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We study superconductivity driven by screened Coulomb repulsion in three-dimensional Luttinger semimetals
with a quadratic band touching and strong spin-orbit coupling. In these semimetals, the Cooper pairs are formed
by spin- 3

2 fermions with nontrivial wave functions. We numerically solve the linear Eliashberg equation to obtain
the critical temperature of a singlet s-wave gap function as a function of doping, with account of spin-orbit and
self-energy corrections. In order to understand the underlying mechanism of superconductivity, we compute the
sensitivity of the critical temperature to changes in the dielectric function ε(i�n, q). We relate our results to
the plasmon and Kohn-Luttinger mechanisms. Finally, we discuss the validity of our approach and compare our
results to the literature. We find good agreement with some bismuth-based half-Heuslers, such as YPtBi, and
speculate on superconductivity in the iridate Pr2Ir2O7.
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I. INTRODUCTION

The superconductivity of semiconducting materials has
been experimentally studied since the 1960’s [1]. For most
of these materials, such as diamond and silicon, experi-
mental data and ab initio calculations [2–4] point toward a
conventional pairing mechanism mediated by phonons [5,6].
However, this picture does not seem to hold for some di-
lute semiconductors such as SrTiO3 [7–9], PbTe [10], and
bismuth-based half-Heusler materials like YPtBi [11] where
other pairing mechanisms have been suggested [12–15]. In
various works it is proposed that YPtBi is a three-dimensional
(3D) quadratic band touching Luttinger semimetal [15–17],
where the quasiparticles are characterized by a pseudospin
j = 3

2 due to the strong spin-orbit coupling [15,18–20]. It
is predicted that these semimetals exhibit topological surface
states [21]. Also, it was argued that Luttinger semimetals
show non-Fermi-liquid behavior at small doping [22–24],
which makes them prime candidates to study novel phases
arising from the interplay of spin-orbit coupling and electron
interactions [25]. It was recently suggested that Luttinger
semimetals, like YPtBi, constitute a platform for Cooper pairs
of spin- 3

2 fermions, including topological superconductivity
[11,15,18,19,26–29].

In this work we study singlet s-wave superconductivity in
doped 3D Luttinger semimetals arising from the dynamically
screened Coulomb repulsion between electrons. An analogous
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pairing mechanism was first proposed by Kohn and Luttinger
in metals [30,31] who found that the screened Coulomb po-
tential has attractive contributions that condense Cooper pairs
with nonzero angular momentum (� �= 0). This mechanism is
of similar origin to the Friedel oscillations at 2kF , and usually
leads to a small critical temperature. However, if one also con-
siders the frequency dependence of the dielectric permittivity
ε(i�n, q), within the random phase approximation (RPA), one
finds a larger critical temperature [12,13] that may account
for the observed Tc in SrTiO3 [32]. In that case, contrary to
the Kohn-Luttinger mechanism where the interaction is static,
the critical temperature is obtained for a singlet s-wave order
parameter and the gap function changes sign with frequency
[13,14,33]. The origin of the superconducting instability is
then attributed to the electron-plasmon coupling because the
screened Coulomb potential is negative for frequencies below
the plasma frequency and above the region of electron-hole
excitations [34]. In this approach, most of the studies are
based on a spin-degenerate quadratic band model without
spin-orbit coupling, which is well suited for SrTiO3 [13,32]
but not for Luttinger semimetals like YPtBi [11]. Indeed, it
was recently shown that, compared to a single quadratic band,
the interband coupling increases the long-range screening of
the electric field and reduces the effective plasma frequency
[35–38]. This would weaken superconductivity within the
aforementioned mechanism. This is without taking into ac-
count spin-orbit effects and the smaller self-energy correc-
tions [37] that usually compete against superconductivity.

