of the
voids lvoid, the phases appearing will no longer correspond
to the zero rotation limit. This provides a crossover value
D∗

R = �v/lvoid, above which the rotational diffusion takes on
significant effect. Since the size of the voids can be estimated
from Eq. (12), we can estimate the crossover rotation rate
below which voids are expected to appear in the system:

1

D∗
R

=
(

1 − ρ

ρsolid

)
L

�v
− D

α�v2
. (14)

For the values of �v used in the simulations, and using
the values D/α = 10 and L = 450 deduced from the data, we
estimate the crossover value for density ρ = 0.1 to be DR =
0.005 for �v = 0.1 and DR = 0.009 for �v = 0.5. Since the
crossover value of DR decreases with �v, we expect that as
the activity is decreased, the qualitative features change from
those observed in arrested states at zero rotation and begin to
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resemble a MIPS between a low- and high-density fluid, as is
observed in Fig. 21.

To summarize, we find that the most significant difference
between hard crosses with DR = 0 and DR = 0.005 is the
disappearance of voids, which also leads to changes in the
phase diagram. In earlier studies, the appearance of voids has
been associated with active particles with infinitely persistent
self-propulsion directions [63].

VIII. DISCUSSION

In this paper, we have studied a lattice-gas of active parti-
cles with a nonconvex shape that leads to strong inhibition of
rotations. We showed that unlike the usual MIPS observed in
active particles with large rotational diffusion, highly persis-
tent particles are able to arrest the phase separation, leading
to states that are characterized structurally by a void-solid co-
existence with a fluid of relatively mobile particles “wetting”
the void-solid interface. The voids have a characteristic size
that depends on density and activity in contrast to coarsen-
ing, as they would if the phase separation was not arrested.
Dynamically, the glassy dynamics characterizing the aging
regime of the passive system transitions to complete arrest in
the phase-separated regime. In addition, activity enlarges the
density range of the aging regime. We also show that adding

100 101 102 103 104 105 106
0

0.5

1  = 0.1000
 = 0.1100
 = 0.1200
 = 0.1300
 = 0.1400
 = 0.1450
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 = 0.1575
 = 0.1600
 = 0.1610
 = 0.1625

0.1 0.12 0.14 0.16

100
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(b)

FIG. 14. (a) Stretched exponential fits (black lines) to the ISFs at
densities ρ � 0.1625, showing that the fit fails at ρ = 0.1625. The
exponent, β, decreases from 0.8 at ρ = 0.1 to and 0.4 at ρ = 0.16.
(b) τα extracted from the stretched exponential fits.

moderate rates of rotational diffusion does not change this
picture qualitatively.

By appealing to the dynamics of a single active tracer in
a passive background of hard crosses [45], we showed that
the dynamic differentiation between arrested and nonarrested
states appears at times longer than that needed for the tracer
dynamics to cross over from diffusive to ballistic. Thus, the
gel-like arrest, in contrast to the glassy caging dynamics of
the passive system, is driven by activity. The morphology
of the arrested states, however, closely resembles gelation or
arrested phase separation in passive colloids with attractive
interactions [32,65]. Our analysis shows a clear crossover
from the passive glassy dynamics to gel-like arrest at high
densities [65].

We used the fact that our persistently active dynamics ef-
fectively causes one-dimensional motion against an interface
to map the late-time dynamics in the arrested states onto
the asymmetric exclusion process (ASEP). This microscopic
mapping of the long time behavior of the system to a well-
known lattice model allowed us to invoke well-established
coarse-graining procedures which we used to describe the
nontrivial collective behavior observed in our system. Build-
ing on this understanding, we used the predicted length scale
to map out a nonequilibrium phase diagram that predicts
nontrivial phases, a nontrivial topology, as well as nontrivial

100 101

10-2

10-1

100

(a)

(b)

FIG. 15. Waiting time (tw) dependence of the long time decay of
the ISF at ρ = 0.1650, 0.1675, 0.1715 (bottom to top). The decay
becomes slower with increasing tw , and as shown in the inset,
depends only on the ratio t

tw
.
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finite-size scaling. While the position of the phase boundaries
are not in quantitative agreement with our numerical results,
the topology matches the numerical results over most of the
phase space. The ASEP-based predictions fail at low activity
and high densities because it takes into account only simple
exclusion and thus does not incorporate the shape-induced
frustration and glassy dynamics in the passive system at
sufficiently high densities.

