
PHYSICAL REVIEW RESEARCH 2, 013240 (2020)

Nonlinear QED in an ultrastrong rotating electric field: Signatures of the momentum-dependent
effective mass
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The electron effective mass in a rotating electric field (REF) and its signatures in the nonlinear Breit-Wheeler
and nonlinear Compton processes are investigated, recognizing this field as a model for the antinodes of
counterpropagating laser beams. In contrast to the case of a plane-wave laser field, the effective mass in REF
depends on the electron momentum absolute value as well as on its direction with respect to the field plane.
These features of the effective mass are observable in the threshold for pair production by a γ photon, and
in the harmonics structure appearing in the radiation spectrum of an electron. It can be tested varying the
photon propagation direction in the first case, and the electron energy in the second case. Thus, we demonstrate
the possibility of a nontrivial dispersion relation for an electron in strong laser fields, analogous to that in
condensed-matter systems, which leaves its imprints in high-energy scattering.
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I. INTRODUCTION

The modification of a particle mass due to an interaction
with a strong field is a fundamental phenomenon, appearing
in a variety of fields in physics. In particle physics, the
spontaneous electroweak symmetry breaking is accompanied
by a nonzero Higgs field that endows the elementary particles
with their mass [1]. In QCD, a quark gains an effective mass
(known as a constituent mass) due to the field associated with
chiral symmetry breaking [2]. The emergence of an effective
mass is abundant in condensed-matter systems. As opposed
to the above examples, however, in this case the external
potential is periodic, resulting in a nontrivial modification of
the electron dispersion relation. For instance, an electron in
a lattice may exhibit a rich band structure, depending on its
momentum and direction with respect to the crystal planes [3].

An effective mass arises also in the interaction between
a high-intensity laser and a particle [4,5], stemming from
the pondermotive potential associated with the laser [6]. The
effective mass, rather than a bare one, appears in the energy
momentum conservation law [7], thus leaving signatures in
the corresponding nonlinear QED processes. From a theo-
retical point of view, the investigation of the effective mass
associated with strong-field QED requires a solution for the
dynamics of the particle in the presence of the field. Most
of the analyses to be found in the literature were done for
a particle in a plane-wave field (PWF) using the Volkov
solution [8,9] to the Dirac equation. The electron effective
mass in a strong PWF is constant, although deviating from that
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in vacuum. The latter is characterized by the classical strong
field parameter ξ ≡ ea/m [7,10], where a is the amplitude of
the laser vector potential Aμ, and −e and m are the electron
charge and mass, respectively; relativistic units h̄ = c = 1 are
used. Contemporary optical lasers [11,12] may reach ξ ∼
100 (corresponding to an intensity of ∼1022 W/cm2) and a
significant increase is expected in next-generation laser facil-
ities [13,14]. In addition to the field amplitude, the effective
mass was shown to depend on the laser polarization [7] and
pulse shape [15–20].

In the realm of strong-field QED, the perturbation treat-
ment is developed based on solutions of the Dirac equation
in the presence of an external field [21]. The fundamental
quantity of this theory is the quantum strong-field parameter
χ ≡ e

√
−(FμνPν )2/m3 [7], where Pν = (E, P) is the kinetic

four-momentum, a bold letter stands for a 3-vector, and Fμν =
∂μAν − ∂νAμ is the field tensor. The lowest-order processes
described by this theory are the Schwinger mechanism [22],
where the strong field induces a pair creation from the
vacuum, the nonlinear Compton (NLC), where an electron
absorbs s-laser photons to emit an energetic photon [7,10],
and the nonlinear Breit-Wheeler (NLBW), where an electron
positron pair is created following the absorption of a γ photon
and s-laser photons. The effective mass is manifested in the
kinematics associated with these processes and thus may be
measured. The first process is exponentially inhibited for
fields below the Schwinger field Es ≡ m2/e (corresponding to
an intensity of ∼1029 W/cm2 for optical lasers) and is beyond
experimental reach in the near future [10]. The second and
third scatterings are closely related through the crossing sym-
metry [2] and are assumed to play a key role in laser-matter
interactions [23–30]. In the classical regime (χ � 1), only the
NLC has an analog (the nonlinear Thomson scattering). In this
domain, which is accessible to experimental investigations,
the effective mass was recently measured [31,32]. In the
quantum regime both the NLC and the NLBW were observed
in the E-144 experiment [33,34], but the effective mass was
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not directly detected. Recently, however, several experiments
aiming at strong-field QED were reported [35–38], bringing
the perspective closer to measuring the effective mass in the
quantum domain as well.

