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Recent theoretical progress has been achieved in demonstrating the existence of non-Abelian parafermion zero
modes in domain walls on interfaces between two-dimensional Abelian topological phases of matter. Motivated
by this ongoing search for non-Abelian defects, we investigate the properties of gapped interfaces of hierarchical
fractional quantum Hall states, in the lowest Landau level, characterized by the Hall conductance σxy(m, p) =

p
2mp+1

e2

h , for integer numbers (m, p) with m, p � 1. The case m = 1 corresponds to the experimentally well

established sequence of fractional quantum Hall states with σxy = 1
3

e2

h , 2
5

e2

h , 3
7

e2

h , . . . , which has been observed
in many two-dimensional electron gases. Exploring the mechanism by which the (m, p + 1) hierarchical state
is generated from the condensation of quasiparticles of the “parent” state (m, p), we uncover a remarkably rich
sequence of parafermions in hierarchical interfaces whose quantum dimension dm,p depends both upon the total
quantum dimension Dm,p = √

2mp + 1 of the bulk Abelian phase, as well as on the parity of the “hierarchy
level” p, which we associate with the Z2 stability of Majorana zero modes in one-dimensional topological
superconductors. We show that these parafermions reside on domain walls separating segments of the interface
where the low-energy modes are gapped by two distinct mechanisms: (1) a charge neutral backscattering process
or (2) an interaction that breaks U(1) charge conservation symmetry and stabilizes a condensate whose charge
depends on p. Remarkably, this charge condensate corresponds to clustering of quasiparticles of fractional
charge p

2mp+1 e, allowing us to draw a correspondence between these fractionalized condensates and Read-Rezayi
non-Abelian fractional quantum Hall cluster states.

DOI: 10.1103/PhysRevResearch.2.013232

I. INTRODUCTION

Topological phases of matter are promising systems to
realize fault-tolerant quantum computation due to the long-
range entanglement of the quantum many-body state [1].
Emergent quasiparticles in two-dimensional (2D) topological
phases obeying fractional statistics are a potential resource
for quantum information science, particularly so if the system
hosts non-Abelian quasiparticles, which allow for the assem-
bling of a degenerate ground-state manifold where quantum
information can be stored and manipulated [2]. Non-Abelian
phases have been theoretically investigated in a variety of
contexts, from fractional quantum Hall (FQH) systems [3] to
quantum spin liquids [4] and recent years have seen exciting
experimental progress to detect signatures of non-Abelian
quasiparticles [5,6].

In the last two decades, it has been noticed that super-
conductivity is an important mechanism to stabilize emergent
low-energy excitations with non-Abelian character. A well
known example is Kitaev’s one-dimensional (1D) p-wave
superconductor supporting Majorana zero modes at the edges
[7]. In this context, the edge of the finite system behaves as a
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domain wall interpolating between a nontrivial superconduc-
tor and a charge neutral insulator, i.e., vacuum.

Recent theoretical breakthroughs in topological phases
have demonstrated that emergent non-Abelian extrinsic de-
fects can be stabilized as domain wall states in edges and
interfaces or boundaries of 2D topological phases whose bulk
quasiparticles obey solely Abelian statistics [8–17]. In certain
cases previously considered, domain walls represent twist
defects of an anyonic symmetry, which is a transformation
that permutes the anyons without changing their fundamental
statistical properties [4,13,14,18–21].

In the presence of such domain walls, the system can
encode a nontrivial ground-state degeneracy. The zero modes
in question, which constitute a generalization of Majorana
fermions, are referred to as parafermions [22]. Parafermions
have been introduced to describe phase transitions of 2D
classical clock models with Zn symmetry [23,24], and in
recent years, there has been a renewed interest surrounding the
relationship between parafermions and topological systems
[25]. A system with 2N parafermion zero modes furnishes
a ground-state manifold with d2N states [26], where d rep-
resents the quantum dimension of the parafermion. Majorana
fermions correspond to the special case d = √

2, which occur
as zero energy excitations in the edges of 1D topological
superconductors [7] and at the vortex core of 2D chiral p-wave
superconductors [27,28].

A 2D electron gas under external magnetic field provides
a rich realization of Abelian phases of matter in the form of
the FQH effect [29]. In addition to the Laughlin states [30],
a plethora of FQH plateaus with quantized Hall conductance
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are observed upon changing the magnetic field or the electron
density. A remarkable aspect of these topological phases,
particularly when in the first Landau level, is their hierarchical
organization [31–33] into a Jain sequence of incompressible
states characterized by the quantized Hall conductance

σxy(m, p) = e2

h

p

2mp + 1
, (1.1)

where e is the electron charge, h is the Planck constant, m
and p are integer numbers greater or equal than one, which
characterize the sequence of FQH states with filling frac-
tion ν(m, p) = p

2mp+1 < 1. The index p labels the “position”
of the hierarchical state, whose primary state (p= 1 and
fixed value of m) is the Laughlin state with filling fraction
ν(m, 1) = 1/(2m + 1). We shall refer to each of the hierarchi-
cal states above by a pair of integer numbers (m, p). For in-
stance, in the FQH plateaus of Hall conductance σxy/(e2/h) =
1/3, 2/5, 3/7, 4/9, . . . , the condensation of quasiparti-
cles of the primary Laughlin state with σxy/(e2/h) = 1/3
yields the first hierarchical state with σxy/(e2/h) = 2/5;
which in turn gives rise to the second hierarchical state with
σxy/(e2/h) = 3/7, and so on.

We note that, despite the large number of states accounted
by Eq. (1.1), it represents a subset of the hierarchical states.
In the composite fermion description [31,34], Jain states are
understood to arise form the nucleation of an even number
(2m) of flux quanta per electron, leading to new degrees of
freedom—composite fermions—filling an integer number (p)
of effective Landau levels. In this sense, the Jain sequence
represents a transformation from a FQHE of electrons into
a IQHE of composite fermions. Composite fermions can, on
the other hand, partially populate a Landau level and form
a FQH state of their own, leading to a new sequence of
hierarchical states not accounted by Eq. (1.1). Examples of
FQH plateaus that admit this description are the ν = 4/11
and ν = 5/13 FQH states, which have been observed [35].
Given the complexity of the problem, in this work we will
concern ourselves with the description of parafermions in
the hierarchical Jain sequence, noticing that the quest for
non-Abelian defects in other hierarchical states merits its own
separate investigation.

Even though the investigation of bulk topological prop-
erties of the hierarchy of Abelian FQH in the lowest Lan-
dau level has a long history [32,33,36–40], the relationship
between the bulk anyon condensation and the properties
of non-Abelian parafermion zero modes supported by these
phases Abelian phases remains an open problem. The goal
of this work is to address this problem, thus establishing a
correspondence between the hierarchy of FQH states and the
local interactions on their interfaces capable of stabilizing
non-Abelian parafermion zero modes. We also note that, by
means of a “folding transformation,” the results obtained
here for the nonchiral interfaces of hierarchical time-reversal
symmetry breaking FQH states straightforwardly apply to the
nonchiral edge states pertaining to the hierarchy of time-
reversal symmetric Abelian fractional topological insulators
[41,42].

In interfaces of Laughlin states with filling fraction ν =
1

2m+1 (m integer), a domain wall between a segment gapped by

the charge neutral backscattering Hbs = ψ
†
L ψR + H.c., where

ψL and ψR are, respectively, the fermionic operators on the
left and right edges of the interface—and another region
gapped by the charge 2 condensate Hpair = ψL ψR + H.c.,
supports a Z2(2m+1) parafermion with quantum dimension d =√

2(2m + 1) [9–12]. The m = 0 case corresponds to Majorana
fermions on domain walls at the interface of the ν = 1 integer
quantum Hall state, akin to the 1D p-wave superconductor
[7]. The parafermion zero modes that occur for m � 1 then
represent a fractionalization of the Majorana fermion. A note-
worthy aspect of the quantum dimension of the parafermions
d = d1D × dbulk, is that it receives a contribution from the
fractionalized bulk Abelian state, dbulk = √

2m + 1, as well as
a contribution d1D = √

2 stemming from the 1D physics. This
property of Laughlin-type interfaces raises some important
questions regarding the remaining sequence of hierarchical
states: (1) what is the nature of local interactions and domain
walls responsible for parafermions? (2) Specifically, does a
charge 2 pairing interaction play an important role for generic
hierarchical states, in complete analogy to Laughlin states? (3)
What is the interplay between bulk topology and 1D physics
in determining the quantum dimension of parafermions?

In this work, we will address these questions using an
effective Luttinger liquid theory to describe the low-energy
modes of the homogeneous interface between hierarchical
FQH states. The presence of chiral edge modes is a well-
known consequence of the topological order of the bulk
hierarchical state described by the bulk Chern-Simons gauge
theory [43]. In this effective edge/interface theory, local op-
erators that open an energy gap are expressed as generalized
sine-Gordon (local) operators, which satisfy a compatibility
condition (or, null condition) to ensure a stable gapped fixed
point [44]. Since the number of low-energy modes at the
interface grows with the level of the hierarchy p, any attempt
of a general understanding of the parafermion problem that
applies to the entire hierarchical sequence would seem a
hopeless question. Nevertheless, much to the contrary, we
shall demonstrate that an general and comprehensive un-
derstanding of the universal properties of parafermions is
possible because of the relationship established between states
of the hierarchy via anyon condensation. Specifically, the
anyon condensation mechanism translates into a hierarchy of
K matrices describing the bulk anyons, which, in turn, will
allow us to systematically study the local interactions that gap
the homogeneous interfaces.