In this paper, we make concrete predictions about the
phase behavior and the morphology of arrested states when
rotation of the active direction is strongly inhibited. This
should occur naturally in collections of active entities with
nonconvex shapes [67]. Numerical simulations have explored
MIPS [12] and glassy dynamics [56] in active dumbbells. In
these studies, the mechanism of decorrelation of the active
direction is, however, related to thermal diffusion [56] and not
independently controlled. It would be interesting to explore
dynamical arrest in simulations of rigid nonconvex shapes
where the rotation rate is affected by rotational locking.
Experimental investigation of phase separation and arrest in
collections of active colloidal particles with nonconvex shapes
offer possibilities of testing our theoretical predictions. We are
not aware of any such experimental investigation, however,
extending studies such as the Brownian dynamics of hard
crosses [36] to include self-propulsion seem feasible.
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FIG. 16. Ensemble averaged local density distributions for
smaller activity values showing the transition from the uniform liquid
state to coexistence of solid regions with liquid regions. The liquid
peaks shows large low-density fluctuations for the largest activity
values. For the passive system �v = 0.000, a coexistence between
fluid and solid regions appears for densities ρ > 0.1625. At nonzero
but small values of the activity �v > 0, this coexistence region
expands to reach lower densities.
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APPENDIX A: DYNAMICS OF PASSIVE HARD CROSSES

In this appendix, we provide a brief description of our
analysis of slow dynamics and the “glass transition” in the
passive hard cross system (�v = 0) [31,39,40]. This analysis
was performed to establish a baseline for the dynamics in the
absence of activity. The initial states were created through
a quench into the two-phase coexistence region using the
random sequential adsorption and diffusion (RSAD) protocol

FIG. 17. Ensemble average distributions of the local density
(measured in square boxes with side length 45 lattice sites, for
configurations at the simulation time tmax = 2 × 106) compared for
different activities �v and different overall global densities ρ. For
sufficiently large activity �v � 0.2, there are only two clear peaks, a
peak for the solid phase with density ρsolid ≈ 0.19 and a peak for the
empty void regions ρvoid = 0. As the activity is reduced, a liquid-like
peak near ρ ≈ 0.14–0.15 appears. At sufficiently small activity, the
clear void peak disappears, and only large low density fluctuations of
the liquid peak remain, suggesting that void regions have been filled
in by the growing activity liquid interface. Note these distributions
are ensemble averages over both arrested and nonarrested states.
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FIG. 18. Finite-size dependence of the local density distributions
for several different activities at ρ = 0.15 and linear system sizes
L = 225, 450, 600. The active liquid state (unimodal peak) present
at �v = 0.03 becomes a bimodal active liquid + solid coexistence
for L = 600. Similarly, at larger activity, for instance, �v = 0.07,
increasing the system size opens up enough space for empty void
regions to form, so that the active liquid + solid coexistence at L =
225 transforms into an active liquid + solid + void state at L = 600.
The results qualitatively support the predicted finite size dependence
of the boundaries between the three nonequilibrium phase types,
active liquid, solid-active liquid, and solid-active liquid-void.

[37]. The hard crosses were then evolved according to the dy-
namics described in Sec. II in the main text, and two standard
measures were used to probe the glassy dynamics [68,69]:
(i) the self-intermediate scattering function (ISF) and the (ii)
mean-squared-displacement (MSD) of individual crosses. The
slowest relaxation occurs at the wave vector with magnitude q
at which the static structure factor has a peak. For N particles,
the ISF is defined as

Fq(tw, tw + �t ) = 1

N

N∑
j=1

exp{i �q · [�r j (tw + �t ) − �r j (tw )]},

(A1)
where the wave vector �q has magnitude q. The MSD is defined
as

R2(tw, tw + �t ) = 1

N

N∑
j=1

|�r j (tw + �t ) − �r j (tw )|2. (A2)

In a supercooled liquid, both the ISF and MSD should respect
time-translational invariance and should be independent of the
waiting time, tw. From Figs. 12 and 13, this expectation is
met for densities ρ < 0.1625. In this supercooled regime, we
can fit the long-time decays of the ISF [Eq. (A1)], averaged
over a range of tw from 200 000 to 800 000, to a stretched ex-
ponential form [70,71], Fq(�t ) ∝ exp[−(�t/τα )β], as shown
in Fig. 14(a). The τα extracted from this fit increases by
two orders of magnitude over the density range 0.12 to 0.16
[Fig. 14(b)].

Within our simulation time window of tmax = 2 × 106, pas-
sive hard crosses do not reach a time-translationally invariant
state for densities �0.165: Both the ISF and the MSD depend

FIG. 19. Snapshots illustrating the finite-size dependence of
the final nonequilibrium state reached, for ρ = 0.15 and L =
225, 450, 600. For small activity �v = 0.03, increasing the system
size transforms the final state from an active liquid in the smaller
systems with L = 225, 450, to an active liquid + solid state in the
largest system L = 600. For larger activity �v = 0.07, increasing
the system size allows room for voids to open up, so that the active
liquid + solid state at L = 225 clearly becomes an active liquid +
solid + void state at L = 600. The black scale bars indicate a length
of 100 lattice sites.

on tw, at these densities. We have established that in the aging
regime the ISF exhibits a t/tw scaling, as shown in Fig. 15.
Scalings of this form are characteristic of the aging regime in
glassy systems [72–74].