In strong laser fields, the potential experienced by the par-
ticle is periodic and hence one could expect that the effective-
mass features would resemble the condensed-matter case,
inducing a complex dispersion relationship for the dressed
electron. Nevertheless, through all previous results, the effec-
tive mass is always constant and no deviation from the simple
dispersion was reported. At first sight surprising, this fact
stems from the symmetry of PWF, namely, from the specific
space-time dependence of the field via t − z. Nevertheless, the
modern ultrastrong laser technique frequently employs more
complex electromagnetic configurations, e.g., a combination
of several laser beams [39–41], which may induce more
complicated dispersion relations.

The simplest example of a multibeam laser field configura-
tion is the case of two counterpropagating laser pulses. The
antinodes of the electric field in this case can be modeled
by an oscillating electric field. Several approximations to the
corresponding wave function were discussed in the context of
various strong-field processes [42–54]. The effective mass and
its consequences, however, were explicitly considered only for
the limiting case of a vanishing particle momentum [55], and
no deviation of the effective mass from the simple dispersion
was revealed.

In this paper, the example of a rotating electric field (REF)
is employed to show that for external fields deviating from
the PWF, a momentum-dependent effective mass may arise.
We derive the analytic expression for the effective mass of
a particle in the presence of REF and show that it depends
not only on the field parameters but also on the particle
momentum. Namely, two particles propagating in different
directions or velocities in the same field acquire a different
mass. The effects of the dressed mass on the probabilities
of NLC and NLBW processes, and on the spectra of the
emitted photons and the created electron-positron pairs, are
explored by analytical and numerical means. Thus, signatures
of a nontrivial dispersion relation, analogous to condensed-
matter systems, are explicitly manifested in fundamental QED
scattering processes. Furthermore, two experimental scenarios
are suggested to detect a measurable signature of this phe-
nomenon.

This paper is organized as follows. In Sec. II, the effective
mass in the presence of a REF is analyzed. Section III presents
the various signatures of the effective mass appearing in
NLC and NLBW processes and proposes an experimental
setup where they can be measured. Section IV discusses the
physical consequences of the obtained results and concludes
the paper.

II. THE EFFECTIVE MASS

First, let us explicitly calculate the effective mass of a
particle in the field under consideration. The effective mass is
defined via the cycle-averaged momentum of the electron in
this field: m∗ ≡

√
P̄2. The vector potential of REF is defined

as Aμ = aμ
1 cos(ωt ) + aμ

2 sin(ωt ), where aμ
1 = a(0, 1, 0, 0),

aμ
2 = a(0, 0, 1, 0) are the polarization vectors, and the (x-y)

plane is the polarization plane. The time-dependent momen-
tum reads P = p − eA, with the initial momentum pμ =
(ε, p), and the time-dependent energy is derived from the
free-electron dispersion relation E = √

m2 + P2. Without loss
of generality we assume that the particle propagates in the
(x-z) plane, so that p = p(sin θ, 0, cos θ ), where p ≡ |p|
and θ is the angle between p and the z axis, transverse
to the polarization plane. The cycle-average momentum is
simply p and the cycle-average energy is given by Ē =
2GE2(μ)/π [45], where E2 is the elliptic integral of the
second kind, μ ≡ 4mξ p| sin θ |/G2, and G ≡ [m2(1 + ξ 2) +
p2 + 2mξ p| sin θ |]1/2. Hence, the effective mass takes the
form

m∗ =
√[

2GE2(μ)

π

]2

− p2. (1)

Generally speaking, it depends on three quantities: ξ , p,
and θ . In the following, we examine analytically its limits.
For a particle initially propagating perpendicular to the field
plane, i.e., θ = 0, as well as for p = 0, one obtains μ = 0.
Consequently, since E2(0) = π/2, the effective mass recovers
its PWF value m∗ = mP

∗ ≡ m
√

1 + ξ 2. It coincides with the
result of Ref. [55], which was obtained for vanishing mo-
mentum, and agrees with Ref. [51], obtained for a head-on
collision (θ = 0). An explanation of this fact is suggested
later on. In the case of p � mξ , one obtains μ � 1. Since the
first-order Taylor expansion of E2 with respect to μ vanishes,
this limit corresponds, up to second order, to m∗ ≈ mP

∗ . For
the opposite case (p � mξ ), one may expand G and E2 (see
Appendixes A and B) appearing in the general expression,
which leads to

m∗ ≈ mP
∗

√
1 − ξ 2

2(1 + ξ 2)
sin2 θ. (2)

Accordingly, the minimal value of m∗, corresponding to
ξ � 1, is m∗ ≈ mP

∗ /
√

2. In this limit, however, the local
crossed-field approximation sets in for the NLC and NLBW
processes, when the probabilities and spectra depend solely
on the parameter χ , but not on ξ , and all signatures of the
effective mass vanish. Thus, the preferable range for the study
of the effective-mass influence is ξ ∼ 1. Figure 1(a) shows
the effective mass for ξ = 2 (normalized to the PWF value

