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Receptor-induced transient responses in cells with oscillatory actin dynamics
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Living cells adjust their sensing and migratory machinery in response to changes in their environment.
In this work, we show that cells of the social amoeba Dictyostelium discoideum modulate the dynamical
state of their actin cytoskeleton in response to an external pulse of the chemoattractant cyclic adenosine
monophosphate (cAMP). In particular, we focus on a population of cells that exhibits noisy oscillatory cycles
of actin polymerization and systematically study receptor-induced transitions in their cytoskeletal dynamics.
In response to a short external pulse of cAMP, these cells adopt a noisy quiescent state, before returning to
their initial, oscillatory dynamics. The response exhibits a biphasic time profile, with a duration that shows
strong variability between cells; it can extend as long as approximately twelve oscillation cycles. We propose a
model that is based on a generic nonlinear noisy oscillator. Our theoretical analysis suggests that the transient
termination of oscillations in response to a receptor stimulus occurs via a Hopf bifurcation.

DOI: 10.1103/PhysRevResearch.2.013239

I. INTRODUCTION

Amoeboid cells constantly migrate and probe the chemical
composition of their surroundings, in order to respond to
changing environmental conditions. For instance, individual
cells of the social amoeba Dictyostelium discoideum (D. dis-
coideum) react to extracellular cAMP, emitted by neighboring
D. discoideum cells, to aggregate and self-organize into a
multicellular fruiting body. The extracellular cAMP is de-
tected by the corresponding G protein coupled receptors that
trigger a cascade of intracellular signaling events, involving
Ras activation and the phosphorylation of PIP2 to PIP3. This
induces reorganization of the actin cytoskeleton and chemo-
tactic migration of cells towards regions of higher cAMP
concentration [1]. The cytoskeletal actomyosin system not
only generates the forces required for amoeboid locomotion
but also determines the shape and mechanical stability of the
cells [2,3].
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In our previous work, we have probed the dynamical
properties of actin polymerization in response to external
pulses of cAMP [4]. We found that the polymerization-
depolymerization dynamics at the cell cortex is reminiscent
of a damped oscillator and the response to a cAMP pulse
saturates above a critical cAMP level [5]. A subpopulation
of the investigated cells exhibits self-sustained oscillations
in the polymerization-depolymerization dynamics, leading to
the conjecture that the actin cytoskeleton operates close to
an oscillatory instability [4,6]. Being close to criticality is a
global property shared by many other cellular systems and
in different biological contexts [7–9]. Besides, self-sustained
oscillations are an example of the rich autonomous dynamics
of the cytoskeleton and its governing chemotactic signaling
system [10,11]. Other examples include intracellular traveling
waves and spontaneous pseudopod formation resulting in
random motility and reorientation [12]. These autonomous
processes can be directly influenced by receptor-mediated
chemoattractant stimuli [13]. In this work, we focus on the
subpopulation of cells which show self-sustained oscillations
(see Fig. 1 for an example) and probe their response to a
chemoattractant stimulus. Based on a combination of experi-
ments and modeling, we characterize the dynamical transition
induced by a change in the ambient cAMP concentration. We
report that a single short pulse of cAMP (≈1 s) induces a
transition of the actin cytoskeleton in D. discoideum from
self-sustained oscillations to a nonoscillatory state. After a
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FIG. 1. Experimental set-up and data analysis. (a) Exemplary image series. The D. discoideum cell is centered within a 48 × 48 μm
imaging region. The cAMP stimulus is released upstream of the cell by a line scan of a 405-nm laser (uncaging region, purple) and advected
by the flow toward the cell (mean velocity = 120 μm/s). The imaged LimE-mRFP fluorescence is segmented into cortical and cytosolic signals
(displayed in frame 2, blue and yellow, respectively). (b) Averaged fluorescence intensity of the cortical (blue) and the cytosolic region (yellow)
over time. The respective frames in panel (a) are marked by blue and yellow dots. (c) Cytosolic signal after detrending. The cAMP stimulus
was applied at t = 100 s and is denoted by a gray bar in panels (b) and (c).

transient time of varying length, the actin cytoskeleton re-
turns back to its initial oscillatory state, showing that the D.
discoideum amoeba may change their dynamical state as a
response to an external chemoattractant stimulus.

We use the flow photolysis method to stimulate single
cells with short-time pulses of cAMP. This method relies
on the photoactivation of caged compounds in microfluidic
channels [14,15]. The cytoskeletal actin response is recorded
as changes in the subcellular LimE-mRFP distribution [4].
This Lim-domain protein is a marker for filamentous actin
[16,17] and reflects changes in cortical actin polymerization
by translocating between the cytosol and the cell cortex [18];
see Fig. 1(a). The transient response of a D. discoideum
amoeba to a sudden change in ambient cAMP concentration
can be divided into two phases (biphasic response). First, both
the signaling system and the actin cytoskeleton are uniformly
activated along the cell membrane with a characteristic dura-
tion of approximately 20 s [19–21]. This is followed by a sec-
ond more irregular phase, during which localized patches of
activity appear and disappear at random locations around the
cell perimeter [22–25]. This response pattern is also observed
for the oscillatory cells investigated here. Interestingly, during
the second phase, which varies in duration between ≈40 and
≈200 s, the oscillatory dynamics stop before the cells recover
their initial oscillatory state [see Fig. 1(c)].