By an explicit analysis of the sine-Gordon gap opening
operators at the homogeneous interface, we shall precisely
identify local interactions that stabilize parafermion zero
modes at domain walls separating gapped segments where
charge conservation is preserved from other segments where
the interactions break U(1) charge conservation symmetry and
give rise to a condensate of charge

Qm,p =
{

2p p ∈ odd
p p ∈ even , (1.2)

which, notably, depends on the level p of the hierarchy. In
particular, it shows an even-odd effect as a function of p.
Moreover, we observe that, in general, Qm,p > 2, which de-
parts from the Laughlin interface [9–12]. Thus, for p � 2,
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FIG. 1. Ratio of the parafermion quantum dimension dm,p to the
total quantum dimension of the bulk Abelian hierarchical FQH phase
Dm,p plotted as a function of the hierarchy level p, for a fixed integer
m. This plot captures the even-odd dependence given by Eq. (1.3),
with blue circles and red squares representing, respectively, odd and
even values of p.

we identify new forms of local interactions that require a
clustering mechanism beyond the conventional BCS pairing
[45]. Explicit form of these local interactions will be discussed
in Secs. IV and V.

Our main result is summarized in Fig. 1. By studying the
low-energy properties of the domain walls separating the U(1)
symmetry preserving and broken regions of the interface, we
will show that they support parafermion zero modes with
quantum dimension

dm,p =
{√

2Dm,p p ∈ odd
Dm,p p ∈ even

, (1.3)

where Dm,p = √
2mp + 1 is the total quantum dimension of

the bulk state, which is related to the topological entanglement
entropy [46,47] of the hierarchical state (m, p) via γm,p =
lnDm,p and to the minimum quasihole charge e∗

m,p = D−2
m,p.

We again notice the quantum dimension of the parafermions
reflect an even-odd effect in terms of p, similarly to Eq. (1.2).
Furthermore, the emergence of non-Abelian zero modes with
quantum dimensions given by Eq. (1.3) suggest a different
mechanism than that considered in Refs. [4,13,14,18,21],
where the defects with non-Abelian character relate to twist
defects of a symmetry of the anyon group of the Abelian
state. For instance, in Sec. IV, we show that, in the first and
second hierarchical states, twist defects of the charge conjuga-
tion anyonic symmetry behave as a Majorana fermions (d =√

2) and twist defects associated with a “layer permutation”
anyonic symmetry [13] are trivial (d = 1), in contrast with
Eq. (1.3).

Equations (1.2) and (1.3) embody a rich fractionalization
phenomenon at the gapped interface. As shall be demon-
strated here, a segment of the interface where the charge
condensate (1.2) is realized is associated with the expectation
value of an operator of charge νm,p = p

2mp+1 (recall e = 1
unit), which shows that the charge p operator (for p even)
is realized by a cluster of (2mp + 1) quasiparticles. It turns
out the appearance of Z2mp+1 parafermions with quantum
dimension dm,p = √

2mp + 1 is a direct consequence of this
clustered state, as shall be explained later. In the odd p
case, the same type of charge condensate is formed, however,
according to Eq. (1.3), domain walls support Z2(2mp+1)

∼=

Z2 ⊕ Z2mp+1 parafermions with quantum dimension dm,p =√
2 × √

2mp + 1, where the extra Z2 structure is reminiscent
of Majorana zero models in 1D topological superconductors.

We argue that this even-odd effect is a manifestation of the
Z2 classification of 1D topological superconductors, where
the integer index p plays the role of the number of stacked
copies of 1D topological superconductors. The interpreta-
tion of this result is natural in the hydrodynamical Abelian
Chern-Simons theory of the hierarchical FQH states, where
the universal information of the hierarchical states (m, p) is
represented by a square integer valued K matrix of dimen-
sion p [36–40]. Under a suitable SL(p,Z) transformation,
the K matrix can be interpreted as a p-layer FQH system,
which reduces to an integer quantum Hall system of p filled
Landau when m = 0. This interpretation of the Chern-Simons
hydrodynamical theory will enable contact with the Z2 clas-
sification of 1D topological superconductors and support the
validity of Eq. (1.3), which will be explicitly derived in
Sec. V.

The anyon cluster state realized at the homogeneous in-
terface of hierarchical FQH states bears a remarkable resem-
blance with the Read-Rezayi non-Abelian states where the
ground state is build from clusters of k electrons which yield a
gapped bulk with non-Abelian quasiparticles and an edge that
supports a chiral neutral Zk parafermion mode [48]. The case
k = 2 corresponds to the Moore-Read paired state [3] where
electrons (or composite fermions) form a paired state whose
neutral sector is described by an effective chiral p-wave su-
perconductor [27]. Reference [15] has shown that the ν = 2/3
FQH coupled to a superconductor can support Z3 parafermion
zero modes on domain walls. Quite remarkably, hybridiza-
tion of the Z3 parafermions modes throughout the bulk can
give rise to a non-Abelian phase with properties similar to
the Z3 Read-Rezayi FQH states that supports non-Abelian
anyons capable of realizing universal quantum computation
[15,49]. By the same token, and given the generality of the
results established here, we expect that the deconfinement of
parafermion zero modes realized in the hierarchy of Abelian
FQH states to give rise to a rich class of 2D non-Abelian
phases, thus unveiling fresh connections between families of
Abelian and non-Abelian phases.

This paper is organized as follows. In Sec. II, we give
an overview of the 2D hydrodynamical Chern-Simons theory
for the bulk hierarchical Abelian FQH states [36–40]. The
topological information about the hierarchical Abelian state
(m, p) is encoded by the Km,p matrix and charge vector qm,p.
An fundamental point of this discussion is that the hierarchy
of Abelian states, related by anyon condensation, establishes a
useful mapping between K matrices of the elements of the hi-
erarchy: Km,1 → Km,2 → · · · → Km,p−1 → Km,p → . . . , with
a corresponding mapping for the charge vectors. This recur-
sive form of the K matrix and charge vector will be explored
in order to establish the properties expressed in Eqs. (1.3)
and (1.2). In Sec. III, we provide a general discussion of the
properties of domain walls and parafermion zero modes on
the interface of hierarchical states, where we shall consider
two sets of local interactions, one that preserves and one
that breaks U(1) charge conservation. An important take
home message of this general discussion is that the quantum
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dimension of parafermions can be efficiently calculated for
any hierarchical (m, p) FQH state, despite the fact that the
number of edge modes scales with the hierarchy level p.
Then, in Sec. IV, we apply this formalism to the Laughlin
primary states (p = 1) and the first three hierarchical states
p = 2, 3, and 4. (In the case m = 1, these represent the FQH
states with filling fractions 2/5, 3/7, and 4/9.) This explicit
analysis will be crucial in pointing to the general hierarchy of
parafermions, which will be worked out in Sec. V. Finally, in
Sec. VI, we shall summarize and discuss our results, as well
as present perspectives for future directions.

II. OVERVIEW OF THE HIERARCHY
OF ABELIAN FQH STATES

The stability of the sequence of incompressible hierar-
chical FQH states characterized by quantized σxy(m, p) =
e2

h
p

2pm+1 can be understood in terms of the effective nucle-
ation of an even number 2m of flux quanta per electron—
implemented by a Chern-Simons gauge field [34]—giving
rise to composite fermions [31,50] which, at mean-field level,
occupy an integral number p of filled effective Landau levels.

An alternative description to the composite fermion ap-
proach employs a Chern-Simons hydrodynamical theory to
capture the universal properties of the hierarchical FQH
states [36–40]. This hydrodynamical approach explains the
sequence of Abelian FQH states in terms of sequential anyon
condensations. Given the (2 + 1) dimensionality of the prob-
lem, electron and quasiparticle conserved currents each can
be parametrized by a U(1) gauge field. The condensation of
quasiparticles in a given plateau state labeled by (m, p) then
gives rise to the hierarchical state (m, p + 1), whose effec-
tive theory contains an additional Chern-Simons field. The
resulting effective theory of the (m, p) hierarchical state then
corresponds to an Abelian Chern-Simons theory that depends
upon p flavors of gauge fields, where the Aharonov-Bohm
phases associated with exchange of gauge fluxes are encoded
in the integral square and symmetric K matrix of dimension
p, which characterizes the Abelian topological order of the
hierarchical FQH state (m, p).

In addition to the Abelian statistics of bulk quasiparticles,
the hydrodynamical Chern-Simons theory yields direct infor-
mation about the low-energy properties of the edge states,
which form a chiral Luttinger liquid [43]. The enlargement of
the dimension of the K matrix as a function of the hierarchical
parameter p signals the increase in the number of chiral edge
modes. Therefore, when considering local interactions among
the modes of such an interface, it is seen that opening of
an energy gap is achieved by generalized sine-Gordon local
operators whose forms are constrained by the K matrix of
the bulk state, which in turn provides a potent link between
local operators at the interface and the bulk topological
order.

