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Simulation of giant tidal force of wormhole using curved optical spaces
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The tidal force of gravity is usually a weak force and is considered only in the movement of celestial bodies.
However, in the presence of a very strong gravitational field, such as that of black holes and wormholes, tidal
force also has an effect on light wave packets. In this work, we employ a curved optical waveguide to mimic
the giant tidal force of wormholes on optical beams. We calculate the beam spreading caused by tidal force
using general relativity. The theoretical calculations were in agreement with the experimental results. Our results
show that the giant tidal force induces the divergence of optical deflection at the throat of a wormhole. This
experimental system promises to be an effective methodology for the future studies mimicking gravitation.
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I. INTRODUCTION

Although the detection of gravitational waves [1] and the
imaging picture taken by the event horizon telescope [2] show
remarkable achievement in observational astronomy, some of
the unique properties of black holes are still very difficult
to observe directly, such as Hawking radiation and its huge
tidal force on light. The tidal force is a universal phenomenon
that causes periodic fluctuations in the ocean’s surface. It is
caused by the gradient in the gravitational field, which is
usually considered for movement of bodies with large size,
such as celestial bodies. The effect of tidal force on light
beams and wave packets is usually very weak and ignored
since the gravitational field is almost homogenous in small
scale. However, in the presence of a strong gravitational field,
such as that of black holes and wormholes, the tidal force is
very strong and even cannot be treated as a perturbation [3–5].

In order to investigate black holes experimentally, the
idea of gravity analogy was proposed to stimulate them
with precisely controlled table experiments under different
laboratory conditions. Unruh was the first to propose the
method of using acoustic waves in an accelerating fluid to
mimic Hawking radiation near the event horizon [6]. Since
then, the analogy of Hawking radiation has been realized
in different experimental systems, such as superconducting
circuits [7], Bose-Einstein condensates [8], superfluid 3He-
A [9], Fermi degenerate flow [10], nonlinear optical fibers
[11], and ions rotating on a ring [12]. Simultaneously, sev-
eral other physicists also attempted to mimic wormholes
in experimental systems such as acoustic wormholes [13],
nanophotonic wormholes [14], plasmonic analog wormholes
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[15], analog wormholes in graphene [16], and dc-SQUID
(superconducting quantum interface device) arrays [17]. On
the other hand, transformation optics based on metamaterials
that manipulate permittivity and permeability profiles can be
extensively investigated to design many artificial materials
with novel optical applications [18–31]. By flexibly adjust-
ing the electric and magnetic parameters, metamaterials can
be used to simulate the metric of a gravitational field with
very high precision [20]. With the help of transformation
optics, black holes have been successfully mimicked in optical
systems [32–35]. In addition, interesting phenomena such
as wormholes [36], metric transitions [37,38], cosmological
redshift [39], Einstein rings [40], Rindler space [41],uniform
gravitational fields [42], and cosmic strings [43] were also ob-
served. Recently, optical structures such as curved waveguides
[44–47], nonlocal media [5,48], and optical lattices [49,50]
have also been used to simulate these cosmic phenomena.
One of the limitations of metamaterials that restricts us from
exploring more complicated cases in gravitational fields is the
demand for tremendous change in the refractive index, which
requires a high level of material fabrication. To overcome this
difficulty, physicists have turned to the use of two-dimensional
(2D) embedded curved surfaces to mimic gravitational fields
[44–47]. Such a method expands the experimental platform
of analog gravity. By controlling the curvature of the surface,
it is easier to realize analog space-time metrics that mimic
extremely strong gravitational fields.

In this study, we will mimic giant tidal force of worm-
hole on optical beams using an embedded curved space. We
have designed the sample based on the Morris-Thorne (MT)
traversable wormhole metric. The sample was fabricated us-
ing a three-dimensional (3D) printing technique. Under dif-
ferent impact parameters, we measured the spreading of the
light beam which is caused by tidal force. We also calculated
the tidal force and the geodesic deviation based on general
relativity. The theoretical results agree with the experimental
results quite well. Our results show that the tidal force is very
huge near the throat of the wormhole, which causes the beam
to diverge completely at the throat. Such an effect destroys
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FIG. 1. (a) Rotation base line of the wormhole; (b) embedding diagram of the 2D wormhole; (c) image of the sample fabricated with 3D
printing technique; and (d) optical experiment setup.

the propagation of the optical wave packet and also disrupts
the optical information transfer.