The aim of this work is to characterize the dynamical
transition behind this observation. Based on our previous
findings that the actin cytoskeleton in D. discoideum operates
close to a bifurcation point [4,6], we rationalize our results in
the framework of a reductionist model. Here we rely on the
well-known fact that close to a bifurcation point, the behavior
of a dynamical system displays universal behavior, which is

captured by the normal form of the corresponding transition
[26,27]. For our present analysis, we use the normal form of
a supercritical Hopf bifurcation, the so-called Stuart-Landau
oscillator, as a starting point to describe actin oscillations
close to the onset of periodic dynamics and subject to additive
noise. In addition to the frequency of the underlying oscilla-
tions, the model introduces three parameters: λ characterizes
the distance to the bifurcation (i.e., the transition point to the
nonoscillatory state), D gives the amplitude of the noise, and
g sets the strength of the nonlinearity. Based on the dimen-
sionless ratio λ/

√
gD, we can quantify the relative impact of

deterministic oscillations and noise on the overall dynamics.
This model provides a good description of oscillatory cells
in the absence of any stimulation [6] and is now extended
to account for the cAMP-induced dynamical transition to a
nonoscillatory state.

II. EXPERIMENTAL AND ANALYSIS METHODS

A. Experimental setup and protocol

D. discoideum cell culture and preparation for an ex-
periment were carried out as previously described [4,6].
The starved cells were injected into the microfluidic chan-
nel (500 μm × 30 mm × 26 μm) and allowed to settle for
15 min. Afterward, the phosphate buffer (PB) was replaced
with a solution of 10 μM BCMCM-caged cAMP in PB
(Biolog, Bremen, Germany). A 250-μl syringe (Hamilton,
Bonaduz, Switzerland), mounted on a standard infuse syringe
pump (Harvard Apparatus PHD 2000, Holliston, MA, USA)
was used to insert the caged compound at a constant flow
rate of 5 μl/h, corresponding to an average flow velocity of
approximately 120 μm/s.
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FIG. 2. Examples of single cell D. discoideum LimE-mRFP responses to a short pulse of cAMP. The two columns correspond to two
different cells. Panels (a) and (d) show the detrended fluorescence time traces of LimE-mRFP (red) and their corresponding Hilbert transforms
(blue). The cells are stimulated at τstim = 100 s with a pulse of cAMP for one second (the stimulation time is denoted by a gray bar). The
evolution of the amplitudes of the time traces are shown in panels (b) and (e), and the corresponding phase drifts are given in panels (c) and
(f). The response to cAMP is divided into two phases. The duration of the first phase, the amplitude transient time τa, is defined by the time
it takes to return to 25% of the response amplitude maximum. The duration of the second phase, which we call the phase transient time τφ ,
is defined as the time interval between the end of the first phase and recovery of the phase φ(t ) back to its main frequency [shown in panels
(c) and (f)]. The amplitude mean (black line) and standard deviation (dashed lines) are calculated over the first 100 s and in the second phase
of the transient response, shown in panels (b) and (e).

In this work, we analyzed fluorescence images of LimE-
mRFP [28], which labels polymerized actin, in combination
with either Coronin-GFP [29] or Aip1-GFP [30]. The fluo-
rophores were imaged with an Olympus FV-1000 inverted
confocal laser scanning microscope, using an UPLSAPO
60X oil immersion objective. The mRFP was excited by the
543-nm line of a multiline 1-mW HeNe laser (Melles Griot,
Carlsbad, CA, USA). Each cell was imaged individually in
a region of 48 × 48 μm [120 × 120 pixels, Fig. 1(a)], with
the confocal plane set approximately 2 μm above the cover
slip surface. At the upstream side of the imaging region, a
line of 0.4 × 40 μm [1 × 120 pixels, Fig. 1(a), panel 1, pink]
was scanned by a 405-nm laser diode to photochemically
release the cAMP from its caged precursor (see flow pho-
tolysis, described in Refs. [14,31]). The cAMP was trans-
ported by the fluid flow toward the cell, which was centered
at a distance of about 20 μm downstream of the uncaging
region.

During each experiment, the cell was first imaged for
100 s in the absence of any cAMP stimulation to record the
initial activity of the actin cytoskeleton (imaging frame rate:
1 Hz). These 100 s of each data set were previously presented
and analyzed in Ref. [6]. At τstim = 100 s, we initiated the
uncaging laser to stimulate the cell with an external pulse of
cAMP for 1 s and continued the recordings for a time interval
of 100 to 300 s.

