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Diffusion of chiral janus particles in convection rolls
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The diffusion of an artificial active particle in a two-dimensional periodic pattern of stationary convection
cells is investigated by means of extensive numerical simulations. In the limit of large Péclet numbers, i.e.,
for self-propulsion speeds below a certain depinning threshold and weak rototranslational fluctuations, the
particle undergoes asymptotic normal diffusion with diffusion constant proportional to the square root of its
diffusion constant at zero flow. Chirality effects in the propulsion mechanism, modeled here by a tunable
applied torque, favors particle jumping between adjacent convection rolls. Roll jumping is signaled by an excess
diffusion peak, which appears to separate two distinct active diffusion regimes for low and high chirality. A
qualitative interpretation of our simulation results is proposed as a first step toward a fully analytical study of
this phenomenon.
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I. INTRODUCTION

Microswimmers are Brownian particles capable of self-
propulsion [1,2]. The simplest category among them consists
of artificial micro- and nanopropellers, which, due to some
ad hoc asymmetry of their geometry and/or chemical com-
position, are capable of harvesting environmental energy and
convert it into kinetic energy. The artificial microswimmers
most investigated in the literature are the so-called Janus
particles (JP), basically spherical colloidal particles with two
differently coated hemispheres or “faces.” Their axial propul-
sion is sustained by the dipolar near-flow-field they generate
by interacting with the surrounding active (mostly highly
viscous) medium [3,4].

Recently, artificial microswimmers found promising ap-
plications in the pharmaceutical (e.g., smart drug delivery
[5]) and medical research (e.g., robotic microsurgery [6]),
whereby one expects that the function they are designed
to perform is governed in time and space by their diffu-
sive properties. To this regard it is important to control the
diffusion of active particles in crowded [4] and patterned
environments [7], where they interact with other system com-
ponents, either chemically [8] or mechanically [9]. Even more
important for applications to cell biology and chemical in-
dustry is regulating their diffusion in hydrodynamically active
mediums [3,10].

To this purpose, we investigated the diffusion of a single
overdamped JP with self-propulsion speed v0 suspended in a
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two-dimensional (2D) stationary laminar flow with periodic
center-symmetric stream function

ψ (x, y) = (U0L/2π ) sin(2πx/L) sin(2πy/L), (1)

where U0 is the maximum advection speed and L the wave-
length of the flow unit cell. As illustrated in Fig. 1, ψ (x, y)
defines four counter-rotating advection subcells or, following
the notation of Ref. [11], convection rolls. Particle transport
in such a flow pattern has been studied under diverse condi-
tions. For instance, in the presence of periodic perturbations
the deterministic dynamics of a passive particle exhibits re-
markable chaotic properties [12,13]. Especially relevant to
the present work are the results reported for the diffusivity
[11] and the nonlinear mobility [14,15] of passive tracers
subject to thermal fluctuations. Note that in Ref. [15] the
drive acting on the tracer plays the role of a self-propulsion
velocity with fixed orientation. However, despite its practical
implications, the problem of how a flow field with stream
function like ψ (x, y) can affect the diffusion of self-propelled
particles has not been fully investigated, yet. The problem was
addressed, indeed, by the authors of Ref. [16], but only in the
noiseless, chaotic limit. These authors also proved that, for
self-propulsion speeds below a certain threshold, the particle
gets dynamically trapped inside the convective rolls and its
diffusion suppressed.

In this paper, we consider the more realistic situation of
an active particle subject to both translational and orienta-
tional fluctuations. As a consequence, the direction of its
self-propulsion velocity is driven not only by the local flow
shear [16] and, possibly, a chiral (applied or intrinsic) torque
[17], but also by an intrinsic rotational noise. Moreover, due
to thermal fluctuations, random hopping between convection
rolls [11] can occur even for self-propulsion speeds below the
trapping threshold of Ref. [16]. As a result, active diffusion
in the laminar flow of Eq. (1) develops two distinct regimes,
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FIG. 1. Diffusion of an active JP in a 2D periodic pattern of
convective stationary rolls. (a) Unit flow cell, vψ = (∂y,−∂x )ψ ,
with ψ (x, y) of Eq. (1), consisting of four counter-rotating subcells.
[(b)–(d)] Trajectory samples of length t = 100, respectively for �0 =
0 (achiral), 1 (depolarized), and 10 (highly chiral). Other model pa-
rameters are: α = 1, U0 = v0 = 1, D0 = Dθ = 0.003, and L = 2π .
Note that for v0 < vth, roll jumps are noise activated (see text).

respectively for low and high chirality, both with a peculiar
dependence on the particle self-propulsion parameters. At the
transition, the chiral and shear torque compensate each other
inside two diagonally opposite ψ (x, y) subcells; this causes
a partial depinning of the active particle from the convection
rolls with a consequent diffusivity surge.