The above-mentioned correspondence between the bulk
phase and local edge operators will be explored to establish
a correspondence between the hierarchical Abelian states and
the parafermions zero modes in their interfaces. Given the
importance of this formalism, in Sec. II A, we review essential
elements of the hydrodynamical Chern-Simons theory of 2D

hierarchical FQH states [36–40] leading to the recursive form
of the K matrix and charge vector and, later in Sec. II B, we
make contact the chiral 1D Luttinger liquid theory governing
the low-energy physics of the edge states [43].

A. Abelian Chern-Simons theory of the hierarchical FQH states

Throughout the rest of the paper, we work in units where
e = h̄ = 1, unless when when we present formulas for the
Hall conductance where the fundamental constants will be
explicitly displayed.

Let us begin with Laughlin states at filling fraction νm,1 =
1/(2m + 1), which are the primary states (m, 1) of the hierar-
chical sequence. Their effective low-energy theory is captured
by the 2D bulk Chern-Simons Lagrangian

L2D
m,1 = −2m + 1

4π
εαβγ a1

α∂βa1
γ + 1

2π
εαβγ Aα∂βa1

γ , (2.1)

where a1
μ is a dynamical Chern-Simons gauge field, Aμ is

the external electromagnetic field, Greek indices account for
space-time coordinates {0, 1, 2} = {t, x, y} and the conserved
electric current is Jα = 1

2π
εαβγ ∂βa1

γ . Furthermore, here and
throughout, repeated indices are summed over. Integrating out
the Chern-Simons gauge field a1

μ yields the electromagnetic
response

L2D,response
m,1 = 1

4π

1

2m + 1
εαβγ Aα∂βAγ (2.2)

that encodes the Hall conductance σxy(m, 1) = e2

h
1

2m+1 .
Expressing the quasiparticle conserved current by jα2 =

1
2π

εαβγ ∂βa2
γ , expressed in terms of the gauge field a2

μ, the
effective theory of the first hierarchical state (m, 2) is given
by

L2D
m,2 = − 2m + 1

4π
εαβγ a1

α∂βa1
γ + 1

2π
εαβγ Aα∂βa1

γ

+ 1

4π
εαβγ a1

α∂βa2
γ + 1

4π
εαβγ a2

α∂βa1
γ

− 2

4π
εαβγ a2

α∂βa2
γ , (2.3)

where the first two terms of the second line of Eq. (2.3) cone
from the minimal coupling jμ2 a1

μ and the last term captures the
property that, in the mean-field state, the density of quasiparti-
cles j0 satisfies j0 = 1

2
∇×a1

2π
, implying they condense forming

a bosonic Laughlin state with filling 1/2.
By introducing the Chern-Simons doublet aT

μ = (a1
μ, a2

μ),
Eq. (2.3) reads

L2D
m,2 = − 1

4π
εαβγ aT

α Km,2∂βaγ + qT 1

2π
εαβγ Aα∂βaγ ,

Km,2 =
(

2m + 1 −1
−1 2

)
, qm,2 = (1, 0)T . (2.4)

Then, integrating out the Chern-Simons fields yields the elec-
tromagnetic response

L2D,response
m,2 = 1

4π

2

4m + 1
εαβγ Aα∂βAγ , (2.5)

which encodes the Hall conductance σxy(m, 2) = e2

h
2

4m+1 of
the first hierarchical state.
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Carrying out these previous steps sequentially generates
the hydrodynamical Chern-Simons theory of the hierarchy of
Abelian FQH states [36–40]

L2D
m,p+1 = − 1

4π
εαβγ aT

α Km,p+1∂βaγ + qT 1

2π
εαβγ Aα∂βaγ ,

(2.6a)

Km,p+1 =

⎛
⎜⎜⎜⎜⎝

0

Km,p
...
0

−1
0 . . . 0 −1 2

⎞
⎟⎟⎟⎟⎠, (2.6b)

qm,p+1 = (qm,p 0)T . (2.6c)

The physical mechanism by which the (m, p + 1) daughter
state is generated from the condensation of anyons of the
(m, p) parent state is mathematically manifested in the recur-
sive form of the K matrix (2.6b) and the charge vector (2.6c).
Moreover,

det(Km,p) = 2mp + 1, (2.6d)

gives the torus ground-state degeneracy of the FQH state
and measures the total quantum dimension of the Abelian

topological phase

Dm,p = √|det(Km,p)| =
√

2mp + 1. (2.6e)

Finally, the Hall conductance of the (m, p) state, obtained
from integrating out the Chern-Simons, is given by

σxy(m, p) = e2

h
qT

m,p K−1
m,p qm,p = e2

h

p

2mp + 1
. (2.7)

It turns out that, for purpose of studying the properties of
parafermion zero modes at the interface of hierarchical states,
the recursive structure embodied in the K matrix and charge
vector in Eq. (2.6) will play a central role as shall be discussed
in Secs. IV and V.

An important consideration is that the topological field
theory (2.6) is only defined up to an SL(p, Z) transformation
aμ → (W T )−1 aμ, Km,p → W Km,p W T and qm,p → W qm,p,
which represents a relabeling of the quasiparticles that leaves
their statistics unchanged. This freedom can be explored to
represent the hierarchical FQH state in the alternative basis
[38]

K̃m,p = Wp Km,p W T
p =

⎛
⎜⎜⎜⎜⎝

2m + 1 2m 2m 2m . . . 2m
2m 2m + 1 2m 2m . . . 2m
2m 2m 2m + 1 2m . . . 2m
...

2m 2m 2m . . . 2m 2m + 1

⎞
⎟⎟⎟⎟⎠, (2.8a)

q̃m,p = Wp qm,p = (1, 1, . . . , 1)T , (2.8b)

where

Wp =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 . . . 0
1 1 0 0 . . . 0
1 1 1 0 . . . 0
...
1 1 1 1 . . . 1

⎞
⎟⎟⎟⎟⎠ ∈ SL(p,Z). (2.8c)

The K matrix (2.8a) has the following appealing inter-
pretation: the diagonal odd integers 2m + 1 alone represent
a system of p layers of Laughlin ν = 1/(2m + 1) states.
The even off-diagonal factors of 2m, on the other hand,
represent bosonic correlations among the p fermionic lay-
ers. Notice the charge vector (2.8b) denotes that the each
layer carries unit charge under the external electromag-
netic field. It will prove useful to explore both represen-
tations (2.6) and (2.8) when describing the properties of
parafermions.

B. Luttinger liquid theory of the hierarchical edge states

According to the bulk-boundary correspondence, the bulk
topological phase given by Eq. (2.6a) supports a chiral edge

Luttinger liquid [43]

LR
m,p = − 1

4π
∂t�

T
R · Km,p · ∂x�R − 1

4π
∂x�

T
R · V R

m,p · ∂x�R

+ 1

2π
qT

m,pε
αβAα∂β�R, (2.9)

where V R
m,p is a positive-definite matrix ensuring a bounded

edge spectrum. Furthermore, since all the p eigenvalues of
Km,p are positive, the edge contains p right-moving modes
described by the fields �R, which are depicted at the bottom
part of the interface shown in Fig. 2(a). The top part of the
interface supports left-moving modes that are described a sim-
ilar Lagrangian as in Eq. (2.9), albeit with an appropriate sign
change of the K matrix that reflects the opposite orientation of
the edge modes. Therefore the Luttinger liquid theory of the
interface reads

Lm,p = − 1

4π
∂t�

T · Km,p · ∂x� − 1

4π
∂x�

T · Vm,p · ∂x�

+ 1

2π
QT

m,pε
αβAα∂β�, (2.10a)

where

� =
(

�R

�L

)
, (2.10b)
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(a)

(b)

charge condensate charge neutral interfacecharge neutral interface

parafermions

Hierarchical FQH state (m,p)

Hierarchical FQH state (m,p)

FIG. 2. (a) Top and bottom panels show the same hierarchical
state, each one supporting a number p of chiral edge modes, which
form a nonchiral interface. Blue and red dotted lines represent charge
conserving and U(1) symmetry breaking operators that open an
energy gap at the interface. (b) Blue and red lines at the interface
represent segments gapped by competing mass terms, with domain
walls supporting parafermion zero modes.