B. Data analysis

The LimE-mRFP images were segmented into two regions,
indicated in Fig. 1(a, panel 2). The cortex is defined as a
1.2-μm-thick region at the cell’s outer edge (blue), while
the cytosol is defined as the remainder of the cell’s interior
(yellow). The mean of each region yields the average fluo-
rescence that is shown over time in Fig. 1(b). Each cytosolic
time trace was detrended by subtracting a moving average
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[Fig. 1(c), window size of 40 s]. The data sets were divided
into oscillatory and nonoscillatory time traces by calculating
the autocorrelation function of the first 100 s prior to cAMP
stimulation. Only time traces with an autocorrelation function
that showed at least one oscillation cycle with a period below
33.33 s (i.e., 1/3 of the time window before τstim) were
categorized as oscillatory and selected for further analysis. We
furthermore required that the largest peak that occurs within
the first 33.33 s of the autocorrelation reaches at least 10%
of the initial value of the autocorrelation function. In addition,
we excluded cells that did not show any response to the cAMP
stimulus in the amplitude or phase signal.

Out of a total of 165 recorded cells, 26 passed this strin-
gent selection protocol (≈15%) and were included in the
subsequent analysis. The corresponding time traces and their
respective autocorrelation functions are shown in Figs. 11–14
in the Appendix. We also computed the Hilbert transform of
the LimE-mRFP time trace for each case; an example is shown
in blue in Figs. 2(a) and 2(d). This allowed us to calculate the
amplitude A(t ) [Figs. 2(b) and 2(e)] and phase φ(t ) [Figs. 2(c)
and 2(f)] as a function of time. The majority of cases (22
cells) show a deceleration of the phase after stimulus. Only
four cases, displayed in the four last rows of Fig. 14 in the
Appendix, exhibit an accelerating phase after stimulation.

Based on the time traces of amplitude and phase records,
we can then define the timescales of the two phases of the
response (biphasic response profile). The duration of the first
phase is defined as the interval between the time point of stim-
ulation and the time point when the amplitude has dropped
back to 25% of its maximal value. We call this timescale the
amplitude transient time τa. The time evolution of the phase
φ(t ) is well captured by

φ(t ) = ωot + φo + η(t ) , (1)

where ωo is the central frequency of the time series, φo is the
initial phase value, and η(t ) is the deviation from the linear
evolution caused by noise. We fitted the first 100 s of the
phase with a simple functional form ωt + φ′

o, where ω and
φ′

o are determined by minimizing the difference between the
signal φ(t ) and the linear dependence ωt + φ′

o (L2 norm of
φ − ωt − φ′

o). Elementary algebra shows that

ω = 12

t2
obs

[
φ(t )t − φ(t )tobs

2

]
, (2)

where we denote ω as the detected frequency and the overbar
as the average over the observation time tobs. The detected fre-
quency ω might differ from the value of the central frequency
ωo, and the error between them will depend on tobs.

To determine the duration of the second phase of the cel-
lular cAMP response, we analyzed the phase drift φ(t ) − ωt .
This quantity drifts almost linearly during the transient phase,
followed by a recovery toward a constant value. The time
interval between the end of τa and the end of the phase drift is
defined as the phase transient time τφ . Note that in 9 out of the
total number of 26 cases, the phase transient time τφ exceeds
the duration of the recording and cannot be determined. For
this reason, the analysis of the phase transient time τφ is based
on 17 records only, whereas 26 data points are available in all
other cases.

III. MODELING THE ACTIN CYTOSKELETON
DYNAMICS: FAST OSCILLATIONS

AND SLOW RESPONSES

In this section, we present an extension of the model
introduced in Ref. [6], to capture the transient response of os-
cillatory cells to a pulse of cAMP that was described above. A
detailed comparison between the model and the experimental
data will be provided in Sec. IV. We briefly recall the structure
of the original model [6]. Namely, the system is described by
a complex variable, z = x + iy, satisfying the equation

dz

dt
= [λ + iωo]z − g|z|2z + ξ (t ). (3)

The real part Re[z] = x corresponds to the mean fluo-
rescence emitted by polymerization markers at time t . The
imaginary part, Im[z] = y, can be viewed as a negative
feedback acting on them. The parameter ωo is the central
frequency of the oscillator. In the absence of noise (ξ = 0),
the resting state, z = 0, is a solution, whose stability is given
by the sign of λ. For λ > 0, the resting state is unstable
with respect to small perturbations, and the system displays a
stable limit cycle. The amplitude of the limit cycle oscillations
is set by a balance between the amplification rate and the
nonlinearity, g|z|2z, and scales as ∼√

λ/g. For λ < 0 the
resting state is stable and oscillations are damped. The noise,
ξ (t ) = ξR(t ) + iξI (t ), is taken to be Gaussian, with short time
correlations that are white in time in the present analysis,

〈ξi(t )ξ j (t
′)〉 = 2Dδ(t − t ′)δi j, (4)

where i, j refer to the indices R and I . The response in
actin polymerization to an external pulse of cAMP is cap-
tured by introducing two additional components that exert an
incoherent feed forward type regulation [32]. The first one
corresponds to the receptor-induced response of a secondary
messenger s(t ) that indirectly activates actin polymerization.
The second component represents a polymerization inhibitor
w(t ) that is activated by s(t ). The corresponding interaction
network is summarized in Fig. 3(a). The model given by
Eq. (3) is then extended as

dz

dt
= [λ̃(w(t )) + iωo]z − g|z|2z − s(t )

τr
+ ξ (t ) . (5)