FIG. 1. The effective mass m∗, normalized to the PWF value mP
∗ :

(a) as a function of p/m and θ for ξ = 2; (b) as a function of p/m
and ξ for θ = π/2.
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mP
∗ ) as a function of θ and p/m. One may observe that

for θ = 0 or p � mξ the normalized value of the effective
mass tends to 1, in agreement with the analytical result. The
values for p � mξ coincide to a very good approximation
with Eq. (2). Figure 1(b) presents the same quantity as a
function of p/m and ξ for θ = π/2. The limits of p either
much higher or much lower than mξ hold here as in Fig. 1(a).
Notice that the minimal value of the normalized effective mass
is 1/

√
2 ≈ 0.71 and that a significant decrease appears for

p � mξ , ξ ∼ 1, in accordance with Eq. (2).

III. SIGNATURES IN STRONG-FIELD QED PROCESSES

A. Calculation of probabilities and a proposed setup

Since the effective mass is embedded in the kinematics
associated with the NLC and NLBW processes, its fingerprint
may be found in the corresponding spectra. In a previous
work [54] we have examined in detail the NLC probability for
this field configuration. It was found that as long as ε � mξ ,
the rate coincides to an excellent approximation with the one
obtained with the semiclassical formula introduced by Baier
and Katkov [56,57]. Due to the crossing symmetry between
the matrix elements of the Compton and Breit-Wheeler pro-
cesses, this conclusion holds for the NLBW process as well.
For this reason, we calculate here the rate according to the
semiclassical expression. In this case, the probability to emit
a photon with a four-momentum k′ = (ω′, k′) reads

dP = α

(2π )2ω′

[
−ε′2 + ε2

2ε′2 |Tμ|2 + m2ω′2

2ε′2ε′2 |I|2
]

d3k′, (3)

where α ≈ 1/137 is the fine-structure constant and ε′ = ε −
ω′. The integrals I and Tμ are defined as follows, I ≡∫ ∞
−∞ dteiψ and Tμ ≡ ∫ ∞

−∞ dtυμeiψ , where the phase reads
ψ ≡ ε

ε′ k′ · x(t ), the velocity is υμ = Pμ/E, and x(t ) designates
the classical trajectory. The probability associated with the
NLBW takes an analogous form where d3k′ is replaced by
the momentum of the outgoing electron d3p′ and ε′ = ω′ − ε.
The derivation of the final expressions for the two processes
is given in Appendixes C and D. It follows from Eq. (3) that
the probability is determined according to the trajectory of the
electron in the presence of the field. It provides an explanation
for the fact that for θ = 0 the effective mass coincides with
that of the PWF, as seen from Eq. (2). In this case, the particle
is simply moving in a circle in the (x-y) plane while drifting
along the z axis, which is identical to the particle motion in a
PWF.

A possible realization of REF in the laboratory may be
achieved using counterpropagating circularly polarized laser
beams, as illustrated schematically in Fig. 2. In the antinodes
of the standing wave created by the beams, the magnetic
components of the two beams cancel each other and the field
can be approximated as REF. As a result, a particle would
experience REF rather than a standing wave only if it prop-
agates along the antinode plane (perpendicular to the beam
axis), namely, with θ = π/2. On the other hand, we wish to
detect the angle dependence of the effective mass. According
to Fig. 1, this dependence is slow and monotonous. Thus,
finding another configuration corresponding to θ = 0 may be
sufficient. As explained above, the latter case is theoretically

FIG. 2. The schematic setup. The counterpropagating beams cre-
ate a standing wave and the γ -photon beam passes through the
antinode and creates electron-positron pairs.

equivalent to a particle in the presence of a PWF. Hence, our
reference configuration would be a γ photon interacting with
a circularly polarized PWF with the same ξ value. Since for
the PWF the effective mass depends solely on ξ , the angle
between the γ photon and the laser may be chosen according
to convenience. In the following, we assumed that this angle
would be θ = π/2. Namely, the reference configuration is
identical to the one presented in Fig. 2, where the two beams
are replaced by a single one with the same total energy.

B. Nonlinear Breit-Wheeler

For the NLBW process to take place, the center-of-mass
energy Es =

√
(sk + k′)2 = √

2s(k · k′) should exceed 2m∗,
where s is the number of absorbed field quanta and their
wave vector reads k = (ω, 0, 0, 0). This threshold suggests a
simple way to measure the effective mass. Since for the setup
illustrated in Fig. 2 we have k · k′ = ωω′, the threshold energy
for the incoming γ photon is

ω′
s = 2m2

∗
sω

. (4)