�R and �L are, respectively, the right- and left-moving p-
tuplet of bosonic edge fields,

QT
m,p = (

qT
m,p, −qT

m,p

) = (1, 0, . . . , 0,−1, 0, . . . , 0) (2.10c)

is the charge vector and

Km,p =
(

Km,p 0
0 −Km,p

)
(2.10d)

is the K matrix of the interface. The equal-time commutation
relations of the edge fields reads

[∂x�a(x),�b(x′)] = 2π i
(
K−1

m,p

)
ab

δ(x − x′). (2.11)

Gapping the p pairs of counter propagating modes at the
interface is achieved with a set of p commuting sine-Gordon
local interactions

U [
i] = cos
(

T

i Km,p�
)
, i = 1, . . . , p, (2.12)

where 
i are 2p-component integer vectors representing
correlated backscattering processes between right- and left-
moving local quasiparticles at the interface. Furthermore,
owing to the nontrivial commutation relations, Eq. (2.11),
satisfied by the edge fields, the integer vectors 
i are required

to satisfy the null condition [44]


T
i Km,p 
 j = 0, i, j = 1, . . . , p (2.13)

in order for the local interactions (2.12) to form a compatible
set of mutually bosonic operators. Moreover, the integer U(1)
charge of the operator U [
i] is

Q[
i] = 
T
i Qm,p. (2.14)

Clearly, integer vectors continue to satisfy Eq. (2.13) upon
rescaling by an integer greater than one. Then with the respect
to the Luttinger liquid fixed point, Eq. (2.10), these rescaled
null vectors describe local operators with larger scaling di-
mensions, which are then less relevant at low energy and
can be disregarded. Therefore, in the remaining of this paper,
we shall only focus our attention on null vectors that are
primitive [42]. As shown in that work, a single integer vector
is primitive when the greatest common divisor of its entries
is 1. A set of integer vectors is primitive if and only if the
greatest common divisor of the set of minors of the p × 2p
integer matrix M[{
}] is 1, where M[{
}] is the integer
matrix whose rows are formed by the null vectors 
i.

In general, the low-energy modes of the interface can
become gapped due to distinct types of local interactions,
each one associated with a primitive null set {
i} satisfying
Eq. (2.13). As the number p of counter-propagating modes
at the interface grows (i.e., as one moves “deeper” into the
hierarchical sequence), one expects a corresponding increase
in the number of gapping channels of the interface, as a con-
sequence of more available backscattering channels amongst
the counter-propagating modes. As such, the investigation of
the low-energy properties of interfaces of hierarchical FQH
states poses a very rich physics problem. In the following
discussion, we shall concentrate on certain classes of local in-
teractions leading to gapped interfaces, whose properties will
be described in generality in Sec. III and, more specifically, in
Secs. IV and V.

III. DOMAIN WALLS IN HIERARCHICAL INTERFACES:
GENERAL PROPERTIES

We now discuss the properties of domain walls and
parafermion zero modes associated with hierarchical inter-
faces. One of the central points of this section is the ansatz
(3.4) that describes the U(1) symmetry broken interactions
at the interface and which will permit us to determine, effi-
ciently, the quantum dimension of the parafermions localized
on the domain walls for an interface that holds p counter
propagating modes.

As described in Sec. II B, the number of chiral edge modes
grows with the hierarchy index p, which increases the number
of gap opening channels. In this context, addressing all possi-
ble forms of gapped interfaces seems a formidable task, which
is beyond the scope of this work. Instead, we shall focus on
a specific class of local interactions, which will be shown to
stabilize parafermion zero modes on domain walls along the
interface. We shall consider two types of gapped interfaces.
The first one is formed by charge neutral backscattering,
while the second one breaks charge conservation. Our focus is
then on the low-energy properties of domain walls separating
charge conserving and the nonconserving gapped segments.
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We note that superconducting pairing correlations have been
recently induced in integer quantum Hall edges [51,52], which
represents a promising step to create superconductor/FQH
heterostructures.

The homogeneous interface described by Eq. (2.10) admits
local charge neutral backscattering that gap the interface and
heal the bulk states, as represented by the blue segments
in Fig. 2(b). This interface, which allows Abelian anyons
to hop across and propagate as bona fide deconfined bulk
quasiparticles, is created by the backscattering terms

U
[



(0)
i

] = cos
(



(0)
i Km,p�

)
, (3.1a)

where



(0)
i =

(
ei

ei

)
, ei =

(
0, . . . , 0, 1︸︷︷︸

i

, 0, . . . , 0

)T

(3.1b)

for i = 1, . . . , p is a set of integer vectors. Charge conserva-
tion obeyed by the interactions (3.1a) follows from

Q
[



(0)
i

] = 

(0)
i Qm,p = (

eT
i eT

i

)( qm,p

−qm,p

)
= 0, (3.2)

and the null condition of the integer vectors (3.1b)



(0)
i Km,p 


(0)
j = (

eT
i eT

i

)
[Km,p ⊕ (−Km,p)]

(
e j

e j

)
= eT

i Km,p e j − eT
i Km,p e j = 0 (3.3)

is verified ∀ i, j = 1, . . . , p.
We now consider another set of local interactions

U [
i] = cos (
iKm,p�) (3.4a)

that break charge conservation and depend upon the integer
vectors


i =
{


1 �= 

(0)
1 and 
1Qm,p �= 0



(0)
i i = 2, . . . , p

(3.4b)

for i = 1, . . . , p.
The interaction U [
1] breaks charge conservation, while

the U [
i �=1] conserve charge. Despite its simple form, this
ansatz will be shown to embody a nontrivial charge conden-
sate that gaps the interface and stabilizes parafermions on
domain walls between segments of the interface gapped by the
interactions (3.4a) from those segments gapped by the charge
neutral interactions (3.1a). Furthermore it permits an analyt-
ical understanding of the mechanism behind the formation
of domain wall parafermions. Since the subset of p − 1 null
vectors {
i = 


(0)
i , i = 2, . . . , p} in Eq. (3.4b) satisfies the

null condition, Eq. (2.13) reduces to p independent equations
that can be solved exactly, as we shall demonstrate in the
following Secs. IV and V.

In order to determine the quantum dimension of the
parafermion zero modes, we consider a series of domain
walls at the interface that separate segments S0 = ∪i (x2i +
ε, x2i+1 − ε) gapped by the interactions (3.1a) from the seg-
ments S = ∪i (x2i−1 + ε, x2i − ε) gapped by the interactions
(3.4a), where ε = 0+ is a positive regulator for the domain
walls. In the strong coupling limit, the ground state is obtained
by locking the sine-Gordon terms (3.1a) and (3.4a) to their

minima on the respective segments S(0) and S. The ground-
state degeneracy can be obtained by constructing a set of
operators with support on these gapped segments

�2i−1,2i = exp

(
i

Nm,p

∫ x2i+ε

x2i−1−ε

dx 

(0)
1 Km,p∂x�

)
, (3.5a)

�2i,2i+1 = exp

(
i

Nm,p

∫ x2i+1+ε

x2i−ε

dx 
1Km,p∂x�

)
, (3.5b)

where

Nm,p = 

(0)
1 Km,p 
1 ∈ Z∗. (3.5c)

It follows from the commutation relations (2.11) that oper-
ators defined in Eqs. (3.5a) and (3.5b) commute with the
Hamiltonian along the interface and satisfy the algebra

�2i−1,2i �2 j,2 j+1 = ei 2π
Nm,p (δi, j−δi−1, j ) �2 j,2 j+1 �2i−1,2i,

�
Nm,p

2k−1,2k = �
Nm,p

2k,2k+1 = 1. (3.6)

The dimension of the minimum representation of this algebra
clearly corresponds to the ground-state degeneracy. �2i,2i+1

act as raising or lowering operator to its neighbors �2i−1,2i and
�2i+1,2i+2, as ZNm,p clock operators. For a configuration with
2 ndw domain walls, Eq. (3.6) conveys the ground-state degen-
eracy |Nm,p|ndw and the quantum dimension of the parafermion

dm,p = √|Nm,p|. (3.7)

Therefore the quantum dimension of the parafermions de-
pends upon a single integer given by Eq. (3.5c).

Finally, the ground-state degeneracy stems from the exis-
tence of parafermion zero modes on the domain walls

α2i = e
i

Nm,p

[

1 Km,p �(x2i−ε)+


(0)
1 Km,p �(x2i+ε)

]
,

α2i+1 = e
i

Nm,p

[



(0)
1 Km,p �(x2i+1−ε)+
1 Km,p �(x2i+1+ε)

]
, (3.8)

which satisfy the ZNm,p parafermion algebra

αi α j = ei 2π
Nm,p

sgn(i− j)
α j αi, (3.9)

and are related to the operators in Eq. (3.5) by

α
†
2i α2i+1 ∼ �2i+1,2i, (3.10)

with similar relations holding for the other segments on the in-
terface. This establishes that the bilinear terms constructed out
of the parafermion operators commute with the Hamiltonian
at the interface.

In the following section, we shall impose the null and
primitive conditions to the interactions given by the ansatz
(3.4) and use it to obtain the local U(1) symmetry broken
interactions and parafermion zero modes for the first few
hierarchical states. (For completeness we shall also revisit the
primary Laughlin state studied in Refs. [9–12].) The analysis
of these explicit cases will point to the general formulation
valid for all hierarchical states, which we shall present in
Sec. V.
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IV. HIERARCHY OF PARAFERMIONS: EXAMPLES

In this section, we apply the formalism introduced in
Sec. III from the primary Laughlin states up until the third
hierarchical state.

A. Primary Laughlin state (m, 1)

The Laughlin state with filling fraction νm,1 = 1
2m+1 = 1

3 ,
1
5 , . . . is described by a one-component quantum fluid with
Km,1 = 2m + 1 and qm,1 = 1. The interface Luttinger liquid
theory, Eq. (2.10), has

Km,1 =
(

2m + 1 0
0 −(2m + 1)

)
, Qm,1 = (1,−1)T ,

(4.1)

with electron operators given by ψL/R = ei(2m+1)φL/R , where
φL/R are the chiral boson fields at the interface.