II. THE MODEL

In the plane (x, y), the overdamped dynamics of an active
JP can be formulated by means of two translational and one
rotational Langevin equation (LE)

ṙ = vψ + v0 + √
D0 ξ(t ),

θ̇ = �0 + (α/2) ∇ × vψ +
√

Dθ ξθ (t ),
(2)

where r = (x, y, ), vψ = (∂y,−∂x )ψ is the advection veloc-
ity, and the self-propulsion vector v0 = v0(cos θ, sin θ ) has
constant modulus v0 and is oriented at an angle θ with
respect to the x axis. The translational noises in the x and y
directions, ξ(t ) = (ξx(t ), ξy(t )), and the rotational noise, ξθ (t ),
are stationary, independent, delta-correlated Gaussian noises,
〈ξi(t )ξ j (0)〉 = 2δi jδ(t ) with i, j = x, y, θ . As long as diffusion
takes place away from boundaries or other obstacles, the par-
ticle can be taken as pointlike. Effects due to its actual geom-
etry and chemical-physical characteristics are encoded in the
dynamical parameters appearing in Eq. (2). D0 and Dθ are the
respective noise strengths, which we assume to be unrelated
for generality (e.g., to account for different self-propulsion
mechanisms [18]). The reciprocal of Dθ is the correlation, or
angular persistence time of v0; accordingly, v0/Dθ quantifies
the persistence length of the particle self-propelled random

motion. The flow shear exerts a torque on the active particle
with frequency proportional to the local fluid vorticity ∇ × vψ

[19–21]. The constant α can depend, in principle, on the
properties of the particle surface and its fabrication process.
Here, for simplicity, we adopt Faxén’s second law, which, for
a spherical particle, yields α = 1 [19,20]. For α = 1 and the
stream function of Eq. (1), the self-polarization term in the
second LE (2) can be conveniently rewritten as (−1/2)∇2ψ

or (2π/L)2ψ (x, y); its modulus is maximum, �l , at the center
of each subcell. Finally, �0 represents a constant torque, either
applied by the experimenter [22], or intrinsic to the JP design
[23,24], or exerted by a bounding surface [25], or possibly
due to unavoidable fabrication defects [6]. In any case, �0 is
a measure of the particle chirality, which, as proven below,
greatly impacts its diffusion. Due to the symmetry of the LE
(2) we restrict our analysis to the domain �0 � 0.

The LEs (2) can be conveniently reformulated in dimen-
sionless units by rescaling (x, y) → (x̃, ỹ) = (2π/L)(x, y)
and t → t̃ = �Lt with �L = 2πU0/L. Accordingly, the four
remaining independent parameters get rescaled as v0 →
v0/U0, �0 → �0/�L, D0 → D0/DL and Dθ → Dθ /�L, with
DL = U0L/2π . This means that, without loss of generality, we
can set L = 2π and U0 = 1 and the simulation results thus
obtained can be regarded as expressed in dimensionless units
and easily scaled back to arbitrary dimensional units. The
stochastic differential Eqs. (2) were numerically integrated
by means of a standard Milstein scheme [26]. Particular
caution was exerted when computing the asymptotic diffusion
constant

D = lim
t→∞〈[x(t ) − x(0)]2〉/2t .

Indeed, upon lowering the noise strengths D0 and Dθ , the
intercellular diffusion of a trapped active JP gets suppressed;
accordingly, the time transients grow exceedingly long.

We conclude this section with an important remark. With
the term particle trapping, we refer to the dynamical trapping
caused by advection, which drags the suspended particle along
closed orbits. This phenomenon is not to be mistaken with the
trapping by an external potential. To this regard, we suggest
the reader to compare the problem at hand with the problem
of active diffusion in a planar “egg carton” potential [27] or
in a square array of truncated harmonic traps [28]. In these
two cases, the underlying diffusion process is controlled by
thermal activation, whereas in the present problem a crucial
role is played by advection.