II. M-T METRIC EMBEDDED SPACE

The MT metric was first proposed in 1988 to describe
a traversable wormhole [51], which is given as a spherical
coordinate system as follows:

ds2 = −c2dt2 + dr2

1 − b2
0/r2

+ r2(dθ2 + sin2θdϕ2), (1)

where c is the light speed and b0 is the radius of the worm-
hole’s throat. In a 2D static, the spherically symmetric solution
of the project plane (r, ϕ), the metric can be simplified to
ds2 = dr2

1−b0
2/r2 + r2dϕ2. The intrinsic curvature of this 2D

traversable wormhole is equivalent to a 2D embedding curved
space in a 3D Euclidean space, with an extra dimension
ds2 = [1 + ( dz

dr )
2
]dr2 + r2dϕ2. Here, the extra coordinate Z

is obtained from the MT metric as follows (see Appendix A
for details):

Z (r) = ±b0 ln

(
r

b0
+

√(
r

b0

)2

− 1

)
. (2)

For b0 = 5 mm, the function is given as a hyperbolic base
line, as shown in Fig. 1(a). Due to the rotational symmetry of
the MT wormhole metric, the embedded curved space can be
obtained by rotating the base line around the Z axis, shown
as a hyperbolic surface in Fig. 1(b). In our experiment, a 3D
printing technique is employed to fabricate a sample with
uniform transparent resin with the thickness of 1 μm based on
the above design, as shown in Fig. 1(c). The transparent resin
is Somos WC Ultra 10122, whose refractive index is 1.52.
The sample consists of the embedding hyperbolic curved

space, as shown in Fig. 1(b). It is smoothly connected to two
flat slabs, representing two flat spaces in the top plane α and
the bottom plane β.

III. GEODESIC TRAJECTORY CALCULATIONS AND
EXPERIMENT RESULTS

The Lagrangian for the gravitational field of a wormhole
[52] can be expressed as L = −c2ṫ2 + r2

r2−b2
0
ṙ2 + r2ϕ̇2. Its

geodesic line can be obtained as follows (see Appendix B for
details): (

dr

dϕ

)2

= (
r2 − b2

0

)( r2

P2
− 1

)
, (3)

where P is the impact parameter, which is the perpendicular
distance from the center of the wormhole to the incident light
beam, and the solution to Eq. (3) is given. [See Appendix B
for Fig. 6 and the solution to Eq. (3).]

Based on the impact parameter P, there can be three dif-
ferent situations. (1) When P/b0 > 1, the calculated light rays
do not pass through the wormhole. Three geodesic lines, 1, 2,
and 3, corresponding to P/b0 = 1.7, 1.5, and 1.3, respectively,
are shown in Fig. 2(a). In the figure, the black region is the
wormhole and the blue background represents the outside
space with a gravitational field. The light rays are represented
by cyan lines with arrows marking the propagation directions.
(2) When P/b0 < 1, the calculated light rays pass through
the wormhole. Three geodesic lines, 1, 2, and 3, correspond-
ing to P/b0 = 0, 0.3, and 0.57, respectively, are shown in
Figs. 3(a) and 3(b). (3) When P/b0 = 1, the calculated light
rays approach the throat asymptotically and are finally trapped
at the throat, which is shown as the yellow solid line 4 in
Figs. 3(a) and 3(b). In all the three situations, the light rays
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FIG. 2. (a) The calculated light geodesic lines with three im-
pact parameters, P/b0 = 1.7, 1.5, and 1.3; experimental results for
(b) P/b0 = 1.7, (c) P/b0 = 1.5, and (d) P/b0 = 1.3.

are deflected by the gravitational field, and the deflection
angle is defined as ϕ. The deflection angle ϕ varies with
the incident impact parameter P. Based on Eq. (3), we can
calculate the dependence of ϕ on P, which is given as a solid
line in Fig. 4(a). The results show that for both P/b0 > 1 and
P/b0 < 1, ϕ increases as P approaches b0. At P/b0 = 1, ϕ

diverges to infinity, which corresponds to the geodesic orbit
at the throat of the wormhole, shown as yellow line 4 in
Figs. 3(a) and 3(b).