The stimulus, s(t ), has the following functional form,

s(t ) = so

(
t − τstim

τs

)4

e− t−τstim
τs 	(t − τstim ), (6)

where 	(t ) corresponds to the Heaviside function (	(t ) =
0 for t < 0, and 	(t ) = 1 for t > 0). Its time evolution is
shown in the inset of Fig. 3(b), which corresponds to the
response profile of the secondary messenger Ras, measured
in Ref. [33]; see the Appendix for details. The stimulus acts
directly on the oscillatory variable x through the additive term
−s(t )/τr ; this interaction is represented by a vertical arrow in
Fig. 3(a). In addition, activation of the inhibitory component
w(t ) proceeds with a characteristic response time τ according
to

dw

dt
= 1

τ
[s(t ) − w]. (7)
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FIG. 3. Model for the response of the D. discoideum actin cytoskeleton to short time cAMP pulses. (a) Network topology of the proposed
model. The signal s(t ) is activated by an external cAMP stimulation. The variable x(t ) describes the dynamics of LimE-mRFP (i.e., the actin
polymerization) and y(t ) is the negative feedback, leading to spontaneous oscillations in the absence of an external stimulus. The variable w(t )
acts as an inhibitor which determines the duration of the transient response. (b) The response of w(t ) elicited by the signal s(t ) (inset). Several
realizations with different values of τ (25 s � τ � 200 s) are shown. (c) A single numerical realization of the dynamics of x(t ) (red) and its
Hilbert transform (blue) with the corresponding amplitude A(t ) (d) and phase drift φ − ωot (e).

The inhibitory action of w(t ) on the dynamics of z occurs via
a modulation of λ̃(w(t )) given by

λ̃(w(t )) = λ − λo	(w(t ) − K ). (8)

Effectively, the variable λ is reduced by a positive quantity
λo as long as w(t ) > K , and returns to the original value
when w(t ) < K . Therefore, in this model, the inhibitory
variable w(t ) controls the duration of the transient response.
Figure 3(b) shows the response of w(t ) for different values
of the relaxation time τ . As τ increases, w(t ) becomes less
sensitive to s(t ) and takes longer to relax back to its initial
state.

As an example, Fig. 3(c) shows a single numerical re-
alization of the oscillatory actin signal x(t ) that receives a
stimulus at t = 100 s, showing that the system transiently
oscillates with a reduced amplitude after stimulation. The
corresponding amplitude A(t ) and phase drift φ(t ) − ωot are
shown in Figs. 3(d) and 3(e), respectively. The behavior of the
numerical solution is qualitatively similar to our experimental
results; see Fig. 2. In the Appendix, we show several examples

of how individual experimental time traces can be associated
with numerical realizations of the model, demonstrating that
the model is able to reproduce details of the experimental data;
see Fig. 15 in the Appendix.

In the model, the relaxation time τ of the inhibitory
variable w(t ) determines the total duration of the biphasic
response T = τa + τφ . The dependence of T on the relaxation
time τ in the model is shown in Fig. 7(b), given a fixed value
of K . To model the variability in the duration T of the biphasic
response observed in experiments, we assume, for simplicity,
that the relaxation time τ is distributed exponentially,

ρ(τ ) = 	(τ − τ1)

τ2
e−(τ−τ1 )/τ2 , (9)

with two fitting parameters τ1 and τ2. However, from the
experiments the distribution ρ(τ ) is not directly accessible.
Only the distribution ρ(T ) of the total duration T is known;
see Fig. 7(c). We fitted the experimental distribution ρ(T )
by tuning the fitting parameters τ1,2 in the distribution ρ(τ ),
which determines the corresponding distribution ρ(T ) via
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FIG. 4. Mean, standard deviation, and coefficient of variation in the amplitude fluctuations. Experimental data: (a) Mean amplitude μa and
standard deviation σa measured before stimulation (blue) and during τφ (red). (b) Relative change of the mean amplitude vs relative change of
the standard deviation. Superscript indices (1) and (2) denote the mean and standard deviation before stimulation and during τφ , respectively.
(c) Changes in the amplitude coefficient of variation before stimulation (CV1 = σ (1)

a /μ(1)
a ) and during τφ (CV2 = σ (2)

a /μ(2)
a ). Model predictions:

(d) Mean amplitude μa and standard deviation σa derived from numerically evaluated time traces. Blue and red dots correspond to the time
intervals before stimulation and during τφ , respectively. (e) Relative change of the mean amplitude vs relative change of the standard deviation.
(f) Changes in the amplitude coefficient of variation before stimulation (CV1) and during τφ (CV2). For all point clouds in panels (d), (e), and
(f), a kernel density estimate of the distribution was calculated and the color gradient indicates the density of points. Additionally, contours at
different density levels were drawn into panel (d), as both point clouds are partially overlapping.

relation (A1); see also the Appendix for a detailed presenta-
tion of the fitting procedure. In our numerical simulations, we
then draw for each simulation a different value of τ from the
distribution ρ(τ ).

Previously, we have shown that the oscillatory actin dy-
namics follows Eq. (3), where each cell is characterized
by a different value of the dimensionless parameter � =
λ/

√
gD [6]. Therefore, in simulations we assigned to each

cell a different value of �, drawn from the following
distribution,

ρ(�) = 1√
2πσ 2

�

e−�2/2σ 2
� , (10)

where σ 2
� = 2.45; see Fig. 7(d). All other parameters in

Eqs. (5)–(8) are set to constant values that are given in the
Appendix.