III. RESULTS

In this paper, we focus on the phenomenon of advection
dominated active diffusion, that is on the dynamical regime
where a noiseless achiral JP would be strictly localized by
the stream function ψ (x, y). Indeed, depinning of a noiseless
particle from the dynamical trap represented by a single con-
vection roll occurs for self-propulsion speeds above a certain
threshold [16]. For a qualitative estimate of such a depinning
speed vth, we notice that a trapped active particle can only
perform circular orbits with radius v0/�L not exceeding the
effective half-width of the convection roll, Rs. For a square
subcell of ψ (x, y), Eq. (1), Rs � L/2

√
2; hence, the trapping

condition v0 < vth = �LRs. For the flow parameters used
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here, vth � 2.2, in close agreement with the numerical result
obtained in Ref. [16].

A. Convection rolls as dynamical traps

The laminar flow exerts opposite shear (or self-
polarization) torques in each pair of neighboring ψ (x, y)
subcells. Accordingly, we term the convection rolls posi-
tive or negative, depending on the sign of the particle self-
polarization. As all simulation data reported here are for
α = 1, vorticity and self-polarization have the same sign—
positive in the subcells centered at (±L/2)(1, 1) and negative
in the subcells centered at (±L/2)(1,−1). Of course, the
chiral torque, �0, in the second Eq. (2) has a different impact
on the particle dynamics, depending on the sign of the subcell
considered. In a negative subcell, a positive chiral torque with
�0 � �L tends to annul the self-polarization torque. As a
result, the “depolarized” particle can escape the subcell even
for v0 < vth and, in the absence of noise, to sojourn inside
one of the positive subcells. This mechanism is termed here
partial depinning because it is limited to the negative rolls,
in contrast with the depinning occurring globally for v0 >

vth [16]. This situation is graphically illustrated in Fig. 1.
For �0 	 �L, the particle trajectories wander across the
square array of convection rolls undergoing marked changes
of direction upon crossing them. It is only for �0 ∼ �L,
that they start spiraling, but only inside the positive subcells,
panel (c). Finally, for �0 � �L, trajectories appear to be
the superposition of advection and counterclockwise chiral
rotations, the chiral rotations having much shorter a curvature
radius than the advection ones, panel (d). Therefore a highly
chiral particle is trapped inside the convection rolls most of
the time, irrespective of their vorticity sign. As quantitatively
confirmed by the numerical data presented below, the char-
acteristic self-polarization frequency, �L, thus separates two
distinct chirality regimes, respectively, of low, �0 	 �L, and
high chirality, �0 � �L.

Based on this argument, we expect that the particle sta-
tionary probability density (pdf), P(x, y), tends to accumulate
inside the positive subcells. To this purpose, we integrated
P(x, y) over the positive and negative subcells, separately,
obtaining respectively the quantities P+ and P− plotted in
Fig. 2. Of course, being all pdf normalized to 1, in the
absence of chiral depinning, P+ = P− = 1/4. A strong spatial
asymmetry of P(x, y) emerges as �0 grows larger than �L.

In the noiseless limit, D0 = Dθ = 0, depinning occurs
slightly below the self-polarization frequency, that is for
�0 � 0.9�L. This is consistent with the remark that �L

denotes the maximum vorticity at the center of the ψ (x, y)
subcells. On the other hand, we also notice that angular
fluctuations with finite strength, Dθ > 0, no matter what their
physical origin, weaken the effect of the chiral torque �0.
Consequently. in the presence of noise, the onset of partial de-
pinning from the negative ψ (x, y) subcells gets “delayed,” that
is, P± deviate substantially from their uniform-distribution
value, 1/4, only for larger �0 values, i.e., �0 > �L.

B. Advection controlled diffusion

The strong chirality dependence of the trajectories shown
in Figs. 1(b)–1(d) and their nonuniform spatial localiza-
tion illustrated in Fig. 2, have an immediate impact on the

FIG. 2. Particle probability density integrated respectively over
a positive (P+, solid symbols) and a negative subcell (P−, empty
symbols), vs �0 for different values of the noise strengths, D0 and
Dθ (see legend). Other model parameters are α = 1, U0 = v0 = 1,
and L = 2π . Particle depinning from the negative subcells occurs
for �0 ∼ �L .

particle asymptotic diffusion constant, D. For a particle with
v0/vth 	 �0/�L the persistence length of its trajectories is
much shorter than the flow cell size, v0/�0 	 L/2π , so that
its intracell diffusion constant is well approximated by

D∞ = D0 + v2
0

2Dθ

1

1 + (�0/Dθ )2
, (3)

that is the diffusion constant of a chiral active particle in the
absence of advection [17,23].