The geodesic trajectory of a beam in the gravitational field
of a wormhole can be simulated precisely in the experiment
using the fabricated sample [Fig. 1(c)]. The experimental
setup is shown in Fig. 1(d). In this experiment, we use a
moving stage to hold the sample. A Gaussian beam is coupled
to the α plane of the sample horizontally. Two cameras are
used to take pictures of the optical beam inside the α plane
(from above) and β plane (from below). The moving stage can

FIG. 3. The calculated light geodesic lines with four impact
parameters P/b0 = 0, 0.3, 0.57, and 1 in α plane (a) and β plane
(b); experimental results for P/b0 = 0 (c), (d); P/b0 = 0.3 (e), (f);
P/b0 = 0.57 (g), (h); and P/b0 = 1 (i), (j).

FIG. 4. (a) Deflection angle under different impact parame-
ters: theoretical calculations (solid line) and optical measurements
(origin dots). (b) Divergence angle under different impact parame-
ters: theoretical calculations (solid line) and optical measurements
(blue dots).

be controlled to change the incident location of beam, which
enabled us to investigate the light trajectories under different
impact parameters. The experimental process is provided in
the attached movies. In order to compare the results of our ex-
periment with those obtained theoretically, we chose P/b0 =
0, 0.3, 0.57, 1, 1.3, 1.5, and 1.7, as shown in Figs. 2 and 3.
Lines 1, 2, and 3 in Figs. 2(b)–2(d) correspond to the
experimental results for P

b0
= 1.7, 1.5, and 1.3, respectively;

the theoretical results are shown in Fig. 2(a). In good
agreement with the calculations, all three rays are observed
to not pass through the wormhole, and the middle trajectories
of the beam are just bent with deflection angles ϕ = 27.97◦,
44.57°, and 73.50°, respectively. In the process, the deflection
angle ϕ increases with the decrease in P. Lines 1, 2, and 3
in Figs. 3(c)–3(h) correspond to the experimental results for
P
b0

= 0, 0.3, and 0.57, respectively; the theoretical results
are shown in Figs. 3(a) and 3(b). All three rays pass through
the wormhole. They enter the wormhole through the α

plane and exit through the β plane. In the process, the
rays are deflected, and the corresponding deflection angles
of the middle trajectory obtained are −180°, −139°, and
−93.55°. The experimental results agree with the theoretical
calculations shown in Figs. 3(a) and 3(b). The experimental
result corresponding to the critical case P/b0 = 1 is shown in
Figs. 3(i) and 3(j). The rays are trapped within the stable orbit
at the throat of the wormhole, which is also in agreement with
the theoretical line 4. In Figs. 2 and 3, we give only some
special cases of light rays. However, experimentally, we have
done measurements of many different impact parameters.
These results are shown as orange dots in Fig. 4(a). Except for
the deviation at large impact parameters caused by fabrication
error of the throat of the wormhole, the measured dots agree
with the theoretical solid line quite well.

IV. TIDAL FORCE

In the above experiment, the beam is approximately re-
garded as a bunch of ideal trajectory lines with no wave
properties. In some situations, such an approximation is not
good enough. For example, the light beam cannot be simply
regarded as ideal geodesic trajectories but as wave packets in
space-time instead. As we know, any object with geometry
size, when placed in an inhomogeneous gravitational field,
would be subject to tidal force by gravity, and optical wave
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FIG. 5. The change of acceleration (a) ar and (b) aϕ along two geodesic lines 1 and 2; the change of geodesic deviation (c) �r, (d) �ϕ,

and (e) beam width along two geodesic lines 1; the change of geodesic deviation (f) �r, (g) �ϕ, and (h) beam width along two geodesic
lines 2.