IV. EXPERIMENTS AND MODELING RESULTS

A. Statistics of transient times and amplitude analysis

We first focus on the statistics of the amplitude and phase
transient times. From the experiments, we find for the am-
plitude transient times a mean value and standard devia-
tion of 〈τa〉 = 28.6 s and στa = 14.03 s, respectively, yield-
ing a coefficient of variation of στa/〈τa〉 = 0.49. The phase
transient times (τφ ) show a larger spreading (〈τφ〉 ± στφ

=
65.1 ± 48.79 s) with a coefficient of variation of στφ

/〈τφ〉 =
0.74. The largest phase transient time observed is more than
two times larger than the largest amplitude transient time
(max[τφ] = 2.11 max[τa]). From our numerical simulations,
we obtained 〈τa〉 ± στa = 28.8 ± 1.91 s and 〈τφ〉 ± στφ

=
57.7 ± 32.64 s for the mean values and standard deviations
of the amplitude and phase transient times, which agree well
with our experimental findings (see also the Appendix for
further details).

013239-6



RECEPTOR-INDUCED TRANSIENT RESPONSES IN CELLS … PHYSICAL REVIEW RESEARCH 2, 013239 (2020)

FIG. 5. Distributions of the detected frequencies. (a) Histograms of ω1 (before stimulation) and ω2 (during τφ) obtained from the
experimental data and (b) scatter plot of ω1 vs ω2. The dashed line corresponds to ω2 = ω1. (c) Histograms of ω1 and ω2 resulting from
the numerical simulations. (d) Scatter plot of ω1 vs ω2 for the numerical data. The color gradient indicates the density of the point cloud,
calculated by a kernel density estimate of the distribution. Cases in panels (b) and (d) for which ω1 > ω2 (ω1 < ω2) are shown in blue (black).

We furthermore determined the mean and standard devi-
ation of the amplitude of the detrended LimE-mRFP fluores-
cence signal prior to stimulation (μ(1)

a and σ (1)
a ) and during the

second phase of the cAMP response (μ(2)
a and σ (2)

a ) from the
experimental data; see Figs. 2(b) and 2(e). Figure 4(a) shows
the standard deviation as a function of the amplitude mean
before stimulation (blue) and during the second phase of the
response (red). The data indicate that the standard deviation
σa increases with the mean μa. A direct comparison with the
results of our model simulations can be seen in Fig. 4(d).
The distribution after stimulus (red points) is more compact
and centered at lower values compared to the distribution
before stimulation (blue points) but overall we find good
agreement with the experimental results. The distribution of
σa as a function of the mean μa before stimulus [Fig. 4(d),
blue points] can be attributed to cell-to-cell variability. In the
simulations, this is taken into account by including parameter
distributions, such as, for example, the distribution of λ/

√
gD.

We obtain a Pearson correlation coefficient between μa and σa

of 0.82 (p value 10−13) in the experiment and 0.70 (p value 0)
for the numerical simulations.

In the majority of recorded cell responses, the mean and
standard deviation of the F-actin fluorescence signal is de-
creased after stimulation. This can be seen from the rela-

tive changes in mean and standard deviation, displayed in
Fig. 4(b), where most data points lie in the lower left quadrant.
Correlations between the duration of the responses and the
corresponding amplitudes were not observed (see Fig. 10
in the Appendix). Also in this case, the simulations closely
match the experimental results; see Fig. 4(e).

Finally, we quantified the coefficient of variation (CVi =
σ (i)

a /μ(i)
a ), which measures the level of amplitude noise, where

i = 1, 2 denotes the coefficient of variation before stimulation
and during the second phase of the response. Changes in CVi

as measured in the experiment are displayed in Fig. 4(c) as a
function of the coefficient of variation before stimulus, CV1.
Roughly, half of the cells exhibited a noisier regime after stim-
ulation, (CV2 − CV1)/CV1 > 0, while the amplitude noise
is reduced for the remaining cells. A qualitatively similar
distribution is observed in the model simulations; see Fig. 4(f).

B. Frequency analysis

We now investigate the frequencies involved in the re-
sponse to the chemottractant pulse. We denote the frequency
detected before stimulation as ω1 and the frequency detected
during the second phase of the response as ω2. The exper-
imentally derived distributions of ω1 and ω2 are shown in
Fig. 5(a) in blue and orange, respectively. The histogram of
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ω1 is peaked at ωo ∼ 2π/13 s−1 with a mean value of 〈ω1〉 =
2π/15.1 s−1 and a standard deviation of σω1 = 0.07 s−1,
while the histogram of ω2 is irregularly shaped (〈ω2〉 ± σω2 =
2π/28.0 ± 0.06 s−1). Additionally, in Fig. 5(b) each cell
is represented as a point in the (ω1, ω2) plane to show that
for the majority of cells the frequency of cortical oscillations
decreases after stimulation.