The charge neutral backscattering (3.1) for the Laughlin
interface reads



(0)
1 = (1, 1), (4.2)

U
[



(0)
1

] = λ1

2
(ψ†

LψR + H.c.)

= λ1 cos [(2m + 1)(φR − φL )]. (4.3)

Alternatively, the interface can be gapped via charge 2
electron pairing.


1 = (1,−1), (4.4)

U [
1] = λ′
1

2
(ψLψR + H.c.)

= λ′
1 cos [(2m + 1)(φR + φL )]. (4.5)

Then, according to Eq. (3.5c),

Nm,1 = 

(0)
1 Km,1
1 = 2(2m + 1) (4.6)

establishes Z2(2m+1)
∼= Z2 ⊕ Z2m+1 parafermions

αi α j = ei 2π
2(2m+1) sgn(i− j)α j αi (4.7)

with quantum dimension

dm,1 =
√

2 × √
2m + 1 =

√
2 × Dm,1, (4.8)

which are localized on the domain walls between regions
gapped by the charge neutral local backscattering (4.3) and
regions gapped by the charge 2 paring (4.5) [9–12]. Notice
that the quantum dimension of the parafermion shows a
contribution from the bulk topological order through the total
quantum dimension Dm,1 = √

2m + 1 of the Laughlin state,
as well as a contribution

√
2 reminiscent of Majorana zero

modes in a 1D topological superconductor [7]. Because of
this 1D effect, even in the absence of deconfined bulk anyons,
which corresponds to the ν = 1 IQH state where m = 0, there
is one Majorana zero mode localized on each domain wall of
the IQH interface.

The presence of Z2(2m+1) parafermions on the domain
walls, as seen by Eq. (3.8), manifests that the charge 1/m
operator 〈

O 1
2m+1

〉
=

〈
ei (2m+1)(φR+φL )

2(2m+1)

〉
=

〈
ei (φR+φL )

2

〉
�= 0 (4.9)

acquires a nonzero expectation on the segments of the inter-
face that are gapped by the interaction (4.5).

B. First hierarchical state (m, 2)

The interface of the first hierarchical state with filling frac-
tion νm,2 = 2

4m+1 = 2
5 , 2

9 , . . . contains two pairs of counter-
propagating fields �T = (φR

1 , φR
2 , φL

1 , φL
2 ). The Luttinger liq-

uid Lagrangian of the interface, Eq. (2.10), has

Km,2 = Km,2 ⊕ (−Km,2), QT
m,2 = (

qT
m,2,−qT

m,2

)
,

Km,2 =
(

2m + 1 −1
−1 2

)
, qT

m,2 = (1, 0). (4.10)

where we adopt the hierarchical representation (2.6b) for the
K matrix of the bulk state.

According to Eq. (3.1), the pair of local interactions

U [
(0)
1 ] = λ1

2
(ψ†

1Lψ1R + H.c.)

= λ1 cos [(2m + 1)(φ1R − φ1L ) − (φ2R − φ2L )]
(4.11a)

and

U [
(0)
2 ] = λ2

2
(ψ†

2Lψ2R + H.c.)

= λ2 cos [−(φ1R − φ1L ) + 2(φ2R − φ2L )], (4.11b)

associated with the null vectors



(0)
1 = (1, 0, 1, 0), 


(0)
2 = (0, 1, 0, 1), (4.11c)

gap the interface without breaking charge conservation.
The local operators at the interface correspond to ψa,R/L =
ei

∑
b(KR/L )abφb,R/L , for a = 1, 2. Equation (4.11) represents local

charge neutral backscattering that localizes the interface low-
energy modes.

We now seek the null vectors and corresponding charge
nonconserving interactions that gap the modes of the inter-
face. Following Eq. (3.4), we consider


1 = (x1, y1, x2, y2), 
2 = (0, 1, 0, 1), (4.12)

where x1, x2, y1, y2 are integers. Notice that the interaction
U [
2] = cos (
2Km,2�) is charge neutral, while U [
1] is
an operator of charge Q[
1] = 
1Qm,2 = x1 − x2, and we
consider x1 �= x2 in what follows.

The null condition satisfied by the integer vectors (4.12)
reads


1Km,2
1 = (2m + 1)
(
x2

1 − x2
2

)
+ 2

(
y2

1 − y2
2 − x1y1 + x2y2

) = 0, (4.13a)


1Km,2
2 = −x1 + x2 + 2y1 − 2y2 = 0. (4.13b)

Solving for x1 in Eq. (4.13b) and substituting into Eq. (4.13a)
gives

(y1 − y2)(x2 + y1 − y2) = 0. (4.14)

Whereas y1 = y2 = y and x1 = x2 = x solves the null
conditions, it corresponds to a charge neutral null vector

1 = x
(0)

1 + y
(0)
2 that is a linear combination of those

in Eq. (4.11c), in which case the integer vectors (4.11c)
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1L

1R 2R

Hierarchical State (m,2)

Hierarchical State (m,2)

FIG. 3. Interface between the first hierarchical FQH state (m, 2).
The red segment represents the interface gapped by the charge 2
interaction (4.16), where ψ1R and ψ1L are both charge 1 fermionic
operators, and ψ2R accounts for a charge zero operator with bosonic
self-statistics.

and (4.12) represent the same type of gapped interface. A
nontrivial solution, however, corresponds to y1 − y2 = t , and
x1 = −x2 = t for t �= 0, such that 
1 = (t, t + y2,−t, y2) for
y2 ∈ Z. Moreover, the minors of M[{
1,
2}], are given by
{t, 0, t, t, t,−t}, such that the primitive condition requires
t = ±1. Finally, setting t = 1 and y2 = 0 yields


1 = (1, 1,−1, 0), (4.15)

and the gap opening interaction

U [
1] = u

2
(ψ1Rψ2Rψ1L + H.c.)

= u cos (
1Km,2�)

= u cos
(
2mφR

1 + φR
2 + (1 + 2m)φL

1 − φL
2

)
. (4.16)

This interaction represents a charge 2 condensate, where ψ1R

and ψ1L are both charge 1 fermionic operators, and ψ2R ac-
counts for a charge zero operator with bosonic self-statistics.
See Fig. 3.

According to Eq. (3.5c),

Nm,2 = 

(0)
1 Km,2
1 = 4m + 1 (4.17)

shows the presence of Z4m+1 parafermions

αi α j = ei 2π
4m+1 sgn(i− j)α j αi (4.18)

with quantum dimension

dm,2 = √
4m + 1 = Dm,2, (4.19)

which are localized on the domains of the interface. This
result shows that the quantum dimension of the parafermion
is a direct manifestation of bulk topological order of the first
hierarchical state (m, 2) through its total quantum dimension
Dm,2 = √

4m + 1.
As an application of our analysis, the homogeneous in-

terface of ν = 2/5 FQH states (where m = 1 and p = 2)
supports Z5 parafermions. In this case, parafermion operators
are constructed from operators that create fractional charge
2/5 and charge zero quasiparticle pairs on each side to the
domain walls. Interestingly, the charge 2 condensate results
from the coalescence of a quintuplet of quasiparticles of
charge 2/5.

The generalization of the ν = 2/5 state to other first hierar-
chical states with arbitrary values of m shows that the Z4m+1

parafermion results from the formation of a (4m + 1)-tuplet
of charge 2/(4m + 1) fractional quasiparticles giving rise to
a charge 2 condensate. This, in turn, is a manifestation of the
nonzero expectation value of the charge 2

4m+1 operator〈
O 2

4m+1

〉
≡

〈
ei


1 Km,2 �

4m+1

〉
�= 0 (4.20)

on the segments of gapped by the interaction (4.16).
Compared with the primary Laughlin states discussed in

Sec. IV A, the quantum dimension of the parafermions in the
first hierarchical state does not manifest a

√
2 contribution

expected for the 1D topological superconductor. To shed light
on this result, we make use of the representation of the first
hierarchical state (2.8)

K̃m,2 = W2 Km,2 W T
2 =

(
2m + 1 2m

2m 2m + 1

)
,

q̃m,2 = (1, 1), (4.21)

where the first hierarchical state can be thought of as a coupled
FQH bilayer, with each layer carrying U(1) charge q = 1.
Therefore the degrees of freedom at the interface constitute
twopairs of counter-propagating fermion modes—twice the
number of degrees of freedom in the interface of the primary
Laughlin states. Our analysis then shows that adding an extra
pair of counter-propagating modes renders the Majorana zero
mode unstable, which is an indication of the Z2 stability of
Majorana fermions in 1D topological superconductors.

We now draw an important comparison between the
parafermion zero modes discussed in our set up and the theory
of extrinsic defects associated with anyonic symmetries of the
Abelian phase. In Ref. [13], the Z2 twisted defects associated
with the layer permutation of the Abelian phase characterized
by the K matrix

Km,� =
(

m �

� m

)
(4.22)

where studied and it was shown that domain walls separat-
ing two distinct gapping charge conserving gap terms sup-
port parafermions with quantum dimension dZ2 = √|m − �|.
Comparing (4.21) and (4.22) shows that that Z2 twist defect
of the first hierarchical state is trivial, since dZ2 = 1. Further-
more, it can be demonstrated [53] that the twist defects asso-
ciated with charge conjugation anyonic symmetry correspond
Majorana fermions, but not the Z4m+1 parafermions discussed
here.