packets are no exception. One of the research studies used the
photothermal effect to mimic the weak tidal force on optical
packets. The results show that the tidal force induces a redshift
of the optical packets [5]. The tidal effect is very weak and
does not produce a remarkable change on the light beam. As
is known, the greater the gradient of the gravitational field,
the stronger the tidal force that will be exerted. When the
tidal force is strong enough, the object will be torn to pieces.
Usually, the tidal forces of celestial bodies on wave packets
are very small and can be ignored [just like the behavior of
the beam far away from the throat in Fig. 2(b)]. However,
in the case of the strong gravitational field of wormholes,
since the gradient is very large, its tidal force on wave packets
will be very high [see Fig. 2(d) and Figs. 3(e)–3(h)]. Such
a giant tidal force on wave packets is hard to observe on
Earth. Besides, at present, it is impossible for anybody go
to a wormhole to observe this giant tidal force. However,
the optical wormhole setup in this work can be used to
stimulate such giant tidal forces on optical wave packets inside
wormholes.

A careful observation of the images shown in Figs. 2(b)–
2(d) and 3(c)–3(j) reveals that when the optical beams pass
through the gravitational field of the wormhole, an obvious
beam spreading occurs. It is worth stressing that the beam is
not uniformly spreading but torn into bunches with a varying
distribution of intensity because of the effective gravitational
field, which means the Gaussian beam cannot maintain its
shape but changes into new forms in the evolution process
around the wormhole. Although an optical beam will spread
even in free space without gravity, it is a very slow process.
The beam spreading in our experiment is much faster than
that in free space because of the gravitational field gradient.
Besides, when the beam is closer to the wormhole, the beam
spreading will be higher and shows a different intensity dis-
tribution. Such effects can be carefully analyzed based on
our theoretical model. To investigate the spreading of the

optical beam, we define the width of the beam with its two
edges as shown in Fig. 7 in Appendix C (see Appendix C
for Fig. 7). The impact parameter of the beam center is P,
and the two edges enter the gravitational field with different
incident impact parameters, P1 and P2. The difference between
the impact parameters, �P = P1 − P2, is defined as the width
of the beam. The two edges propagate along two different
geodesic trajectories. Their deflection angles, ϕ1 and ϕ2, can
be calculated using Eq. (3). We obtain the divergence angle
θ = ϕ1 − ϕ2 of the optical beam after it leaves the wormhole.
For instance, we choose the beam width �p = 0.4 mm and
calculate the divergence angle under different impact param-
eters, which is shown as a solid line in Fig. 4(b). The result
shows that when P is much larger or smaller than b0, θ is small
and the beam broadening is also small. When P approaches
b0, θ is increases very quickly and the beam will diverge at
P = b0. The divergence angle of the beam can be obtained
from the experimental results shown in Figs. 2 and 3. These
results are provided as blue dots in Fig. 4(b), which agrees
well with the theoretically calculated solid line.

To approximately describe this effect, we give the theo-
retical geodesic deviation in comparison with the experiment
results. (Note that in this article we apply this theory only
as an approximation, while the accurate intensity distribution
might be obtained by a great deal of calculation.) According
to Einstein’s theory of general relativity, the tidal force of
an inhomogeneous gravitational field can be described using
the acceleration (ar, aϕ ) obtained from geodesic deviation
(�r,�ϕ) (see Appendix D for details):

ar = −b2
0

r2

[
�ϕ

dr

dλ

dϕ

dλ
−

(
dϕ

dλ

)2

�r

]
,

aϕ = − b2
0

b2
0r2 − r4

[
�r

dr

dλ

dϕ

dλ
− �ϕ

(
dr

dλ

)2
]
. (4)
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From Eq. (4), we can calculate the change in acceleration
aϕ and ar along geodesic lines 1 and 2, which are shown
as arrows in Figs. 5(a) and 5(b). Here, the magnitude of
acceleration is represented by the length of the arrows. In both
cases, the tidal force increases when the beam approaches the
wormhole and decreases when it leaves the wormhole. The
tidal force is very high near the wormhole, which causes an
abrupt broadening of the beam, as shown in Figs. 5(e) and
5(h). A comparison between the theoretical and experimen-
tal results shows that the tidal force is the reason for the
divergence of the optical beam. The divergence of the beam
observed in our experiment can be seen as a good simulation
of the giant tidal force on optical wave packets by wormholes.