APPENDIX B: ENSEMBLE AVERAGED
DENSITY DISTRIBUTIONS

The standard evidence for MIPS is based on measurements
of ensemble-averaged density distributions. In this appendix,
we present numerical results for these distributions over the
full range of densities and activities. These ensemble averages
include both arrested and nonarrested states.

As in standard equilibrium phase separation, MIPS phase
boundaries are drawn based on coexisting peaks in the density
distributions, whose positions do not depend on the global
density but which trade intensity as the global density is varied
[66]. In our system, this expectation is met at low activities
(Fig. 16) where we observe a continuation of the two-phase
coexistence characteristic of the passive hard crosses.
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 20. Comparison between the final gel-like configurations observed for the infinitely persistent DR = 0 active crosses [(a)–(d)] and
for finite rotation rate DR = 0.005 [(e)–(h)]. Color bars denote the stationary times of each cross, log10(τi ). For this large activity value
�v = 0.5, the percolating gel-like solid network can still form for active crosses with a finite rotation rate, suggesting that the rotational-locking
mechanism of crosses greatly facilitates the global arrest of the system. For finite rotation rates, the rectangular empty void regions found for
nonrotating crosses become filled with a finite density gas, and the boundaries of the low-density region become more rounded. The term “gas”
here refers to very dilute regions and “liquid” is used to the describe higher densities (no significant physical difference is meant to be implied).

At higher activities, as seen in Fig. 17, the density distri-
bution shows more structure. The ensemble averaged density
distributions for the passive hard crosses exhibit a fluid-solid
coexistence between ρ ≈ 0.16 and 0.19. In the presence of
activity, the fluid peak at ρ ≈ 0.16 becomes broader and
ultimately develops a peak at very low densities, characteristic
of the voids seen in the arrested states. Before the void peak
emerges clearly, in the solid-active liquid regime of the phase
diagram, the positions of these low-density peaks are observed

to depend both on activity and global density [cf. Figs. 17(c)
and 17(d)]. This observation is consistent with the fact that
the phase separation is “arrested.” As we have shown using
the ASEP-based coarse-grained theory, the arrest of this phase
separation leads to a wetting layer of width ξ within which
the active liquid is confined. The density of particles in this
active layer is a function of both activity and global density,
as observed from the snapshots presented in the bottom row
of Fig. 6.

FIG. 21. Comparison of long time configurations for nonrotating and finite rotation rate DR = 0.005 active crosses at a smaller activity
value �v = 0.100. Here, the nonrotating active crosses [(a)–(d)] separate into solid, void, and intervening active liquid regions. The probability
of forming a percolating solid network and becoming arrested increase with increasing global density. For the finite rotation rate [(e)–(h)], a
more standard two phase coexistence between liquid and solid is restored, and the structures resemble a two-phase coexistence between a fluid
and a solid with little density heterogeneity in the fluid phase.
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APPENDIX C: FINITE-SIZE DEPENDENCE
OF PHASE BOUNDARIES

The coarse-grained theory, based on ASEP that we have
used to construct the nonequilibrium phase diagram [32] of
arrested states at DR = 0, predicts that the phase boundaries
depend explicitly on the system size L. In the infinite-system
size limit, voids can form at any density and activity, ac-
cording to this theory. We have performed limited studies
of the size dependence of the phenomena we observe with
the sole intent of checking whether the results of numerical
simulations agree qualitatively with the predictions of the
theory.

In Fig. 18, we compare ensemble averaged density distri-
butions for system sizes L = 225, 450, and L = 600 at four
different values of �v at ρ = 0.1500. The results show that
the activity at which phase separation commences decreases
with increasing L. For example, at �v = 0.030, the system is
a homogeneous fluid at L = 225, 450, but there is fluid-solid
coexistence for L = 600. Similarly, at �v = 0.05, the active-
liquid solid phase is not observed at L = 225.

As mentioned above, the reason for the strong finite-size
effects is the ability of the system at DR = 0 to form voids
at any activity and density. This feature is validated in the
simulations, as seen in Fig. 19, which shows regions that
appear as low-density fluctuations in small systems transition
to voids at larger L. These effects are in turn a consequence
of the emergence of a single length scale, ξ , which depends
only on �v, characterizing the density variation. When the
system size is larger than ξ , voids open up to ensure mass
conservation. Conversely, squeezing the system down to sizes
smaller than ξ forces the interfaces to overlap. The ensemble
averaged density distributions reflect this overlap through the
development of a broad tail on the low-density side of the
solid peak in the the regime of solid-active liquid coexistence
in finite systems. Since this phase disappears in the thermo-
dynamic limit, it cannot be characterized by thermodynamic
measures such as binodals derived from the peaks of the
density distributions. As seen in Fig. 17, the shape of the
distribution that interpolates between the void and the solid
peaks depends on the global density and the systems size
(Fig. 18).
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