In Sec. II we discuss and solve the Eliashberg equation
of a Luttinger semimetal with electron-electron repulsion and
compare our results to the case of a single quadratic band. In
Sec. III, we discuss the influence of the frequency and wave-
vector dependence of the dielectric permittivity ε(i�n, q) on
the critical temperature. For this we compute the functional
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FIG. 1. (a) Band structure of the quadratic band touching Luttinger model; the gray plane is at the chemical potential. The upper (red) and
lower (blue) bands are doubly degenerate, and we consider a singlet pairing within each band. (b), (c) Behavior of (b) ξσ (iωn, k) + χσ (iωn, k)
and (c) Zσ (iωn, k) for rs = 4 with σ = + in red and − in blue. The Coulomb repulsion mostly affects the single-particle Hamiltonian at the
Fermi energy [here, σ = − and (iωn, k) = (0, kF )].

derivative δTc/δε(i�n, q) within a procedure similar to that
used by Bergmann and Rainer in the 1970’s to discuss the
effect of phonon softening in amorphous superconductors
[39,40]. Finally, in Sec. IV, we compare our results to
the experimental observations on superconducting Luttinger
semimetals such as YPtBi, and we discuss the applicability of
our theoretical description.

II. SUPERCONDUCTING PAIRING

A. Model

The behavior of noninteracting electrons at a quadratic
band touching is described by the Luttinger Hamiltonian [17]

Ĥ0 = h̄2

2m
[(α1 − 5α2/4)k2 + α2(k · Ĵ)2] − μ. (1)

We denote the band mass m and the j = 3
2 total angular

momentum operators Ĵ = (Ĵx, Ĵy, Ĵz ). This model has in-
version, rotation, and time-reversal symmetry T̂ [15,18,41].
The Luttinger Hamiltonian describes four bands that meet
quadratically at k = 0 [see Fig. 1(a). The upper and lower
bands are degenerate with energy εσ = σ h̄2k2/(2mσ ) where
σ = ±. The upper and lower band masses, m± = m/(α2 ±
α1), are not necessarily the same. The eigenstates can
be further decomposed in terms of Kramer partners λ =
±, |σ, λ, k〉 with λ = ±, such that |σ,+, k〉 = T̂ |σ,−, k〉
[42]. It is convenient to introduce the projection operator
P̂σ (k) on subband σ with P̂σ (k) = 1

2 [1̂ + Ĥ0(k)/ξσ (k)] =∑
λ=± |σ, λ, k〉〈σ, λ, k|, where ξσ = εσ − μ. This expression

allows us to describe the eigenspinor overlap [15,35–38,43]

Tr
[
P̂σ1 (k + q)P̂σ2 (k)

] = 1
2 {2 + σ1σ2[3 cos2(θk+q,k ) − 1]},

(2)

which is central in the description of interband coupling. In the
following, we consider a particle-hole-symmetric spectrum,
where α1 = 0 and α2 = 1, with hole doping such that EF < 0.
We discuss the effect of particle-hole asymmetry in Sec. III.

The bare interaction between electrons is described by
the Coulomb potential V0(q) = 4πe2/(ε∗q2) where ε∗ is the
background dielectric permittivity. In second quantization, the

full Hamiltonian is

Ĥ =
∑

k

ψ̂
†
kĤ0(k)ψ̂k

+ 1

2V
∑

s1s2k1k2,q �=0

V0(q)ψ̂†
k1+qs1

ψ̂
†
k2−qs2

ψ̂k2s2ψ̂k1s1 , (3)

where we introduce the fermionic annihilation operators
ψ̂ks = {ψ̂k,3/2, ψ̂k,1/2, ψ̂k,−1/2, ψ̂k,−3/2} of the j = 3

2 repre-
sentation.

In the following, we set h̄ = kB = 1. We write energies
in units of the Fermi energy EF and wave vectors in units
of the Fermi wave vector kF . This choice of units allows
us to write all expressions as a function of the Wigner-Seitz
radius rs = me2/(αε∗kF ) with the constant α = (4/9π )1/3 ≈
0.52, kF = (3π2n)1/3 and where EF = −k2

F /2m < 0 is in the
bottom band. The band structure is particle-hole symmetric
and because we consider s-wave pairing, our observations are
independent on the sign of the Fermi energy [15].