V. CONCLUSION AND OUTLOOK

As we know, in free space, optical information is trans-
ferred through wave packets. The spreading of wave packets
will influence the information transfer process. Ideally, we
hope that the optical wave packet does not spread and that
it can support efficient information transfer. Usually, in the
presence of a gravitational field, the tidal force is very small
and does not change the wave packet. The spreading of wave
packets is mainly caused by the diffraction of beams and
has nothing to do with gravity. However, our study shows
that, in the presence of a very high gravitational field of the
wormhole, the tidal effect cannot be ignored and the huge
tidal force will cause the spreading of the wave packets or
even destroy the wave packet very quickly. This disrupts the
optical information transfer when wave packets pass through
the gravitational field of wormholes.

Our study shows that tidal force cannot be ignored anymore
when we investigate the information technique with black
holes or wormholes in the future. In summary, we employ a
2D curved space to simulate the giant tidal force of wormholes
on optical wave packets. Our theoretical and experimental
results show that the tidal force will cause the spreading and
distortion of wave packets. Although traversable wormholes
are often imaged to work as a space-time tunnel for interstellar
travel in the future, our study shows that a huge tidal force will
have a destructive effect. The giant tidal force not only tears
the matter which passes through a wormhole but also disrupts
the optical information transfer. Therefore, tidal force is an
important issue which cannot be ignored in the relativistic in-
formation technique. Our study provides a good experimental
platform to simulate the tidal force in the presence of a strong
gravitational field.
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APPENDIX A: MORRIS-THORNE METRIC
AND EMBEDDING DIAGRAM

Since the introduction of the Einstein-Rosen bridge, sev-
eral types of wormholes have been suggested. One of the

simplest metrics of a wormhole, proposed by Morris and
Thorne, is given as

ds2 = −c2dt2 + dr2

1 − b2
0/r2

+ r2(dθ2 + sin2θdϕ2), (A1)

where t is the global time, (r, θ, ϕ) are coordinates in the
spherical system, b0 is the throat radius, and c is the speed of
light. Because of the spherical symmetry of the static metric,
we can only consider a two-dimensional (2D) hypersurface
with t = constant and θ = π/2, in order to manifest the
property of a wormhole. The metric can then be simplified as

ds2 = dr2

1 − b2
0/r2

+ r2dϕ2. (A2)

This metric shows an apparent axial symmetry which enables
us to construct a rotational surface as a 2D embedding
diagram in a 3D Euclidean space with an extra coordinate
z. The rotational surface equation can be described by
cylindrical coordinates as

ds2 = dr2 + dz2 + r2dφ2. (A3)

Considering z as a function of r, the equation may be rewritten
as

ds2 =
[

1 +
(

dz

dr

)2]
dr2 + r2dϕ2. (A4)

Combing Eqs. (2) and (4), we can obtain z(r) as follows:

z(r) = ±b0 ln

[
r

b0
+

√(
r

b0

)2

− 1

]
. (A5)

Now we are able to plot the embedding diagram of the MT
wormhole, which is formed by rotating the base line z(r).

APPENDIX B: GEODESIC LINE AND
THE DEFLECTION ANGLE

The Lagrangian is given as

L = gμν ẋμẏν, ẋμ = dxμ

dλ
, (B1)

where λ is an affine parameter and xμ = (t, r, θ, ϕ). We then
get the Euler-Lagrangian equation:

d

dλ

∂L

∂ ẋμ
− ∂L

∂xμ
= 0. (B2)

For a wormhole metric in Eq. (A2), the Lagrangian is

L = −c2ṫ2 + r2

r2 − b2
0

ṙ2 + r2ϕ̇2. (B3)

From the Euler-Lagrangian equation or the geodesic equation,
we obtain two constants of motion from the conservation of
energy and angular momentum, namely,

c2ṫ = k, r2ϕ̇ = h. (B4)

Substituting the two constants in Eqs. (B2) and (B3), we can
easily obtain the null geodesic equation as below:

ṙ2 =
(

1 − b2
0

r2

)(
k2

c2
− h2

r2

)
. (B5)
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FIG. 6. Illustration of geodesic lines, impact parameter, and
initial distance.