These preliminary findings regarding the primary and first
hierarchical states point to the existence of an outstanding
even-odd effect that ties the stability of a Majorana zero
mode to the parity of the hierarchical index p, as shown
in Fig. 1. In the next two sections, we shall validate this
even-odd effect by explicitly showing that the parafermions
of second hierarchical state (p = 3) possess a

√
2 contribution

to their quantum dimension, similar to the primary states
(p = 1) in Sec. IV A; on the other hand, parafermions of third
hierarchical state (p = 4) repeat the same behavior as those of
the first hierarchical state (p = 2).
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C. Second hierarchical state (m, 3)

The low-energy modes of the interface of the sec-
ond hierarchical state are described in terms of the fields
�T = (φR

1 , φR
2 , φR

3 , φL
1 , φL

2 , φL
3 ) and the Lagrangian (2.10) has

Km,3 = Km,3 ⊕ (−Km,3), QT
m,3 = (

qT
m,3,−qT

m,3

)
,

Km,3 =
⎛
⎝2m+1 −1 0

−1 2 −1
0 −1 2

⎞
⎠, qT

m,3 = (1, 0, 0), (4.23)

where we adopt the hierarchical representation (2.6b).
The local charge neutral interactions (3.1) take the form

U [
(0)
i ] = (λi/2)(ψ†

iRψiL + H.c.)

= cos (
(0)
i Km,3�), for i = 1, 2, 3, (4.24)

associated with the null vectors



(0)
1 = (1, 0, 0, 1, 0, 0),



(0)
2 = (0, 1, 0, 0, 1, 0), (4.25)



(0)
3 = (0, 0, 1, 0, 0, 1).

Following Eq. (3.4), we now consider another set of null
vectors


1 = (x1, y1, z1, x2, y2, z2),


2 = 

(0)
2 = (0, 1, 0, 0, 1, 0),


3 = 

(0)
3 = (0, 0, 1, 0, 0, 1),

(4.26)

(where x1, . . . , z2 are integers) corresponding to the local
interactions

U [
i] = cos (
iKm,3�) i = 1, 2, 3, (4.27)

where U [
2] and U [
3] are charge neutral and U [
1] carries
charge x1 − x2 �= 0. Imposing the null condition results in
three equations


1Km,3
1 = (2m + 1)
(
x2

1 − x2
2

) − 2x1y1,

+ 2x2y2 + 2
(
y2

1 − y1z1 − y2
2 + y2z2 + z2

1 − z2
2

)
= 0, (4.28a)


1Km,3
2 = −x1 + x2 + 2(y1 − y2) − z1 + z2 = 0, (4.28b)


1Km,3
3 = −y1 + y2 + 2(z1 − z2) = 0. (4.28c)

Equations (4.28b) and (4.28c) result in

z1 − z2 = x1 − x2

3
= y1 − y2

2
, (4.29)

which gives

[2x2 + 3(z1 − z2)](z1 − z2) = 0 (4.30)

upon substitution onto Eq. (4.28a).
A nontrivial solution of Eqs. (4.29) and (4.30) yields

the null vector 
1 = (3t, y2 + 4t, z2 + 2t,−3t, y2, z2) for
t �= 0 and y2, z2 ∈ Z. Furthermore, the nonzero minors of
M[{
1,
2,
3}] belong in the set {±2t,±3t,±4t} from

which the primitive condition follows for t = ±1. Finally,
setting t = 1, y2 = −2, and z2 = −1, gives the null vector


1 = (3, 2, 1,−3,−2,−1), (4.31)

and the corresponding local interaction

U [
1] = cos (
1Km,3�) = cos
[
(6m + 1)

(
φR

1 + φL
1

)]
.

(4.32)

It follows from Eqs. (4.31) and (3.5c) that

Nm,3 = 

(0)
1 Km,3 
1 = 2(6m + 1), (4.33)

which establishes the presence of Z2(6m+1)
∼= Z2 ⊕ Z6m+1

parafermions

αi α j = ei 2π
2(6m+1) sgn(i− j)α j αi (4.34)

with quantum dimension

dm,3 =
√

2 × √
6m + 1 =

√
2 × Dm,3. (4.35)

This explicit calculation, therefore, confirms that the struc-
ture of the parafermions in the second hierarchical state is sim-
ilar to that observed in the primary Laughlin states discussed
in Sec. IV A, with the quantum dimension of the parafermion
being a manifestation of both the bulk Abelian order and
the nontrivial 1D superconductor. Nevertheless, an important
distinction emerges in this case, for the interaction (4.32)
represents a condensate of charge Q[
1] = Qm,3
1 = 6. The
stability of parafermions, as seen in Eq. (3.8), is captured by
the expectation value of the charge 3

6m+1 operator

〈
O 3

6m+1

〉
≡

〈
ei



(0)
1 Km,3 
1
2(6m+1)

〉
=

〈
ei

(φL
1 +φR

1 )

2

〉
�= 0, (4.36)

on the segments of the interface gapped by this interaction.
As an example, the interface between two FQH states at
filling fraction ν = 3/7 (corresponding to m = 1, p = 3), can
give rise to Z14

∼= Z2 ⊕ Z7 parafermions along the domain
walls described here. The charge 6 condensate, in this case, is
formed by condensation of fractional charge 3/7.

It is instructive to seek an understanding of this charge 6
gapped interface in the representation (2.8),

K̃m,3 =
⎛
⎝2m+1 2m 2m

2m 2m+1 2m
2m 2m 2m+1

⎞
⎠, q̃m,3 = (1, 1, 1),

(4.37)

where the K matrix and charge vectors resemble a trilayer
FQH state, where each layer carries unit charge. The SL(3,Z)
transformation to this new basis

W3 =
⎛
⎝1 0 0

1 1 0
1 1 1

⎞
⎠ (4.38)

changes the null vector to


̃1 = [(
W −1

3

)T ⊕ (
W −1

3

)T ]

1

= (1, 1, 1,−1,−1,−1)T . (4.39)
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Then the interaction

U [
̃1] = λ̃ cos
(

̃1K̃m,3�̃

)
∼ λ̃

2
ψ̃1Rψ̃2Rψ̃3Rψ̃1Lψ̃2Lψ̃3L + H.c. (4.40)

is manifestly a charge 6 operator involving pairing of three
local fermions on each side of the interface. This interaction
is a generalization of the charge 2 pairing at the interface of
Laughlin states.

Similarly to the discussion of the first hierarchical state,
we compare our set up with the theory of extrinsic defects
associated with anyonic symmetries of the Abelian phase. In
Ref. [13], the Z3 twisted defects associated with the layer
permutations of the Abelian phase characterized by the K
matrix

Km,�,� =
⎛
⎝m � �

� m �

� � m

⎞
⎠ (4.41)

where studied and it was shown that domain walls separating
two distinct gapping charge conserving gap terms support
parafermions with quantum dimension dZ3 = |m − �|. Com-
paring Eqs. (4.37) and (4.41) shows that that Z3 twist defect of
the second hierarchical state is trivial, since dZ3 = 1. Further-
more, it can be shown [53] that twist defects associated with
charge conjugation anyonic symmetry are associated with
Majorana fermions, in contrast with the Z2(6m+1) parafermions
discussed here.

D. Third hierarchical state (m, 4)

The interface of the third hierarchical FQH state (m, 4)
with filling fraction νm,4 = 4

8m+1 supports the low-energy
mode fields (φR

1 , φR
2 , φR

3 , φR
4 , φL

1 , φL
2 , φL

3 , φL
4 ) where the

Lagrangian (2.10) has

Km,4 = Km,4 ⊕ (−Km,4), QT
m,4 = (

qT
m,4,−qT

m,4

)
,

Km,4 =

⎛
⎜⎝

2m + 1 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎞
⎟⎠, qT

m,4 = (1, 0, 0, 0).

(4.42)

Charge neutral null vectors parametrizing the gap opening
interactions (3.1a) read



(0)
1 = (1, 0, 0, 0, 1, 0, 0, 0)T ,



(0)
2 = (0, 1, 0, 0, 0, 1, 0, 0)T ,



(0)
3 = (0, 0, 1, 0, 0, 0, 1, 0)T ,



(0)
4 = (0, 0, 0, 1, 0, 0, 0, 1)T . (4.43)

Carrying out an analysis similar to that discussed in Secs.
IV B–IV D, we find that the null integer vectors of the charge
nonconserving gapped interface are


i =
{

(2, 3, 2, 1,−2, 0, 0, 0)T i = 1



(0)
i i = 2, 3, 4

. (4.44)

Notice that the interaction

U [
1] = cos (
1Km,p�)

∼ ψ2
1R

(
ψ3

2Rψ2
3Rψ4R

)
ψ2

1L + H.c. (4.45)

is a charge 4 cluster operator where ψ1R and ψ1L are charge 1
local operators with fermionic statistics and ψ2R, ψ3R, ψ4R are
charge zero local operators with bosonic statistics.