In the numerical simulations of the model, we set the
frequency ωo in Eq. (5) to ωo = 2π/13 s−1. Before stimula-
tion, the frequency ω1 determined from numerical simulations
of the model fluctuates, with a mean value of 〈ω1〉 ± σω1 =
2π/14.0 ± 0.07 s−1; see Fig. 5(c). The good agreement be-
tween the distribution of frequencies in the experiment and
in the model suggests that the dispersion in the recorded
frequency is due to phase noise, as discussed in the Appendix.

After stimulation, the frequency ω2 predicted by the model
is also fluctuating (〈ω2〉 ± σω2 = 2π/35.4 ± 0.15 s−1); see
Fig. 5(c). We note that for a noisy oscillator [Eq. (1)] with
a small value of λ/

√
Dg as it occurs in the noise-dominated or

weakly oscillatory case, the amplitude of z can occasionally
become zero, resulting in a phase jump (phase slip; see the
Appendix for details). This makes the definition of the phase
ambiguous, so that the observation of ω2 should be interpreted
as an effective frequency. When (λ − λo) is large and nega-
tive, the solution of the model is z(t ) ≈ −ξ (t )/[(λ − λo) +
iωo]. Therefore, the effective frequency is entirely determined
by the noise ξ (t ), which leads to a small effective fre-
quency ω2, corresponding to the peak observed at ω2 = 0 in
Fig. 5(c).

The density of points in the (ω1, ω2) plane, shown in
Fig. 5(d), demonstrates that in most cases ω2 < ω1 (blue),
with a small fraction of the cells having ω2 > ω1 (black). We
find a Pearson correlation coefficient between ω1 and ω2 of
−0.28 (p value 0.17) in the experiment and 0.07 (p value 0)
in numerical simulations. Taken together, this shows a qual-
itative resemblance between the measurements in Figs. 5(a)
and 5(b) and simulations in Figs. 5(c) and 5(d). In particular,
it justifies our assumption that actin oscillations are slowed
down by changing λ → (λ − λo), close to a Hopf bifurca-
tion. Finally, based on the comparison between experiments
and simulations, our analysis suggests that (1) the coupling
strength between actin polymerization and its negative regu-
lators [x(t ) and y(t ), respectively] does not change during the
transient response and (2) the central frequency ωo does not
vary between cells. The variations in the detected frequencies
ω1,2 can be attributed to phase noise, which we discuss in
detail in the Appendix.

V. CONCLUSIONS

The cAMP-induced dynamic reorganization of the actin
cytoskeleton in D. discoideum has been intensively investi-
gated over the past decades [34–36]. Its temporal evolution
shows a biphasic profile with a first pronounced maximum
in the cortical F-actin concentration 5–10 s after stimula-
tion, followed by a second, less pronounced, and broader
peak of variable duration that may last up to several min-
utes [19,20,37]. Also upstream signaling components such
as phosphatidylinositol (3,4,5)-trisphosphate (PIP3) and the
GTP binding protein Rac exhibit a biphasic time profile

[21,22] that has also been addressed by theoretical models
[24,25].

In this work, we extended the investigation of the cAMP-
induced actin response, focusing on D. discoideum cells that
showed self-sustained polymerization cycles prior to stimula-
tion. After stimulation, the actin system transiently leaves the
limit cycle and shifts to another dynamical state. This transient
can be divided into two regimes (biphasic profile) that are
characterized by the amplitude and phase transient times τa

and τφ . Similar to the biphasic profiles reported in the previous
literature, we found that the duration of the second regime
varies strongly (〈τφ〉 ± στφ

= 65 ± 48.7 s). The detected low-
est and highest values of τφ were 16 and 188 s respectively,
which corresponds to approximately 1 to 14 oscillation cycles
of the prestimulation state. The dynamics during the second
regime of the response is characterized by a lower amplitude
and frequency and is related to the well known cAMP-induced
cringing response of D. discoideum cells [38].

The actin cytoskeleton in D. discoideum involves 138
proteins [39]. Given this high degree of complexity, it is
currently not possible to propose a detailed mechanistic model
for the mathematical description of the actin cytoskeleton. We
therefore address this problem from a reductionist viewpoint.
Relying on our observation that the actin cytoskeleton in D.
discoideum operates close to an oscillatory instability [4], we
based our approach on the normal form of a supercritical Hopf
bifurcation and proposed the noisy Stuart-Landau oscillator
as a phenomenological model that successfully captures the
main dynamical features of oscillatory actin dynamics in D.
discoideum [6]. Here we extended this model to account for
the experimentally observed cAMP-induced biphasic tran-
sient in oscillatory cells. As only a small fraction of cells
show autonomous oscillations, only limited amounts of data
are available for a comparison between model and experiment.
Nevertheless, we find agreement in several distinct qualitative
features summarized in Figs. 4 and 5. Our reductionist ap-
proach thus suggests that external cAMP stimulation reduces
indirectly and transiently the value of the bifurcation parame-
ter λ → (λ − λo), via the intracellular signaling machinery.
Thus, for most oscillatory cells the transient corresponds
to a regime, where periodic activity is disrupted or solely
maintained by noise. Note that previous experiments on the
cAMP-induced actin response did not specifically focus on
oscillatory cells but relied on native D. discoideum popu-
lations that are dominated by a majority of nonoscillatory
cells. For the nonoscillatory cells, the bifurcation parame-
ter is negative, λ < 0. In these cells, a further reduction
of λ in response to the cAMP stimulus will be difficult to
detect, as no qualitative change in the dynamical state is
associated with it. Note that previous theoretical studies of
coupled oscillators with chemotaxis have shown nontrivial
effects [40,41]. For example, it was demonstrated that os-
cillators with higher frequencies can lead the translocation
of a cluster of cells. Our results of actin oscillators that
change their dynamical state in the presence of cAMP indi-
cate a real-world example, where such effects may become
relevant.