B. Eliashberg equation

The Eliashberg equation [44] of the j = 3
2 electrons has

recently been discussed in Refs. [15,18]. They describe the
various pairing channels of Luttinger semimetals and the
corresponding coupling strength due to polar optical phonons
[15]. However, the electronic polarization is only accounted
for approximatively and in the present section we consider
how it can be responsible for pseudo-spin-singlet supercon-
ductivity. Here, the pseudospin refers to the two Kramer part-
ners within a band. We consider that pairing occurs through
the screened Coulomb potential

V (i�, q) = V0(q)/εRPA(i�, q), (4)

where εRPA(i�, q) is the dielectric permittivity in the random
phase approximation. This expression has been computed at
zero temperature in Refs. [35–38] but it should not strongly
differ from that at the critical temperature Tc since Tc � EF ,
as we shall see. In a Luttinger semimetal, screening at small
wave vectors is stronger than for a single quadratic band [37]
which leads to a smaller plasma frequency and a reduced
renormalization of the quasiparticle properties.
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We rewrite the Hamiltonian (3) in terms of fermionic
operators associated with the eigenstates of Ĥ0, ĉkσλ =∑

s〈k, σ, λ|ψks〉ψ̂ks, where |ψks〉 are the states in the original
basis. We consider the normal and anomalous Green’s func-
tions

Gσλ(iωn, k) = −
∫ 1/T

0
dτ 〈T̂τ ĉkσλ(τ )ĉ†

kσλ
(0)〉eiωnτ , (5)

Fσ (iωn, k) = −
∫ 1/T

0
dτ 〈T̂τ ĉkσ+(τ )ĉ−kσ−(0)〉eiωnτ . (6)

Here, we denote the fermionic Matsubara frequencies ωn =
(2n + 1)πT with T the temperature and n an integer,
the ordering operator in imaginary time T̂τ , the ther-
mal average 〈. . . 〉 = Tr(e−βĤ . . . )/Tr(e−βĤ ) with ĉkσλ(τ ) =
eτ Ĥ ĉkσλe−τ Ĥ . In Appendix A we derive the equations of
motion of the normal and anomalous Green’s function.

The self-energy �σ (iωn, k) of a quadratic band touching
Luttinger semimetal in the normal state was numerically
obtained in Ref. [37]. These expressions are independent
of λ and we can thus omit the index λ for the normal
Green’s function (see Appendix A 1). The Green’s functions
are Gσ (iωn, k) = [G(0)

σ (iωn, k)−1 − �σ (iωn, k)]−1 where the
bare Green’s functions are G(0)

σ (iωn, k) = [−iωn + ξσ (k)]−1.
The time-reversal symmetry allows the decomposition of the
self-energy over two functions χσ and Zσ that are real and
even in ωn:

�σ (iωn, k) = χσ (iωn, k) + iωn[1 − Zσ (iωn, k)]. (7)

Also, because of rotational symmetry, the dependence of
the self-energy on wave vectors is only through k = |k|. In
Figs. 1(b) and 1(c) we illustrate the typical behavior of χ±
and Z±. This behavior of the self-energy is qualitatively the
same for all values of rs. The value of Z−1

σ (iωn, k) is the
quasiparticle weight and is peaked at the Fermi surface, at
(σ, iωn, k) = (−, πT, kF ). It decreases to unity away from the
Fermi surface, as seen in Fig. 1(c).

The two anomalous Green’s functions F±(iωn, k) describe
two singlet Cooper pairs, one for each subband. The critical
temperature of a superconductor is often determined with the
linearized Eliashberg equation in terms of the gap functions
[13,14,30,33]

φ±(iωn, k) ≡ G−1
± (iωn, k)G−1

± (−iωn, k)F±(iωn, k), (8)

that in the present situation can be decomposed over spherical
harmonics φσ (iωn, k) = ∑

�m φ�σ (iωn, k)Y�m(θ, φ) as in Refs.
[13,30]. In this work, we instead consider this self-consistent
equation in terms of the barred gap function φ̄�±,

φ̄�±(iωn, k) ≡ kF�±(iωn, k), (9)

such that the linearized Eliashberg equation becomes a sym-
metric eigenvalue equation of the form ρφ̄� = S̄�φ̄� (see Ap-
pendix A):

ρφ̄�σ1

(
iωn1 , k1

)
= −

∑
ωn2 σ2

∫
dk2

{
I�σ1σ2

(
iωn1 , k1; iωn2 , k2

)

+ δ(k1−k2)δn1n2δσ1σ2 T −1Kσ2

(
iωn2 , k2

)}
φ̄�σ2

(
iωn2 ,k2

)
,

(10)

where the largest eigenvalue ρmax(T ) vanishes at the critical
temperature Tc, i.e., ρmax(Tc) = 0.