From Eqs. (4.44) and (3.5c), we get

Nm,4 = 

(0)
1 Km,4 
1 = (8m + 1), (4.46)

which establishes the presence of Z8m+1 parafermions

αi α j = ei 2π
8m+1 sgn(i− j)α j αi (4.47)

with quantum dimension

dm,4 = √
8m + 1 = Dm,4. (4.48)

This result shows that the parafermions in the third hi-
erarchical state behave similarly to the first hierarchical
state discussed in Sec. IV B. This nontrivial condensate is
manifested in the expectation value of of the charge 4

8m+1
operator 〈

O 4
8m+1

〉
≡

〈
ei



(0)
1 Km,4 
1

8m+1

〉
�= 0. (4.49)

So, for instance, the ν = 4/9 FQH state (m = 1, p = 4) is seen
to support Z9 parafermions along domain walls at its gapped
edge. The charge 4 condensate is formed by a cluster of 9
quasiparticles with charge 4/9.

V. HIERARCHY OF PARAFERMIONS: GENERAL CASE

The properties of the parafermions zero modes stabilized
on domain walls of the p = 1, 2, 3, 4 hierarchical states dis-
cussed in Sec. IV reveal a remarkable dependence on the
parity of the index p, which labels the depth of the hierar-
chy. This dependence reflects an interplay between the bulk
topological order, which gives rise to quasiparticle fractional-
ization, and the 1D SPT order that stabilizes Majorana zero
modes in nontrivial topological superconductors. An appeal-
ing mechanism to account for such an even-odd dependence
emerges when upon expressing the bulk topological order
of the hierarchical state in the representation (2.8), where
the K matrix gives an interpretation of the bulk topological
order as a series of p Laughlin-type layers (as indicated in
the diagonal odd integers 2m + 1) coupled to each other by
bosonic correlations (indicated by the off-diagonal even inte-
gers 2m). As such, the number of pairs of counter-propagating
fermion modes in interfaces of hierarchical states (m, p) and
(m, p + 2) differ by 2. In the limit, where these Laughlin
FQH layers are decoupled [which would correspond to K =
(2m + 1) diag(1, . . . , 1)], the even-odd effect associated with
the stability of Majorana zero modes is a direct consequence
of the Z2 stability (instability) associated with an odd (even)
number of Majorana zero modes per domain. Remarkably, our
analysis will show that this structure persists even when the
layers are coupled, according to the K matrix (2.8a).

One of the goals of this section is to show that this Z2

pattern indeed persists for all hierarchical states, whose bulk
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topological order are represented by Eq. (2.6) or, equivalently,
Eq. (2.8). We will show that the interactions require breaking
of charge conservation in such a way that the charge of the
condensate depends on the hierarchical level p. Notably, while
the primary Laughlin (p = 1) admit a charge 2 condensate
that, in principle, can be induced by a weak-pairing mecha-
nism (or by proximity to a superconductor), for generic states
of the hierarchical sequence, the Qm,p > 2 charge of the con-
densate signals that a non-BCS strong coupling mechanism is
at play. This situation departs significantly from the stability
of Majorana zero modes in superconducting wires [7] as well
as in interfaces of Laughlin-type states [9–12].

An interesting property of the condensate is that it involves
clustering of 2mp + 1 quasiparticles of charge νm,p = p

2mp+1 .
This scenario of parafermions being stabilized by clustering
of quasiparticles is analogous to clustering property of non-
Abelian Read-Rezayi FQH states, [48] where electrons (or
composite fermions) forming an order-k cluster, give rise
to an incompressible state that supports non-Abelian bulk
excitations and chiral charge neutral Zk parafermions on the
boundary. (The special case k = 2 corresponds to the Moore-
Read states with a chiral Majorana fermions at the
boundary, which is a candidate topological order for the
ν = 5/2 FQH.)

In Secs. V A and V B, we discuss, respectively, the p =
odd and p = even hierarchical states in generality, where we
shall provide explicit expressions for the null vectors and,
consequently, the local interactions that gap the interface and
give rise to parafermion zero modes localized on domain
walls.

A. Hierarchical states: p = odd integer

Consider the interface between hierarchical FQH states
with filling fraction

νm,p = p

2mp + 1
, m ∈ Z+, p = 1, 3, 5, . . . (5.1)

As discussed in Sec. III, this interface admits a gapped
region realized by the local charge neutral interactions (3.1).
We now demonstrate that the interface formed by the states in
Eq. (5.1) admits a set of local gap opening interactions that
breaks U(1) charge conservation and represent a charge Qm,p

condensate where

Qm,p = 2p, m ∈ Z+, p = 1, 3, 5, . . . (5.2)

In the representation (2.6), this condensate is realized by the
local interactions

U [
i] = cos (
iKm,p�), i = 1, . . . , p, (5.3)

represented by the integer vectors


1 =
(

vp

−vp

)
, vp =

⎛
⎜⎜⎝

p
p − 1

...
1

⎞
⎟⎟⎠,


i = 

(0)
i =

(
ei

ei

)
, i = 2, . . . , p, (5.4)

which satisfy the null condition


iKm,p
 j, i, j = 1, . . . , p. (5.5)

It follows immediately from Eq. (5.4) that the interaction
corresponds to a condensate of charge Q[
1] = 
1Qm,p =
2p, in accordance with Eq. (5.2). (Note that for 2 � i �
p: Q[
i] = 
iQm,p = 0.) Moreover, the nonzero minors of
M[{
}] can be shown to form the set {±(p − 1),±p,±(p +
1)} whose greatest common divisor is one, which shows that
the integer vectors in Eq. (5.4) are primitive. Furthermore,
to establish the null condition (5.5), we first realize that this
condition is clearly satisfied for i, j = 2, . . . , p as a conse-
quence of Eq. (3.3). Then, the remaining nontrivial conditions
we need to show are for i = 1 and j = 1, . . . , p. To establish
this result, all we need is the identity

Km,p vp =

⎛
⎜⎜⎝

2mp + 1
0
...
0

⎞
⎟⎟⎠ = (2mp + 1)e1, (5.6)

where vp is p-dimensional integer vector defined in Eq. (5.4).
To demonstrate this result, let Km,p vp = ∑p

k=1 ak ek . Except
for the first and last rows, the remaining rows of Km,p are
formed by consecutive entries −1, 2, 1 and the remaining
ones equal to zero. The first row has (Km,p)11 = 2m + 1
and (Km,p)12 = −1. The last row has (Km,p)p,p−1 = −1 and
(Km,p)p,p = 2. Putting all together,

a1 = p(2m + 1) + (−1) × (p − 1) = 2mp + 1,

ak = (−1) × (k + 1) + 2 × (k) + (−1) × (k − 1) = 0,

2 � k � p − 1,

ap = (−1) × (2) + 2 × (1) = 0, (5.7)

which proves Eq. (5.6). Finally, by taking into account the
orthonormal basis vectors ei, it is straightforward to verify the
null condition (5.5).

The form of the charge 2p interaction, which follows
directly from Eq. (5.6), is

U [
1] = cos (
1 Km,p �) = cos
[
(2mp + 1)

(
φR

1 + φL
1

)]
.

(5.8)

In the basis given by Eq. (2.8) the integer vectors 
1

transforms to


̃1 = (W −1)T 
1 = (1, 1, . . . , 1,−1,−1, . . . ,−1)T . (5.9)

The meaning of the charge 2p interaction in this representa-
tion is manifestly given by

U [
̃1] = cos (
̃1 K̃m,p �̃)

∼ (
ψ̃L

1 ψ̃R
1

)
. . .

(
ψ̃L

p ψ̃R
p

) + H.c. (5.10)

which represents the cluster of 2p fermions, each one carrying
charge q = 1. Equation (5.10) generalizes, to every odd value
of p, the charge 6 interaction that gaps the interface of the
hierarchical state (m, 3) depicted in Fig. 4.