Accordingly, increasing ω′ for fixed laser parameters leads to
a discrete change in the number of allowed channels in the
vicinity of ω′

s, leading to an abrupt jump in the total proba-
bility. In order to detect this discontinuity, two requirements
should be fulfilled. First, the laser normalized amplitude
should lay in the perturbative regime (i.e., ξ � 1), so that high
harmonics are inhibited and the main contribution originates
from the sth channel under consideration. Second, the thresh-
old ω′

s should be remote from the sequential one ω′
s+1, so

that the influence of the sth channel would be distinguishable.
Therefore, as Eq. (4) implies, low harmonics are preferable.
The total probability of pair production in dependence of the
incoming γ -photon energy is shown in Fig. 3(a). Since high
ω′ of γ -photon energies are difficult to achieve, we propose
to increase ω by using harmonics of the laser radiation,
and consider the following laser parameters: ξ = 0.4, ω =
4.65 eV, corresponding to the third harmonic of a Ti:S laser
with an intensity of 6 × 1018 W/cm2. As mentioned above,
observing effective-mass effects requires a periodic laser field,
namely, a multicycle pulse. A 10-cycle pulse with the desired
intensity focused on a spot with a diameter of 10 wavelengths
corresponds to 4 mJ, which is realizable with the present
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FIG. 3. (a) Total pair production probability vs incoming γ -
photon energy: θ = 0 (thin blue line) and θ = π/2 (green line). The
vertical dashed-dotted red (dashed black) line shows the threshold
location ω′

2 for θ = 0 (θ = π/2). (b) Energy spectrum of the emitted
pairs for the γ -photon energy of ω′ = 50 GeV: θ = 0 (thin blue line)
and θ = π/2 (green line). The vertical dashed-dotted red (dashed
black) lines show the location of third harmonic edge for θ = 0
(θ = π/2). The laser parameters are ω = 4.65 eV, ξ = 0.4.

laser technique [58]. The γ energies lie in the same GeV
range as those achieved in the E-144 experiment [33,34].
One may observe that the thresholds are ω′

2 = 65.2 GeV for
θ = 0, and 60.5 GeV for θ = π/2, which by using Eq. (4)
correspond to m∗(θ = 0) = mP

∗ and m∗(θ = π/2) = 0.96mP
∗ ,

in accordance with Eq. (2). Notice that for θ = 0 the quantum
parameter is χ = ξωω′/m2 whereas for θ = π/2 it reads
ξωω′/m2 sin(ωt ). Accordingly, the average value of χ is
lower in the second case and so is the corresponding rate.

Another indication of the effective mass may be observed
in the spectrum of the created pair, as follows. From the en-
ergy momentum conservation skμ + P̄μ = P̄′

μ + k′, a restric-
tion on the outgoing particle energy arises (see Appendix D).
For a given number of absorbed photons s, one may show that∣∣∣∣ε − ω′

2

∣∣∣∣ <
�s

2
, �s = ω′

√
1 − s0

s
, (5)

where s0 = 2m2
∗/(ωω′). As an example, the spectral probabil-

ity associated with the created pair is depicted in Fig. 3(b).
The γ -photon energy is 50 GeV and the laser parameters as
described above. The widths of the third harmonic are �3 =
0.34ω′, 0.43ω′ for θ = 0, π/2, respectively. Employing (5),
one obtained the same effective-mass values written above.

C. Nonlinear Compton

In the following, a similar analysis is carried out regarding
the NLC process (the PWF case was discussed in Ref. [23]).
A straightforward kinematic calculation (see Appendix C)
shows that for a given s, the emitted photon has a cutoff
energy, known as an “edge,”

ω′
e = sωε

ε(1 − ῡ ) + sω
, ῡ = p√

m2∗ + p2
, (6)

where ῡ is the absolute value of the cycle-averaged velocity.
As a result, the effective mass affects the edge location. In
principle, since the effective mass is momentum dependent
(as shown in Fig. 1), it may differ for the incoming and out-
going particles. We study the process in the classical regime,

FIG. 4. (a) NLC emission spectrum: θ = 0 (thin blue line) and
θ = π/2 (green line). Simulation parameters: ω = 1.55 eV, ξ = 2,
p/m = 20. The vertical dashed-dotted red (dashed black) line shows
the edge location of the first harmonic θ = 0 (θ = π/2). (b) The
edge energy for θ = π/2, normalized by ω, as a function of p/m
(red line). As a reference, the prediction of Eq. (6) for the limiting
cases m∗(p = 0) (dashed-dotted blue line) and m∗(p � mξ ) (dashed
green line).