In this work we only study the s-wave (� = 0) pairing
channel, even in Matsubara frequencies. The electron pairing
interaction in Eq. (10) then becomes

I0σ1σ2 =
∫ k1+k2

|k1−k2|
dq

qV0(q)N0

ε
(
i
(
ωn1 − ωn2

)
, q

)

× 1

4

{
2 + σ1σ2

[
3

(
k2

1 + k2
2 − q2

2k1k2

)2

− 1

]}
, (11)

where N0 = 1/(4π2) is the dimensionless density of states per
band at the Fermi surface. The term in curly braces arises from
the eigenspinor overlap in Eq. (2). In Eq. (10), the pairing
potential competes with the kinetic contribution

Kσ = (ωnZσ (iωn, k))2 + [ξσ (k) + χσ (iωn, k)]2. (12)

This expression contains the renormalized single-particle
Green’s function, which we illustrate in Figs. 1(b) and 1(c).
This depairing contribution is diagonal in Eq. (10), it is also
positive, and has a minimum at the Fermi surface.

The linear Eliashberg equation in Eq. (10) is symmetric
for the canonical scalar product on σ = ±, iωn, and k, which
is useful to reduce the number of numerical operations to
solve it. It also allows the use of variational properties of
symmetric equations. For example, for any test function φt ,
one has ρmax(T ) > ρt (T ) = φt · Ŝφt/(φt · φt ). The numerical
determination of the critical temperature T t

c is thus bounded
from above by its exact value Tc > T t

c . A similar bound is dis-
cussed in the context of phonon-mediated superconductivity
in Ref. [40]. Another use of Eq. (10) is in the determination
of the sensitivity of the critical temperature to changes in the
dielectric permittivity ε(i�n, q), that is the functional deriva-
tive δTc/δε(i�n, q), through the Hellmann-Feynman theorem.
A similar calculation is performed in Ref. [39] to obtain the
sensitivity of the critical temperature to the density of states
of phonons. We discuss this last point in Sec. III.

C. Numerical solution

We solve the symmetric linear Eliashberg equation (10)
numerically by decomposing φ̄ on its components �±,sd on
a grid {νs}s∈[1,N1] of imaginary frequencies and {kd}d∈[1,N2] of
wave vectors

φ̄±(iωn, k) =
∑

s∈[1, N1]
d∈[1, N2]

�±,sd �(1)
s (ωn)�(2)

d (k). (13)

In this decomposition, we use the normalized rectangular
functions �

(1)
s<N1

(ωn) and �
(2)
d<N2

(k) that are, respectively,
constant in the intervals ωn ∈ [νs, νs+1] and k ∈ [kd , kd+1],
and zero otherwise. The asymptotic behavior of the linear
Eliashberg equation enforces that for ωn 
 1, φ̄�(iωn, k) ∼
1/ω2

n and that for k 
 1, φ̄�(iωn, k) ∼ 1/k5 [45]. We thus
complete the grid for ωn � ωN1 and for k � kN2 with the

normalized asymptotic functions �
(1)
s=N1

(ωn) =
√

6πT ω3
N1

/ω2
n

and �
(2)
d=N2

(k) =
√

9k9
N2

/k5. The grid in frequency and in

wave vectors is refined to converge to a stable solution (see
Appendix A 2 c).
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FIG. 2. Critical temperature Tc in units of K∗ = m/(meε
∗2)K, as

a function of the Fermi temperature and the Wigner-Seitz radius, for
the Luttinger semimetal (plain) and for the single quadratic band
[13] (gray, dashed). As a reference, we show the Bose-Einstein
condensation temperature TB2 for free bosons with effective mass 2m
and density n/2.

With this decomposition, Eq. (10) becomes the matrix
eigenvalue equation

ρ�σ1s1d1 =
∑
σ2=±

N1∑
s2=1

N2∑
d2=1

Sσ1s1d1,σ2s2d2�σ2s2d2 , (14)

where the matrix components are
Sσ1s1d1,σ2s2d2

= −1√
Ns1 (T )Ns2 (T )

∑
σ2

∑
νs1 � ωn1 < νs1+1

νs2 � ωn2 < νs2+1

∫ kd1+1

kd1

dk1

�kd1

×
∫ kd2+1

kd2

dk2

�kd2

(
I0σ1σ2 − δk1k2δn1n2δσ1σ2 T −1Kσ2

)
, (15)

where the function Ns(T ) counts the number of Matsubara
frequencies in the interval [νs, νs+1]. The discrete summations
over Matsubara frequencies, for ωn1 , ωn2 � ωN1 , are obtained
with a linear interpolation of I0 and K over the grid of fre-
quencies {νs}s∈[1,N1]. We convert this summation to an integral
for ωn � ωN1 ,

∑
ωn

≈ 1
2πT

∫ ∞
ωN1

dω. Note that a decomposition
similar to (15) is performed in Ref. [13], but the normalization
factors do not appear explicitly. There, a sum and an integral
are approximated with a Riemann summation that absorbs the
normalization factors without affecting the eigenvalues.