We know [16] that an achiral active particle, �0 = 0, with
v0 < vth, crosses the subcell separatrices, Fig. 1(b), only as
an effect of its roto-translational fluctuations. On keeping
ignoring advection, its diffusion constant then would consist
again of a translational term, D0, due to thermal noise and an
additional term from intercell jumps with effective step L/2π ,
namely, [29]

D0 = D0 + DL + v0

2U0
. (4)

We have now to take into account that diffusion occurs
here in a flow pattern of stream function ψ (x, y). The effects
of advection on the diffusion of an active JP is illustrated in
Fig. 3. To interpret the numerical results displayed there we
notice that for v0 	 U0 (trapped particle) and D0 	 DL (weak
noise-induced depinning, see Sec. III C), both the high- and
low-chirality diffusion constants D∞, Eq. (3), and D0 Eq. (4),
are much smaller than DL (large effective Péclet number [11]).
This suggests that Eq. (38) of Ref. [11] may apply to the case
of active particles, too. A simple extension of that equation to
the stream function ψ (x, y) of Eq. (1) yields the approximate
fitting formula,

D = (DLD)1/2, (5)

that is, for large Péclet numbers, the advective diffusion
constant is proportional to the square root of the no-flow
particle diffusion constant, D. The quantity D is approximated
by Eqs. (3) and (4), respectively, in the high and low chirality
regimes.
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FIG. 3. Diffusion D vs chiral torque �0 in the cellular flow of
Eq. (1) for different values of D0, Dθ , and v0 (see legends). Other
model parameters are α = 1, U0 = 1, and L = 2π . Dashed horizontal
and sloped lines represent our analytical prediction, Eqs. (3)–(5). The
vertical arrow corresponds to the condition �0 = �L .

In Fig. 3, the low and high chirality regimes are separated
by an excess diffusion peak centered at around �0 � �L (with
a weak dependence on v0). This is the signature [30] of par-
ticle depinning from the negative subcells anticipated above.
At high �0, the data set plotted in Fig. 3 exhibit tails of two
kinds, depending on the value of D0: (i) horizontal plateaus,
D = (DLD0)1/2, insensitive to the self-propulsion parameters,
for finite thermal noise, and (ii) D � (DθDL/2)1/2v0/�0 for
vanishingly translational noise, D0 = 0. Both behaviors are
closely reproduced by Eq. (5) after replacing D with D∞ of
Eq. (3) (dashed lines).

The validity of Eq. (5) in the regime of high chirality,
�0 � �L, is also apparent in Fig. 4. For D0 = 0, the predicted

FIG. 4. Diffusion D vs rotational noise strength Dθ in the cel-
lular flow of Eq. (1) for D0 = 0 (solid symbols) and 0.001 (empty
symbols) and different �0 (see legend). Other model parameters
are α = 1, U0 = 1, and L = 2π . Dashed lines represent analytical
predictions based on Eqs. (3) and (5). Downward and upward vertical
arrows locate respectively the predicted maxima at Dθ = �0 and the
emergence of the finite D0 plateau at low Dθ (see text).

FIG. 5. Diffusion D vs self-propulsion speed v0 in the cellular
flow of Eq. (1) for �0 = 0 and different D0 and Dθ ; (see legend and
inset for more details at low v0). Other model parameters are α = 1,
U0 = 1, and L = 2π . Dashed horizontal and sloped lines represent
our analytical prediction (see text). The vertical arrow corresponds
to the condition v0 = vth = 2.2 (see text) [16].

diffusion constant (DLD∞)1/2, Eqs. (3)–(5), grows like D1/2
θ

for Dθ < �0, and then decays like D−1/2
θ for Dθ > �0, after

going through a maximum at Dθ = �0 (downward arrows).
Our formula for D fits closely the simulation data over the
entire Dθ domain of Fig. 4. For finite D0, both the raising
and decaying branches are still visible, except they appear
to merge into the thermal plateau with D = (DLD0)1/2. This
happens when the diffusion term due to self-propulsion grows
negligible with respect to D0. Accordingly, for instance, at
low Dθ the thermal plateau extends up to Dθ ∼ 2(�0/v0)2D0

(upward arrows).
In the low chirality regime, �0 < �L, the raising branch

of the D curves of Fig. 4 is replaced by a horizontal branch,
which weakly depends on the angular frequencies, �0 and Dθ .
Moreover, the horizontal and the decaying branches of the low
chirality D curves connect around Dθ ∼ �L. Indeed, when the
chiral frequency, �0, is lowered below the self-polarization
frequency, the natural frequency for the angular rate, Dθ ,
to compare with is now �L. For �0 > max{�L, Dθ } the JP
behaves as a regular Brownian particle with effective local
diffusion constant, D0 + v2

0/2Dθ , see Eq. (3); the D decaying
branch is therefore the same for both low and high chirality.