χ � 1, because the regime where both ξ ∼ 1 and χ ∼ 1 are
fulfilled would require very high-frequency colliding laser
beams (with photon energies in the MeV range, which is
beyond contemporary experimental reach). As a result, the
recoil is negligible (p ≈ p′) and therefore the effective masses
of the incoming and outgoing electron are the same. The
emission properties of a particle propagating in the electric
field plane may be measured in a setup similar to the one
in Fig. 2, where the γ photons are replaced by high-energy
electrons. Aiming the electron beam at the antinode may be
more challenging as compared to the previous case as a result
of the pondermotive force acting on the electrons. However,
the intensity considered is moderate, allowing for a com-
paratively large spot, weak gradients, and therefore reduced
pondermotive force. A notable fact is that the NLC process
has no threshold, as opposed to the NLBW discussed above.
Namely, all possible channels s are allowed, regardless of the
incoming electron energy. Consequently, the first harmonic
of the Ti:S laser as well as a modest electron energy are
sufficient. Furthermore, the NLC spectrum is less sensitive to
an increase in the field amplitude ξ as compared to the NLBW
one. As a result, one may use higher values of ξ without losing
the edge structure. These two facts allow one to explore the
edge structure and thus the effective mass for p ∼ mξ . In this
regime, as opposed to the p � mξ case discussed above, the
effective mass depends not only on θ but on p as well (see
Fig. 1). Figure 4(a) presents the NLC spectrum for θ = 0 and
θ = π/2. The laser frequency and intensity are ω = 1.6 eV,
I = 1.7 × 1019 W/cm2, corresponding to ξ = 2. The particle
initial momentum is p/m = 20. One may see that the harmon-
ics edges become smeared with increasing s. As a result, it is
convenient to take a closer look at the first harmonic only. The
edge locations corresponding to θ = 0 and θ = π/2 are ω′

e =
0.26 keV and ω′

e = 0.4 keV, respectively. From Eq. (6) one
may calculate the effective masses m∗(θ = 0) = mP

∗ , m∗(θ =
π/2) = 0.77mP

∗ , in agreement with the prediction of Eq. (2).
As in the NLBW case, the average value of χ is smaller
for θ = π/2, leading to a lower spectrum. By varying the
incoming electron momentum one may observe the shift of the
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edge location. The shift of the edge from the calculated spectra
is summarized in Fig. 4(b). From the latter the effective mass
is deduced using Eq. (6), which is in accordance with the
function m∗(π/2, p/m) presented in Fig. 1(a) and calculated
from the classical trajectory. As a reference, the predictions
of Eq. (6) for constant effective-mass values corresponding to
the limiting cases p = 0 and p � mξ are shown in Fig. 4(b) as
well. As expected, the curve obtained from the edge location
shift (solid red line) interpolates continuously between the two
other ones.

IV. SUMMARY AND CONCLUSIONS

In this paper, the effective mass in the presence of a REF
was investigated in detail. It was shown to depend not only
on the field amplitude but also on the particle momentum and
propagation direction. The influence of this effect on the prob-
abilities of the NLBW and NLC scatterings was explored by
employing the Baier-Katkov semiclassical formalism. For the
NLBW process, it was found that due to the angle dependence
of the effective mass, the threshold for pair production varies
with the angle of the γ photon with respect to the field plane.
Furthermore, the edge corresponding to a certain harmonic is
determined according to the effective mass. Hence, its angle
dependence may be inferred from the created pair spectrum.
An analogous kinematic relation holds for the NLC process as
well, allowing one to measure the effective mass by the loca-
tion of the harmonics edges. In addition, since an energetic
threshold does not exist, the incoming electron momentum
may be chosen to be not much higher than the field amplitude,
p � mξ . Accordingly, one may also examine experimentally
the influence of the absolute value of the momentum (rather
than its angle) on the effective mass.

The primary significance of the above results lies in the
emergence of a nontrivial dispersion relation in the context of
strong-field QED, namely, the demonstration of high-energy
scattering processes of dressed particles with a dispersion
relation resembling those observed in condensed-matter sys-
tems, rather than that of free particles. It implies that more
complex electromagnetic configurations (e.g., Refs. [39–41])
may induce more complicated dispersion relations, which
may be manipulated by the characteristics of the beams.
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APPENDIX A: THE CLASSICAL TRAJECTORY

In the semiclassical formalism employed in this paper, the
classical trajectory of the particle is the cornerstone of the
rate calculation. Let us calculate explicitly the trajectory of an
electron moving in a rotating electric field (REF), described
by a vector potential A(t ) = a(cos ωt, sin ωt, 0). The particle
location is given by

x(t ) =
∫ t

t0

dt ′υ(t ′) =
∫ t

t0

dt ′ P(t ′)
E(t ′)

. (A1)

Due to the canonical momentum conservation, the kinetic
momentum is straightforwardly derived,

P(t ) = p + eA(t ), (A2)

and using the dispersion relationship E(t ) =
√

P2(t ) + m2,
one arrives at

E(t ) =
√

ε2
0 + (ea)2 + 2eap| sin θ | cos(ωt − ν), (A3)

where tan ν = py/px. It may be represented as

E = G

√
1 − μ sin2

(
ωt − ν

2

)
, (A4)

where the following quantities are introduced,

G ≡
√

m2(1 + ξ 2)p2 + 2mξ p| sin θ |, (A5)

and

μ ≡ 4mξ p| sin θ |
G2

. (A6)