In order to obtain a solution function r(ϕ), Eq. (B5) may be
rewritten as(

dr

dϕ

)2

= (
r2 − b2

0

)( k2r2

h2c2
− 1

)

= (
r2 − b2

0

)( c2

r2
( dϕ

dt

)2 − 1

)
, (B6)

where k
h = c2

r2( dϕ

dt )
. We define the impact parameter P, which is

the perpendicular distance from the center of the wormhole to
the incident light beam, as shown in Fig. 6. If the impact pa-
rameter P is defined at a location very far from the wormhole,
we will have r( dϕ

dt ) = c P
r ; we then obtain(

dr

dϕ

)2

= (
r2 − b2

0

)( r2

P2
− 1

)
. (B7)

Considering different impact parameters in Eq. (B7), we have
three different situations below:

Case 1. If P/b0 > 1. In this case, the geodesic line will
not pass through the wormhole; it is just deflected by the
wormhole. In this case, we have the solutions of Eq. (B7),

ϕ1 = ±[F (r, P) − F (ri, P)], (B8)

where the function F is defined as F (r, P) =∫ P/r
0

dx√
(1−x2 )[1−(b0/P)2x2]

. In Fig. 6, the impact parameter

is defined at the incident location, D = 16.12 mm. The
distance of the incident location is ri = √

P2 + D2. In this
case, we can calculate the deflection angle of the geodesic
line using r → ∞ as

ϕ∞
1 = 2K (P) − F (ri, P), (B9)

where K (P) is defined as K (P) = ∫ 1
0

dx√
(1−x2 )[1−(b0/P)2x2]

.

Case 2. If P/b0 < 1, the geodesic line will pass through the
wormhole from α universe to β universe. In this case,

ϕ2 = ±[G(r, P) − G(ri, P)], (B10)

where G(r, P) is defined as G(r, P) =∫ b0/r
0

dx√
(1−x2 )[1−(P/b0 )2x2]

. In this case, we calculate the

deflection angle of the geodesic line using r → ∞ as

ϕ2
∞ = 2H (P) − P

b0
G(ri, P), (B11)

where H (P) is defined as H (P) = ∫ 1
0

dx√
(1−x2 )[1−(P/b0 )2x2]

.

Case 3. If P/b0 = 1, the solution ϕ of Eq. (12) diverges.
The geodesic line keeps circling around the wormhole, and
the beam is trapped inside a stable orbit. Using Eqs. (B8)
and (B10), the geodesic lines corresponding to P/b0 = 0,
0.3, 0.57, 1.0, 1.3, 1.5, and 1.7 are calculated as shown in
Figs. 2(a), 3(a), and 3(b). Using Eqs. (B9) and (B11), the
deflection angles corresponding to P/b0 = 0, 0.3, 0.57, 1.3,
1.5, and 1.7 are calculated and shown in Fig. 4(a).

APPENDIX C: DIVERGENCE ANGLE
OF THE OPTICAL BEAM

Experimentally, we notice that the deflection angle of the
light beam changes with the impact parameter P. Accord-
ingly, the divergence angle of the light beam can be cal-
culated as θ (P) = ϕ∞(y + �P) − ϕ∞(P) = �P · dϕ∞/dP.
Note that we assume that the source of the light beam is far
away from the throat; thus, approximately we have ri � b0.
With this approximation, when the light beam does not pass
through the wormhole, we have dϕ∞

1
dP = 1

P−b0
E (P) − 1

P H (P),

where E (P) = ∫ 1
0

√
[1−(b0/P)2x2]√

(1−x2 )
dx. We then obtain the diver-

gence angle as below:

θ = �P

P − b0
E (P) − �P

P
H (P). (C1)

When the light beam passes through the wormhole, we
have dϕ∞

2
dP = 1

b0−P I (P) + 1
b0

H (P), where I (P) is expressed as

I (P) = ∫ 1
0

√
[1−(P/b0 )2x2]√

(1−x2 )
dx. We then can obtain the divergence

angle as below:

θ = �p
dϕ∞

2

dP
= �p

b0 − P
I (P) + �p

b0
H (P). (C2)

The divergence angles are calculated based on Eqs. (B2) and
(B3), and compared with the experimental values shown in
Fig. 4(b).