We compute the critical temperature Tc by solving the
equation ρ(T = Tc) = 0 for different values of the Wigner-
Seitz radius. We report our results in Fig. 2 with temper-
atures given in units of K∗ = (m/me)/ε∗2K. We also show
the results for a single quadratic band [13], which we have
reproduced with the aforementioned methodology. In contrast
to a single quadratic band, the superconductivity of a Lut-
tinger semimetal persists in the regime of small Wigner-Seitz
radii. We find a solution down to rs = 0.01 and the critical
temperature drops below this limit. We observe that the crit-
ical temperature scales linearly, with Tc/TF ≈ 4.4(4) × 10−4.
This can be compared to the ratio found for a single quadratic
band at large rs where Tc/TF ≈ 0.02 [13].

FIG. 3. Gap functions φ̄±(iωn, k) (9) on the (a) lower and (b) up-
per band for � = 0 (s wave) and rs = 5, they are normalized such that
φ̄−(iπTc, kF ) = 1/(πTc )2. The peak at k = kF indicates that pairing
mostly occurs at the Fermi surface.

D. Structure of the gap function

In Figs. 3(a) and 3(b) we show the components φ̄± of the
gap function (9). The gap function has a larger weight close
to the Fermi surface, for σ = −, k = kF , and small ωn. At
k = kF the gap function φ̄− changes sign as a consequence
of the repulsive nature of the Coulomb potential and this
change of sign is also present for φ− in Eq. (8). We note
that, at fixed k, the gap function φ̄− does not change sign
as a function of the imaginary frequency in contrast with the
gap function in a single quadratic band [13,33]. Interestingly,
the contribution of the gap function on the upper band φ̄+ is
non-negligible away from (ωn, k) = (0, kF ) and the sign of
φ̄+ is opposite to φ̄− for k > kF . The opposite sign of the gap
function on the two bands reminds observations of opposite
s-wave order parameters on electron and hole bands in FeSe
[46,47]. In Fig. 5 in Appendix A 2 c we plot the ratio of φ̄+
and φ̄− to further show the importance of φ̄+. In absence of the
contribution on the upper band, i.e., when setting φ̄+ = 0, we
do not find a critical temperature above the lowest temperature
T/TF ≈ 10−5, achievable with our numerical accuracy (see
Appendix A 2 c). This indicates the importance of interband
coupling due to the spin-orbit interaction in the present mech-
anism of superconductivity.
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E. Superconductivity from polar phonon screening

The superconductivity of Luttinger semimetals mediated
by the Coulomb repulsion was first discussed in Ref. [15]
in the context of the superconductivity of YPtBi. There,
corrections to the electronic self-energy are neglected and the
Coulomb repulsion is mediated by the dynamic polarization
of optical phonon modes:

ε(i�, q) = ε∞ + ε0 − ε∞
1 + �2/ω2

T

+ q2
T F

q2
. (16)

This dielectric function accounts for the screening by polar
phonon modes of frequency ωT [48], and the electronic
screening is described by the Thomas-Fermi wave vector
q2

TF = 2ε∞αrs/π [6]. The authors in Ref. [15] compute the
critical temperature with a pseudopotential approach [45,49]
where the characteristic frequency ωc equals the phonon
frequency ωT . In this kind of approximation, emphasis is
put on the retardation of the pairing potential, that is, on
its frequency dependence below and above a characteristic
frequency ωc. Using their approximate expression for Tc and
sensible values for YPtBi [50] we evaluate Tc < 0.01 K for
s-wave pairing in YPtBi, which corresponds to Tc/TF < 4 ×
10−6. This is consistent with our full numerical solution of the
Eliashberg equation with the dielectric function (16), with and
without the self-energy corrections. Indeed, we do not find
any solution above the lowest temperature achievable with
our numerical accuracy, which corresponds to T/TF ≈ 10−5