Substituting the explicit expression for the energy into
Eq. (A1), one obtains the particle coordinate. Its x component
reads

x(t ) = 1

G

∫ t

t0

dt ′

⎡
⎣ px√

1 − μ sin2
(

ωt ′−ν
2

)

+ ea cos(ωt ′)√
1 − μ sin2

(
ωt ′−ν

2

)
⎤
⎦. (A7)

A variable change φ ≡ (ωt − ν)/2 yields

x(t ) = 2

ωG

∫ φ

φ0

dφ′
[

px√
1 − μ sin2 φ′

+ ea cos(2φ′ + ν)√
1 − μ sin2 φ′

]
.

(A8)

The latter takes the form

x(t ) = 2

ωG
[pxJ1 + mξ (cos νJ2 − sin νJ3)], (A9)

where the following integrals are defined,

J1(x|μ) ≡
∫ x

0
dx′ 1√

1 − μ sin2 x′
, (A10)

J2(x|μ) ≡
∫ x

0
dx′ cos(2x′)√

1 − μ sin2 x′
, (A11)

J3(x|μ) ≡
∫ x

0
dx′ sin(2x′)√

1 − μ sin2 x′
, (A12)
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and x = ωt/2. These integrals admit an analytical solution,

J1(x|μ) = E1(x|μ), (A13)

J2(x|μ) = (μ − 2)E1(x|μ) + 2E2(x|μ)

μ
, (A14)

J3(x|μ) = 2

μ

[
1 −

√
1 − μ sin2 x

]
, (A15)

where E1(x|μ), E2(x|μ) are the incomplete elliptic integrals
of the first and second kind, respectively,

E1(x|μ) ≡
∫ x

0
dx′ 1√

1 − μ sin2 x′
, (A16)

E2(x|μ) ≡
∫ x

0
dx′

√
1 − μ sin2 x′. (A17)

Analogously, for the y component of the coordinate, one
obtains

y(t ) = 2

ωG

∫ φ

φ0

dφ′
[

py√
1 − μ sin2 φ′

+ ea sin(2φ′ + ν)√
1 − μ sin2 φ′

]
,

(A18)

which reads

y(t ) = 2

ωG
[pyJ1 + mξ (sin νJ2 + cos νJ3)]. (A19)

The vector potential has no z component, so for z(t ) we simply
have

z(t ) = 2

ωG
pzJ1. (A20)

In addition to the trajectory, the average velocity is required
as well for the purpose of rate calculation. Applying the defi-
nition ῡx ≡ [x(T ) − x(0)]/T , where T = 2π/ω, we obtain

ῡx = 1

πG
[pxJ1 + mξ (cos νJ2 − sin νJ3)]|π0 . (A21)

One may easily find

J1(x|μ)|π0 = 2E1(μ), (A22)

J2(x|μ)|π0 = 2(μ − 2)E1(μ) + 4E2(μ)

μ
, (A23)

J3(x|μ)|π0 = 0, (A24)

where the complete elliptic integrals are given by E1(μ) =
E1( π

2 |μ), E2(μ) = E2( π
2 |μ). Accordingly, the x component of

the average velocity takes the form

ῡx = 2

πG

[
pxE1(μ) + mξ cos ν

(
2E2(μ) + (μ − 2)E1(μ)

μ

)]
.

(A25)

Similarly, the other components are given by

ῡy = 2

πG

[
pyE1(μ) + mξ sin ν

(
2E2(μ) + (μ − 2)E1(μ)

μ

)]
(A26)

and

ῡz = 2

πG
pzE1(μ). (A27)

APPENDIX B: THE HIGH MOMENTUM LIMIT OF THE
EFFECTIVE MASS

As explained in the main text, the effective mass is defined
as

√
P̄2. Since P̄ = p we have

m∗ =
√
Ē2 − p2. (B1)

The cycle-averaged energy is given by

Ē = 2

π
GE2(μ), (B2)

In the following, we would like to Taylor expand the effective
mass for p � mξ . As we show below, the first order vanishes
and, therefore, we evaluate it up to second order. We introduce
the following quantities,

δ ≡ 4mξ p| sin θ |
R2

, R ≡
√

m2ξ 2 + m2 + p2. (B3)

G, μ defined above read in terms of these variables:

G = R

√
1 + δ

2
, (B4)

μ = δ

1 + δ/2
. (B5)

Substituting Eqs. (B5) and (B4) into Eq. (B2), one finds

Ē = 2R

π

√
1 + δ

2
E2

(
δ

1 + δ/2

)
. (B6)