Even though the detailed molecular mechanism of the
biphasic response remains elusive, our results support the
hypothesis that the cAMP-induced transients observed here
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FIG. 6. Comparison of the experimentally and numerically derived amplitude and phase transient times. The experimental results are
displayed as a histogram (blue) and the numerical results as a probability distribution function (orange) for τa (a) and τφ (b).

primarily reflect the timescale of the signal transduction ma-
chinery. This is suggested by observations of intracellular sig-
naling patterns in cells that have been treated with Latrunculin
A to disrupt the actin cytoskeleton and exhibited timescales

that were of the same order as the cAMP-induced transients
observed here [42,43]. Similar timescales also emerged during
gradient-induced Ras reorganization or mTORC2 activation
[44,45], suggesting that the transition to a lower amplitude

FIG. 7. Fitting procedure and derivation of parameters, based thereon. (a) Response of the chemotactic signaling system, measured by the
translocation of the fluorescently labeled Ras binding domain (RBD-GFP) to two differently spaced pulses of cAMP. The signal input s(t )
was obtained by fitting (black line) the first responses. Figure reprinted and modified with permission from Ref. [33]. (b) Functional relation
between the total transient time and the relaxation time τ , given a fixed value of K . (c) Fit of the total transient time distribution resulting from
ρ(τ ) = 	(τ−τ1 )

τ2
exp−(τ−τ1 )/τ2 and Eq. (A1). (d) Fit of a normal distribution with zero mean and a variance of 2.45 to the distribution of λ/

√
gD.

Reprinted with permission from Ref. [6].
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state may be related to the organization of the chemotactic
machinery. Also, recently proposed models that rely on an
oscillatory actin machinery guided by an upstream wave-
generating signaling systems support this view [33,46].
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APPENDIX

1. Distributions of response timescales

In Figs. 6(a) and 6(b), we show a comparison between
the distributions of τa and τφ obtained from experiments
(blue bars) and from numerical simulations (orange lines).
Our model roughly captures the positions of the dominant
peaks in the experimental histograms. However, due to the
limited number of data points in our experiments, we cannot
conclusively compare the shapes of the distributions and base
our comparison solely on the first two moments; see Sec. IV
of the main text.

2. Fitting procedure

In this section, we describe the detailed procedure to
constrain the parameters of Eqs. (5)–(8). The shape of s(t ),
given by Eq. (6), was obtained by fitting the response of
Ras to short-time stimuli of cAMP. The fitted data originated
from an experiment described in Ref. [33]. Figure 7(a) shows
the response of the fluorescently labeled Ras binding domain
(RBD-GFP) to two consecutive 2-s pulses of cAMP. The fit of

these data (black line) resulted in the parameters so = 1/4.69
and τs = 1.75.

The distribution of relaxation time τ in Eq. (7) was
assumed to decay exponentially, see Eq. (9), ρ(τ ) =
	(τ−τ1 )

τ2
e−(τ−τ1 )/τ2 . It is related to the distribution ρ(T ) of the

total transient time T by

ρ(T ) = ρ(τ (T ))
∣∣∣dτ (T )

dT

∣∣∣ . (A1)

The dependence of the total transient time T (τ ) on the re-
laxation time τ , shown in Fig. 7(b), was obtained by fixing
K to a value of 0.035; see Eq. (8). The fitting parameters
τ1 = 7.8 s and τ2 = 20.75 s in the distribution ρ(τ ) are chosen
such that the distribution ρ(T ) resulting from Eq. (A1) fits the
experimentally obtained distribution of the total transient time
T = τa + τφ , which is shown in Fig. 7(c).

For completeness, we recall that the distribution of the
dimensionless parameter � = λ/

√
gD has been simplified

here as a normal distribution; see Eq. (10).
The oscillator frequency ωo of Eq. (5) is set to the average

observed frequency 〈ω〉 = ωo. The parameter λo [Eq. (8)] was
estimated by plotting μ(1)

a against μ(2)
a , see Fig. 8(a), and

comparing it with the theoretically derived curves [Figs. 8(b)–
8(e)]. The transition from a steep to a smaller slope, as μ(1)

a is
increased, is most pronounced in Fig. 8(e) with λo = 6

√
gD.

Therefore, we chose the value λo = 6
√

gD as a good approx-
imation. Finally, the remaining free parameter in Eq. (5) was
set to τr = 1/2 s.