Finally, the quantum dimension of the parafermion local-
ized at the domain wall between the segments of the interface
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1L 2L 3L

1R 2R 3R

~ ~~ ~

~~~

Hierarchical State (m,3)

Hierarchical State (m,3)

FIG. 4. Interface between the second hierarchical FQH state
(m, 3). The red segment represents the interface gapped by the charge
6 interaction (4.40).

that are gapped by interactions (3.1a) and (5.3) follows from

Nm,p = 

(0)
1 Km,p
1 = (

eT
1 eT

1

)((2mp + 1)e1

(2mp + 1)e1

)
= 2(2mp + 1), (5.11)

which establishes the existence of parafermions of quantum
dimension

dm,p =
√

2 ×
√

2mp + 1, (5.12)

at the interface of hierarchical states filling fraction νm,p =
p

2mp+1 , m ∈ Z+, p = 1, 3, 5, . . .

B. Hierarchical states: p = even integer

Consider the interface between hierarchical FQH states
with filling fraction

νm,p = p

2mp + 1
, m ∈ Z+, p = 2, 4, 6, . . . (5.13)

As discussed in Sec. III, this interface admits a gapped
region realized by the local charge neutral interactions (3.1).
We now prove that the interface formed by the states in
Eq. (5.13) can be gapped by local interactions that break
charge conservation symmetry and give rise to a condensate
of charge

Qm,p = p, m ∈ Z+, p = 2, 4, 6, . . . (5.14)

In the representation (2.6), this charge p condensate is
realized by the local interactions

U [
i] = cos (
iKm,p�), (5.15)

where the integer vectors read


i

=
{( p

2 , p−1, p−2, . . . , 1,− p
2 , 0, 0, . . . , 0

)T
i=1



(0)
i i=2, . . . , p

(5.16)

and satisfy the null condition


i Km,p 
 j = 0, ∀i, j = 1, . . . , p. (5.17)

With the null vectors (5.16) we directly find that this
corresponds to a condensate of charge Q[
1] = 
1Qm,p = p,

as given by Eq. (5.14). (Notice that for 2 � i � p : Q[
i] =

iQm,p = 0.) Moreover, from the explicit form of the integer
vector 
1 in Eq. (5.16), one verifies that the charge p interac-
tion

U [
1] = cos (
1Km,p�)

∼ ψ
p/2
1R

(
ψ

p−1
2R ψ

p−2
3R . . . ψ2

(p−1)RψpR

)
ψ

p/2
1L + H.c.

(5.18)

represents a cluster operator where ψ1R and ψ1L are charge 1
local operators with fermionic statistics and ψ2R, . . . , ψpR are
charge zero local operators with bosonic statistics.

We now demonstrate the validity of Eq. (5.17). Since
{
(0)

i }, i = 2, . . . , p forms, by construction, a subset of null
vectors, the only nontrivial relations left to be verified are

iKm,p
1 = 0 for i = 1, . . . , p. In order to establish these
conditions, we directly calculate

Km,p 
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

p
2 (2m − 1) + 1

p
2

0
...
0
0

p
2 (2m + 1)

− p
2

0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.19)

leading to


1Km,p
1 = p

2

[
p

2
(2m − 1) + 1

]

+ (p − 1)
p

2
− p

2

[
p

2
(2m + 1)

]
= 0,


2Km,p
1 = p

2
− p

2
= 0,


iKm,p
1 = 0, i = 3, . . . , p, (5.20)

where the last equation is a consequence of eT
i · e1,2 = 0 for

i = 3, . . . , p. This then establishes the null condition (5.17).
Finally, the quantum dimension of parafermion localized

at the domain wall between the segments of the interface that
are gapped by interactions (3.1a) and (5.15) follows from

Nm,p = 

(0)
1 Km,p
1 = 2mp + 1, (5.21)

which shows establishes the existence of parafermions with
quantum dimension

dm,p =
√

2mp + 1 (5.22)

at the interface with filling fraction νm,p = p
2mp+1 , with

m ∈ Z+ and p = 2, 4, 6, . . .

We have then explicitly demonstrated, in Secs. V A and
V B, the existence of a local charge condensate, Eq. (1.2),
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that stabilizes non-Abelian parafermions with quantum di-
mensions given by Eq. (1.3) and depicted in Fig. 1.

VI. SUMMARY AND OUTLOOK

In this work, we have established a correspondence be-
tween the sequence of Abelian hierarchical FQH states in the
first Landau level and a class of extrinsic non-Abelian zero
modes localized on domain walls that separate charge neutral
and U(1) symmetry broken gapped segments of the interfaces.
Our analysis of the low-energy properties of the bulk hier-
archical state employed the hydrodynamical Chern-Simons
theory by which the FQH system with Hall conductance
σxy(m, p) = e2

h
p

2mp+1 is represented in terms of a p-component
U(1) Chern-Simons gauge theory parametrized by an integer
valued K matrix [36–40]. The edge of such hierarchical state,
in turn, supports p chiral low-energy modes described by a
p-component chiral boson field whose commutation relations
are determined by the K matrix. As such, we have studied gap
opening processes in a homogeneous interface with p pairs
of counter-propagating modes, as depicted in Fig. 2. Gapping
these modes at the interface is realized by p local sine-Gordon
type operators.

Through a detailed examination of the locality and frustra-
tion free conditions of sine-Gordon operators on the homo-
geneous interface, we have found that the hierarchical states
admit U(1) symmetry breaking interactions that give rise to
a condensate whose charge is a function of the hierarchical
index p, as per Eq. (1.2). Therefore our results show that a
charge 2 condensate only occurs for p = 1 and 2, i.e., for
the primary Laughlin states with filling fraction 1

2m+1 and the
first hierarchical states with filling fraction 2

4m+1 , for integer
m > 1. (We note that charge 2 condensates formed the basis
of earlier studies of parafermions in interfaces and trenches
of Laughlin states [9–12] and the particle-hole conjugate of
the ν = 1/3 Laughlin state at filling ν = 2/3 [15].) For the
general p > 2 case investigated in this work, on the other
hand, we have found that the local U(1) symmetry break-
ing interactions involve a nonconventional charge clustering
mechanism whereby more than two electrons are glued to-
gether. Our findings then open the interesting possibility of
exploring these gapped interfaces as a basis for constructing
families of unconventional U(1) symmetry broken phases in
2D by promoting the interfaces to a “wire network”, in the
spirit of Ref. [54].

One of the main results of this work was establishing that
the properties of parafermions zero modes stem from the
existence of a cluster state of charge given by Eq. (1.2), which
translates into a cluster of fractionalized quasiparticles of
charge p/(2mp + 1). This state bears a striking resemblance
with the Read-Rezayi FQH states that represent non-Abelian
FQH states where electrons form cluster states. In fact, this
correspondence has been explored in Ref. [15], where it
was shown that superconducting islands in the ν = 2/3 FQH
state harbor Z3 parafermions that are closely related to the
neutral parafermion excitations of the Z3 Read-Rezayi FQH,
whose ground-state wavefunction encodes clustering of three
electrons. From this perspective, the results obtained here
for the entire sequence of Abelian hierarchical FQH states

establish a rich connection between two distinct families of
Abelian and non-Abelian topological orders, and suggest, in
particular, a route to describe the hierarchy of non-Abelian
phases [55] via the deconfinement of extrinsic parafermion
zero modes in corresponding Abelian phases of matter, which
is an important topic worth of further investigation. Further-
more, since the parafermions in the setting considered here do
not manifest any direct relationship with anyonic symmetries,
the deconfinement of these non-Abelian defects may require a
theoretical treatment that differs from those of Refs. [56,57],
which dealt with the deconfinement of twist defects related to
symmetries of the anyon group.

We have found an appealing dependence of the charge
condensate and the quantum dimension of parafermions on
the parity of the level hierarchy p, as shown in Fig. 1. We
have argued that the even-odd dependence on p is indicative
of the Z2 stability of Majorana zero modes in 1D topo-
logical superconductors, where the parity of p matches the
parity of Majorana zero models per domain, according to the
quantum dimension (1.3). This parity dependence is naturally
accounted for in the multilayer representation of the K matrix
of the hierarchical states, despite the fact that each hierarchical
state we studied is understood to be realized in a monolayer
system in the lowest Landau level. According to this result, the
quantum dimension of the parafermions depends both on the
bulk Abelian topological order via the total quantum dimen-
sion Dm,p of the hierarchical Abelian bulk phase, as well as
on the Majorana modes stabilized by conservation of fermion
parity in 1D gapped fermionic phases of matter [58–60].

We close by pointing to a relation between the nonzero
charge condensate at the interface of hierarchical FQH states
and the entanglement entropy associated with an entangle-
ment cut across the interface [61–64]. In that regard, it is
possible to show that the interactions giving rise to the charge
condensate in the hierarchical states are invariant under a
global Zk × Zk symmetry [where k = p (k = p/2) for odd
(even) values of p], which correspond to transformations on
the local operators having support on each side of the inter-
face. It was shown in Ref. [65] that the existence of local gap
opening interactions possessing such discrete symmetry gives
rise to a nontrivial ln (k) correction to the bulk universal value
of the topological entanglement entropy, which, in nonchiral
bulk Abelian phases, characterize the onset of a 1D gapped
SPT chain along the interface. (See also Ref. [66] for an
early discussion of entanglement corrections in 2D Abelian
phases of matter and Ref. [67] for a relationship between
such entanglement corrections and string order parameters.)
We stress, however, that hierarchical states studied here are
chiral phases, which implies that the parafermion zero modes
are not protected by the emergent Zk × Zk symmetry of the
local interactions that stabilize the condensate. Nevertheless,
we note that the local interactions we have discussed here by
no means exhaust the possible classes of gapped interfaces
that can be formed in hierarchical states. It is then an impor-
tant open question whether such hierarchical interfaces can
support also genuine 1D SPT phases of matter protected by
other classes of discrete symmetries, as recently discussed in
Ref. [65].

In summary, leveraging on the anyon condensation mech-
anism that gives rises to the hierarchical sequence of Abelian
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FQH states, we have discovered a remarkably rich sequence
of non-Abelian parafermions that are stabilized by clustered
states of electrons and quasiparticles on their interfaces.
Our study opens an exciting possibility to gain a deeper
understanding of the structure of 2D non-Abelian states by
exploring more familiar and well understood Abelian phases
of matter.
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