(see Appendix A 2 c).
The previous calculations show that the superconductivity

from the Coulomb repulsion in Luttinger semimetals strongly
relies on the interband coupling and on the screening mecha-
nism. At large rs, the critical temperature is much smaller than
for a single quadratic band but extends to small values of the
Wigner-Seitz radius, down to rs ≈ 0.01, due to the interband
coupling. Even so, we compute a critical temperature about
two orders of magnitude larger than with optical phonon
modes [15]. In the following, we make use of the symmetry
in Eq. (10) and explore how each component (i�n, q) of
εRPA(i�n, q) in Eq. (4) affects the critical temperature.

III. SENSITIVITY OF THE CRITICAL TEMPERATURE
TO SCREENING

The observed differences between the critical tempera-
ture of a single quadratic band and of the quadratic band
touching Luttinger semimetal come from the wave-function
overlap and the effect of interband coupling on the screening

function εRPA(i�, q) (4). They both reduce the pairing poten-
tial, leading to a smaller critical temperature compared to a
single quadratic band in the regime of large rs. However, the
larger screening of the Coulomb potential also reduces the
importance of the self-energy and allows for the observation
of superconductivity at smaller values of the Wigner-Seitz
radius. In order to further discuss the underlying mechanisms
of superconductivity, one can explore the sensitivity of the
critical temperature to changes in the dielectric permittivity.

As illustrated in the previous section, the critical tem-
perature of a superconductor relies on an integral equation
(10) over all the components of the dielectric permittivity
ε(i�n, q). If one changes ε(i�n, q) by δε(i�n, q), then the
change in the critical temperature �Tc is

�Tc = 2πT
∑
�n

∫
dq

δTc

δε(i�n, q)
δε(i�n, q). (17)

The functional derivative δTc/δε(i�n, q) measures the sensi-
tivity of the critical temperature to screening, and it is large
for components (i�n, q) responsible for the superconducting
condensation. A similar quantity is defined in the context of
the electron-phonon mechanism of superconductivity [39] to
discuss the optimal phonon spectrum for the largest critical
temperature [40,51]. Note that in Eq. (17) we consider the sen-
sitivity of the critical temperature to the dielectric permittivity
for imaginary frequencies. As such, its physical interpretation
is not straightforward but it is related to the behavior at
real frequencies by the continuation i� → ω + i0+ and thus
shows similar characteristic behavior. We account for this
aspect in our discussion.

Since ρ(Tc) = 0, the functional derivative δTc/δε(i�n, q)
satisfies the relation

δTc

δε(i�n, q)
= − δρ

δε(i�n, q)

∣∣∣∣
T =Tc

/
∂ρ

∂T

∣∣∣∣
T =Tc

, (18)

which simplifies its numerical evaluation. Here, ρ is the
maximal eigenvalue of the Eliashberg equation (14) from
which ∂ρ/∂T |T =Tc can be numerically approximated. Also,
because Eq. (10) is symmetric, we use the Hellmann-Feynman
theorem to write

δρ

δε(i�n, q)
= φ̄ · (δS/δε(i�n, q))φ̄

φ̄ · φ̄
, (19)

where φ̄ is the eigenvector corresponding to ρmax(T = Tc) = 0.
For a normalized eigenvector the expression is

δρ

δε(i�p, q)

∣∣∣∣
Tc

= V0(q)N0

ε2(i�p, q)

∑
ωn1 ωn2 >0

σ1σ2

∫ ∞

0
dk1dk2φ̄σ1

(
iωn1 , k1

)
φ̄σ2

(
iωn2 , k2

)

×
{

1

4

(
2 + σ1σ2

[
3

(
k2

1 + k2
2 − q2

2k1k2

)2

− 1

])
q�(k1 + k2 − q)�(q − |k1 − k2|)δp,n1−n2

− δ(k1 − k2)δσ1n1,σ2n2 2q2
(
ωn2 Zσ2

(
iωn2 , k2

)
Ḡ(2)

σ2

(
i
(
ωn2 − �p

)
, k2, q

)

− [
ξσ2 (k2) + χσ2

(
iωn2 , k2

)]
Ḡ(1)