APPENDIX D: TIDAL FORCE

For vector Aμ, the second derivation along a geodesic line
is

D2Aμ

Dλ2
= D

Dλ

(
DAμ

Dλ

)
= d

dλ

(
DAμ

Dλ

)
+ �μ

αβ

DAα

Dλ

dxβ

dλ
= d

dλ

(
dAμ

dλ
+ �μ

αβAα dxβ

dλ

)
+ �μ

αβ

(
dAα

dλ
+ �α

κλAκ dxλ

dλ

)
dxβ

dλ

= d2Aμ

dλ2
+ �μ

αβ,ν

dxμ

dλ
Aα dxβ

dλ
+ 2�μ

αβ

dAμ

dλ

dxβ

dλ
− �μ

αβAα�β
κλAκ dxκ

dλ

dxλ

dλ
+ �μ

αβ�α
κλAκ dxλ

dλ

dxβ

dλ
. (D1)
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Assuming that the position vector of two beams is expressed
as xμ(τ ) and xμ(τ ) + sμ(τ ), we write out their geodesic line
equations as below:

d2xμ

dτ 2
+ �μ

αβ (x)
dxα

dτ

dxβ

dτ
= 0,

d2(xμ+sμ)

dτ 2
+�μ

αβ (x + s)

(
dxα

dτ
+ dsα

dτ

)(
dxβ

dτ
+ dsβ

dτ

)
= 0.

(D2)

If the two beams are initially closed enough, sμ and
dsμ/dλ are infinitesimally small, approximately leading to
�μ

αβ (x + s) ∼= �μ
αβ (x) + �μ

αβ,σ sσ . From Eq. (D2), we ob-
tain

d2sμ

dτ 2
= −�μ

αβ,σ sσ dxα

dτ

dxβ

dτ
− 2�μ

αβ (x + s)
dsα

dτ

dxβ

dτ
.

(D3)

Treating sμ as Aμ and substituting Eqs. (D3) in (D1), we can
get the second derivative of sμ along the geodesic line,

D2sμ

Dλ2
= Rμ

αβσ

dxα

dλ

dxβ

dλ
sσ , (D4)

where Rμ

αβσ is the Riemann tensor, which can be expressed as

Rϕ
rϕr = b2

0

b2
0r2 − r4

, Rϕ
rrϕ = − b2

0

b2
0r2 − r4

,

Rϕ
ϕrϕ = −b2

0

r2
, Rr

ϕϕr = b2
0

r2
.

FIG. 7. Illustration of spreading of the optical beam.

Accordingly, for the metric of the MT wormhole, the
relative accelerations are calculated as

ar = −b2
0

r2

[
�ϕ

dr

dλ

dϕ

dλ
−

(
dϕ

dλ

)2

�r

]
, (D5)

aϕ = − b2
0

b2
0r2 − r4

[
�r

dr

dλ

dϕ

dλ
− �φ

(
dr

dλ

)2
]
, (D6)

where �r = r1(λ) − r2(λ) and �ϕ = ϕ1(λ) − ϕ2(λ), with
subscripts 1 and 2 denoting two closed geodesics. The illus-
tration of the polar coordinate is shown in Fig. 7. From the
geodesic equation in the polar coordinate system, we calculate
the change (�r,�ϕ) along the geodesic line, as shown in
Figs. 5(c), 5(d), 5(f), and 5(g). We then calculate the change
in the tidal acceleration (ar, aϕ ) along the geodesic lines, as
shown in Figs. 5(a) and 5(b).
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