One may notice that up to third order,

δ ≈ 4| sin θ |
(

mξ

p

)
+ O

([
mξ

p

]3
)

. (B7)

As a result, up to second order, we may expand with respect
to δ instead of mξ/p. Employing the following Taylor expan-
sions,

E2(x) ≈ π

2

(
1 − x

4
− 3x2

64

)
, (B8)

√
1 + x ≈ 1 + x

2
− x2

8
, (B9)

and substituting Eq. (B6) into Eq. (B1), one obtains

m2
∗ = (mP

∗ )2 − δ2R2

32
, (B10)

where mP
∗ = m

√
1 + ξ 2. Since

δ2R2 = 16m2 p2ξ 2 sin2 θ

R2
≈ 16m2ξ 2 sin2 θ, (B11)

one may see that Eq. (B10) becomes

m∗
mP∗

=
√

1 − ξ 2

2(1 + ξ 2)
sin2 θ. (B12)

APPENDIX C: NONLINEAR COMPTON SCATTERING

1. Probability

As demonstrated in Ref. [54], under the condition ε � mξ ,
the quantum and semiclassical [56,57] approaches coincide.

013240-6



NONLINEAR QED IN AN ULTRASTRONG ROTATING … PHYSICAL REVIEW RESEARCH 2, 013240 (2020)

Since the latter allows for a simpler calculation, it will be used
in this paper. According to this approximation, the probability
of a Dirac particle to emit a photon with a four-momentum k′
is given by

dP = α

(2π )2
d3k′

∫ ∞

−∞
dt1

∫ ∞

−∞
dt2N21

× exp

[
i

ε

ε − ω′ k
′ · [x(t1) − x(t2)]

]
, (C1)

where xμ = [t, x(t )] and x(t ) is the particle classical trajectory
found above. The prefactor is given by

N21 ≡ 1

2ε′2

[
(ε′2 + ε2)[υ(t1) · υ(t2) − 1] + ω′2m2

ε2

]
. (C2)

It should be mentioned that this expression already contains
averaging over the incoming electron spin and summing over
the outgoing electron (photon) spin (polarization), respec-
tively. Since υ(t1)υ(t2) − 1 = −υμ(t1)υμ(t2), Eq. (C1) can be
cast in the following form,

dP = α

(2π )2
|K|2d3k′, (C3)

where

|K|2 ≡ −
(

ε′2 + ε2

2ε′2

)
|Tμ|2 + m2ω′2

2ε′2ε2
|I|2, (C4)

with

I ≡
∫ ∞

−∞
dteiψ, Tμ ≡

∫ ∞

−∞
dtυμ(t )eiψ, (C5)

and

ψ = ε

ε′ k
′ · x(t ) = εω′t

ε′ (1 − x · n′), (C6)

where k′
μ = ω′(1, n′). Since we are dealing with a periodic

motion, the phase may be decomposed into a periodic and
nonperiodic parts ψ = ψp + ψnpωt with

ψp = ε

ε′ n
′ · xp, ψnp = εω′

ε′ (1 − ῡ · n′), (C7)

where the periodic part of the trajectory is given by

xp(t ) = x(t ) − ῡt . (C8)

Since we assume that the incoming electron propagates along
the x axis, pμ = (ε, px, 0, 0), the emitted photon parametriza-
tion is defined accordingly,

n′ = (cos θe, sin θe sin ϕe, sin θe cos ϕe), (C9)

where θe, ϕe are the polar and azimuthal angles with respect
to the x axis, respectively. Replacing the periodic part of the
integrands by their Fourier series, the integrals are solved,

Tμ = 2π
∑

s

Tμ
s δ(�s), I = 2π

∑
s

Isδ(�s), (C10)

where the argument of the delta function reads

�s ≡ ψnp − sω, (C11)

and the Fourier coefficients are

Tμ
s = 1

T

∫ T

0
dtvμ(t )ei(sωt−ψp), (C12)

Is = 1

T

∫ T

0
dtei(sωt−ψp). (C13)

With the aid of the condition �s = 0, forced by the delta
functions, the angle θe is found,

cos θe = 1

ῡ

(
1 − sωε′

ω′ε

)
. (C14)

Using Eq. (C9), the periodic part of the phase takes the form

ψp = εω′

ε − ω′ [cos θexp(t ) + sin θe sin ϕeyp(t )]. (C15)

Substituting Eq. (C10) into Eq. (C4), and using the identity
δ2(�s) = τ

2π
δ(�s), with the interaction time τ , one obtains

|K|2 = 2π
∑

s

K2
s δ(�s)τ, (C16)

where

|Ks|2 = −
(

ε′2 + ε2

2ε′2

)∣∣Tμ
s

∣∣2 + m2ω′2

2ε′2ε2
|Is|2. (C17)