3. Phase slips

The rotation number in the numerical simulations, defined
as the number of oscillator cycles, depends on the sampling

FIG. 8. Comparison of experimentally and numerically derived amplitude means. (a) Relation of the measured amplitude means before
stimulation (μ(1)

a ) and during τφ (μ(2)
a ). [(b)–(e)] Amplitude means obtained by evaluating Eq. (3) with the following parameter set: (b) λo =

3
√

gD, (c) λo = 4
√

gD, (d) λo = 5
√

gD, and (e) λo = 6
√

gD.
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FIG. 9. Comparison of fine and coarse sampling. Amplitude A(t ) (a) and phase φ(t ) (b) resulting from a numerical simulation with fine
sampling (�t = 0.01 s). Black arrows mark phase slips. [(c), (d)] Amplitude A(t ) and phase φ(t ) obtained from a numerical simulation with
coarse sampling (�t = 1.0 s). Red dashed lines in panels (b) and (d) indicate a linear fit to the phase φ(t ).

acquisition rate. The amplitude A(t ) and phase φ(t ), plotted
in Figs. 9(a) and 9(b), were calculated with a high sampling
rate (�t = 0.01 s). The phase shows several phase slips
(i.e., discontinuities), which are marked by black arrows in
Fig. 9(b). These result from amplitude fluctuations close to

A(t ) = 0. The detected number of oscillator cycles in this case
yields 80/2π = 12.73.

On the other hand, the number of values close to A(t ) = 0
is reduced if the numerically derived time series are down-
sampled to the same rate as in experiment (�t = 1.0 s). The

FIG. 10. Dependence of the mean fluorescence intensity (μ(1)
a ) prior to stimulation on the different response timescales. (a) Comparison of

μ(1)
a to the amplitude transient time τa, (b) to the phase transient time τφ , and (c) to the sum of both transient times.
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FIG. 11. Individual fluorescent time traces used for data analysis. Left column shows the individual time signals after detrending and the
middle column shows the corresponding autocorrelation functions [C(τ )], calculated over the first 100 s of the time signal. The right column
gives the evolution of the phase. All cases shown in this figure are decelerating the phase. The time of stimulation (t = 100 s) is marked by a
gray bar in the time signals.
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FIG. 12. Individual fluorescent time traces used for data analysis. (Continued from Fig. 11.)
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FIG. 13. Individual fluorescent time traces used for data analysis. (Continued from Fig. 11.)
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FIG. 14. Individual fluorescent time traces used for data analysis. (Continued from Fig. 11.) The lower four rows show the cases of
accelerating phase after stimulation.

number of phase slips diminishes dramatically in this case and
as a consequence the number of oscillator cycles is reduced to
30/2π = 2.77. Therefore, the detected frequency ω, obtained
by fitting a straight line to the phase φ(t ) is lower for the
coarse sampled signal [compare Figs. 9(c) and 9(d), where
the red dashed line indicates the linear fit]. Furthermore, the fit
accuracy is increased by the coarse sampling. Therefore, we
used the experimental sampling rate to analyze the detected
frequency distribution in both the experimentally and the
numerically obtained time series.

4. Correlation of amplitude mean and transient timescales

The dependence of the mean fluorescence intensity (μ(1)
a )

prior to stimulation on the different response timescales (τa

and τφ) are shown in Fig. 10. No significant correlations were
found.

5. Time series

All experimental time series, which were identified as
oscillatory before stimulation, along with their respective
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FIG. 15. Comparison of experimental and numerical results, selected according to minimization of the error function (A2) as explained in
the text. In panels (a), (b), and (c), three examples are displayed. On the left, blue and orange curves display the experimental and numerical
time traces, respectively. In the middle and on the right, phase and amplitude drifts are shown, respectively, using the same color coding.
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autocorrelation functions [AC(t )] are shown in Figs. 11–14.
The AC(t ) are given only for the initial 100 s of the respective
time series.

6. Comparison between simulations and experimental data

We have simulated 4684 realizations of the model given
by Eqs. (5)–(8). To check if the model reproduced the main
features of the experimental data, we defined the following
error function,

E (i, j) =
∣∣A(i)

exp − A( j)
sim

∣∣∣∣A(i)
exp

∣∣
∣∣ψ (i)

exp − ψ
( j)
sim

∣∣∣∣ψ (i)
exp

∣∣ , (A2)

where A(i)
exp and ψ (i)

exp correspond to the experimental time
traces of the amplitude and phase drifts, respectively, and the
index i corresponds to the experiment number (1 � i � 22).
The amplitude A(i)

exp was normalized by dividing it with its

maximum value. At the same time, A( j)
sim and ψ

( j)
sim correspond

to the simulated time traces of the amplitude and phase drifts,
respectively, and the index j corresponds to the simulation
number (1 � j � 4684). We applied the same criteria to the
simulated realizations concerning the decay of the autocorre-
lation function and applied the same sampling rate (see main
text for details).

We have assigned to each experimental time trace a numer-
ical time trace by finding min[E (i, j)]. In Fig. 15, we show three
examples of experimental time traces along with the numer-
ical simulations that were chosen in this way. The numerical
time traces reproduce also details of the experimental traces.
In particular, we note that in a small set of numerical simula-
tions, the frequency increased after stimulation, i.e., ω2 > ω1,
similar to the experimental results. This demonstrates that
both cases observed in experiment, ω2 < ω1 and ω2 > ω1,
emerge as part of the same oscillatory mechanism.
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