Such a distinct diffusion regime is better illustrated in
Fig. 5, where we study the constant D as a function of the self-
propulsion speed, v0. As expected, for v0 � vth, the particle
is largely insensitive to the advective drag, so that its diffusion
constant approaches the zero-flow value, D∞, of Eq. (3), i.e.,
D is quadratic in v0 (sloped dashed lines). The curves plotted
in the main panel of Fig. 5 show a sharp jump in the vicinity
of the threshold, vth, thus confirming the existence of the
depinning mechanism introduced in the noiseless limit by the
authors of Ref. [16]. Relevant to the present study is the v0

dependence of D below the depinning threshold, v0 < vth. As
anticipated above, we expect that formula (5) applies to a
flow trapped particle also at low chirality, �0 < �L, provided
that D is replaced by D0 of Eq. (4). For vanishing values
of v0, we recover the expected limit (D0DL )1/2 (horizontal
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FIG. 6. Diffusion D vs translational noise D0 in the cellular flow
of Eq. (1) for Dθ = 0 and main panel: v0 = 1 and different �0, inset:
�0 = 0 and different v0 (see legends). Other model parameters are:
α = 1, U0 = 1, and L = 2π . Straight lines represent the analytical
predictions discussed in the text for high (solid) and low chirality
(dashed). A vertical arrow locates D0 = DL .

dashed lines), whereas for D0/DL 	 v0/U0 	 1 the constant
D grows proportional to v

1/2
0 (inset of Fig. 5). We remind here

that in the noiseless limit, D0, Dθ → 0, the particle dynamics
becomes chaotic [16] and diffusion is suppressed (and hard to
compute numerically).

C. Noise controlled diffusion

The effects discussed in the foregoing subsections are
detectable only at low thermal noise levels. In Fig. 6, we illus-
trate how advection effects can be washed out by large thermal
noise, even under the depinning threshold, i.e., for v0 < vth.
In the case of a high chirality particle, �0 � �L, at low
noise, D0 	 DL, we know that D = (DLD0)1/2, whereas for
exceedingly large D0, we expect D = D0 (free diffusion limit).
The transition between these two limits would take place for
D0 ∼ DL. This is consistent with the simulation data of Fig. 6
(vertical arrow). The case of low chirality is more interesting.
The large noise branch of D till sets out proportional to D0,
but with substantially larger slope, which seems to increase
proportionally to v2

0 (see inset). Our numerical data for D
finally approach the free diffusion law, D = D0, but asymp-
totically, only, around D0 ∼ U 2

0 /�0. To explain this phe-

nomenon we remark that at low Péclet numbers, D0 � DL,
the active particle is no longer trapped in the convection rolls.
For low angular rates, Dθ , �0 	 �L, its mean free path is of
the order of v0τL, where τL = L/2πU0 is the effective cell
crossing time, and gets scattered against the cell separatrix
with (short) persistence time, τ0 = (L/2π )2/8D0, governed
by the translational noise. Using the argument invoked to
derive Eq. (4), we predict, D = D0[1 + 4(v0/U0)2], in good
agreement with the simulation data reported in Fig. 6. By the
same token, one locates the switching between such a tran-
sient law and the free diffusion law at around D0 ∼ U 2

0 /8�0.
In conclusion, our simulations prove that the combination

of advection and self-propulsion determines an appreciable
excess diffusion of weakly chiral active JPs even at low Péclet
numbers.

IV. CONCLUSIONS

In this paper, we have shown how active particles in
hydrodynamically active mediums exhibit peculiar diffusion
properties, which distinguish them from common colloidal
particles [31–33]. This is particularly true in the low chirality
regime, where self-propulsion determines a rich phenomenol-
ogy of the diffusion process. We remind that the simple
and best known stream function ψ (x, y) of Eq. (2), models
situations that have been already implemented experimentally,
e.g., with rotating cylinders [13] or with ion solutions in arrays
of magnets [34]. Moreover, the numerical and analytical tech-
niques reported here can be easily extended to different stream
functions to represent convection rolls of varying topologies
[35]. It is clear from this investigation that, in view of techno-
logical applications, advection controlled diffusion should be
considered as an effective tool to govern the transport of active
matter. Important examples are microfluidic devices [36] or
even microswimmer diffusion in steady turbulent flows [34].
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