Using d3k′ = ω′2d (cos θe)dϕe and integrating Eq. (C3) over
cos θe yields

dI

dω′dϕe
= 1

(2π )
ω′2 ∑

s

|Ks|2
∣∣∣∣ d�s

d (cos θe)

∣∣∣∣
−1

, (C18)

where the relation dI = ω′dP/τ between the probability and
the radiation intensity was employed. Since ῡ · n′ = ῡ cos θe,
from Eq. (C11) it follows that∣∣∣∣ d�s

d (cos θe)

∣∣∣∣ = εω′ῡ
ε′ . (C19)

Hence, the final expression takes the form

dI

dω′dϕe
= αω′

4πε3ε′
∑

s

[−ε2(ε2 + ε′2)|Tμ
s |2 + m2ω′2|Is|2].

(C20)

2. Kinematics

The highest possible value of ω′ associated with a given
harmonics s may be derived from kinematic considerations.
Using ε′ = ε − ω′, the emitted photon energy stems from the
kinematic relation Eq. (C14),

ω′ = sωε

ε(1 − ῡ cos θe) + sω
. (C21)

The maximal value of ω′ corresponds to cos θe = 1. This
result may be derived by an alternative kinematic approach.
The energy momentum conservation of this process reads

P̄μ + skμ = P̄′
μ + k′

μ, (C22)

013240-7
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where kμ = (ω, 0, 0, 0). Therefore, the spatial momentum
conservation yields

p′
‖ + k′

‖ = p, p′
⊥ = −k′

⊥, (C23)

where ‖ and ⊥ designate the parallel and transverse compo-
nents of the momenta with respect to the incoming particle
direction, respectively. Then the total outgoing momentum
reads

p′ =
√

m2 + p′2
‖ + p′2

⊥ =
√

ω′2 + p2 − 2pω′ cos θe, (C24)

where k′
‖ = ω′ cos θe and k′

⊥ = ω′ sin θe. Substituting p′ into
the energy conservation equation

Ē+ sω = ω′ +
√

m2∗ + p′2, (C25)

one obtains the energy of the emitted photon,

ω′ = 2sωĒ+ s2ω2

2(Ē− p cos θe + sω)
. (C26)

Recalling that P̄ = p, the absolute value of the average veloc-
ity is given by ῡ = p/Ē. As a result, we have

ω′ = sωĒ
Ē(1 − ῡ cos θe) + sω

, (C27)

where sω � Ē was assumed. Approximating Ē ≈ ε, one re-
turns to Eq. (C21) given above.

APPENDIX D: NONLINEAR BREIT-WHEELER PROCESS

1. Probability

Owing to the crossing symmetry relating the NLC and
NLBW processes [2,57], the semiclassical probability asso-
ciated with the latter takes the form

dP = α

(2π )2ω′ |K|2d3p. (D1)

The difference with respect to the photon emission expression
of Eq. (C3) is the outgoing particle phase space, namely,
d3k′ → d3p. Therefore, the final result Eq. (C20) should be
only multiplied by a factor ε2/ω′2. Moreover, in this case we

are interested in the emission rate rather than intensity, leading
to an additional 1/ω′ factor. Finally, one obtains

dW

dεdϕe
= α

4πεε′ω′2
∑

s

[ − ε2(ε2 + ε′2)
∣∣Tμ

s

∣∣2 + m2ω′2|Is|2
]
,

(D2)

where Tμ
s ,Is are given by Eqs. (C12) and (C13). Another

modification with respect to NLC scattering lies in the peri-
odic part of the phase. Since the incoming photon propagates
along the x axis, one may write n′ = (1, 0, 0). Therefore, the
outgoing electron four-momentum is parametrized as

pμ = (ε, p cos θe, p sin θe sin ϕe, p sin θe cos ϕe). (D3)

Accordingly, ψp may be written as

ψp = εω′

ω′ − ε
cos θexp(t ), (D4)

where the trajectory is given by Eq. (A9), and the relation ε′ =
ω′ − ε is used.

2. Kinematics

As in the NLC case, the effective mass may be inferred
from the maximal value of the outgoing particle energy for a
given harmonic s. The kinematic relation Eq. (C14), together
with ε′ = ω′ − ε, yields

cos θe = 1

ῡ

[
1 − sω(ω′ − ε)

ω′ε

]
. (D5)

Since cos θe � 1 and employing

1 − ῡ = ε − √
ε2 − m2∗
ε

≈ m2
∗

2ε2
, (D6)

one obtains

sω(ω′ − ε)

ω′ε
� m2

∗
2ε2

. (D7)

Solving the quadratic inequality for ε, one arrives at∣∣∣∣ε − ω′

2

∣∣∣∣ �
√

1 − s0

s
, (D8)

where s0 = 2m2
∗/(ωω′).
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