σ2

(
i
(
ωn2 − �p

)
, k2, q

))} + (i�p → −i�p), (20)
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FIG. 4. Functional derivative δTc/δε(i�n, q) of the critical temperature over the dielectric permittivity at rs = 20 in percentage of Tc/ε
∗

(a) for a single quadratic band and (b) for the quadratic band touching Luttinger model. The black line is the dispersion relation of plasmons
and the white dashed lines are the branches of the particle-hole excitation diagram. These lines are a guide to the eye since they are computed
for real frequencies. These figures indicate that the critical temperature is mostly sensitive to the long-range screening from plasma oscillations,
and from the static scattering at 2kF .

where Ḡ(1)
± and Ḡ(2)

± are coupling factors computed in Ap-
pendix C and �(x) is the Heaviside step function. The last
term in Eq. (20) appears because we consider a gap func-
tion even in frequency (� = 0) and because ε(−i�p, q) =
ε(i�p, q) [52]. This functional derivative includes the effect of
the dielectric permittivity on both the pairing potential and the
single-particle self-energy of a Luttinger semimetal. A similar
expression is obtained for a single quadratic band by removing
the wave-function overlap. We compute the derivative (20)
numerically with a procedure similar to that presented in
Sec. II C.

In Fig. 4 we show the functional derivative δTc/δε(i�n, q)
in percentage of Tc/ε

∗ for (a) the single quadratic band and
for (b) the quadratic band touching Luttinger model. The
screening mechanisms that act positively (negatively) on the
critical temperature are in red (blue). For example, the change
of sign of δTc/δε(i�n, q) from positive below q = 2kF to
negative above it indicates that increasing the discontinuity in
the static dielectric function at 2kF increases the critical tem-
perature. This is a signature of the Kohn-Luttinger mechanism
of superconductivity [30] which relies on the discontinuity of
screening at 2kF . This mechanism happens for the two band
structures under study but it becomes negligible for larger
values of rs for a single quadratic band, where the plasmon
mechanism of superconductivity dominates [13]. The signa-
ture of the plasmon mechanism appears in Figs. 4(a) and 4(b)
for small values of q and at finite Matsubara frequencies. For a
single quadratic band, in Fig. 4(a), the sign of δTc/δε(i�n, q)
is consistent with an increase in the critical temperature
from an increase in the plasma frequency ωp in the optical
permittivity ε0(i�n, q = 0) = 1 + ω2

p/�
2
n [6]. On the other

side, in a Luttinger semimetal, in Fig. 4(b), the sign of
δTc/δε(i�n, q) is opposite, with a strong negative contribution
above the plasma frequency. We associate this behavior to
the interband coupling that strongly increases the dielectric
permittivity at the onset of interband transitions, at ω = 2EF ,
and is responsible for a decrease in the plasma frequency of
Luttinger semimetals [37,38]. Thus, an attenuation of inter-
band transitions would increase the plasma frequency, while

it would also increase the critical temperature. This increase
in the plasma frequency can, for example, be obtained for a
lighter upper band when α2 > 0 in Eq. (1) [37,38]. Finally,
we observe in Fig. 4(a) that the critical temperature of a single
quadratic band strongly decreases for an increase in the short-
range (large-q) static screening. This effect is suppressed in a
Luttinger semimetal, in Fig. 4(b), because of the weakening
in the static repulsion due to the spin-orbit form factor in the
averaged Coulomb potential in Eq. (11).

The superconductivity mediated by the screened Coulomb
repulsion is thus mostly sensitive to plasmons and to the
discontinuity of the dielectric function at 2kF . The plasmon
mechanism occurs for larger values of rs and because the
plasma frequency of a single quadratic band is larger than a
Luttinger semimetal [37], it also has a larger critical tempera-
ture for larger Wigner-Seitz radii. In Luttinger semimetals, the
spin-orbit correction (2) plays a non-negligible role because
it is responsible for the interband coupling that competes
with the plasmon mechanism while it also weakens the short-
range repulsion. Our observations for the superconductivity of
Luttinger semimetals could translate to Dirac band structures
because of the strong interband coupling [53] but which is
neglected in Ref. [14].

IV. DISCUSSION

We can analyze the applicability of our description to
the superconductivity of some candidate Luttinger semimet-
als such as the bismuth-based half-Heuslers YPtBi, YPdBi,
LuPtBi, and LuPdBi [16,19,54–56]. The critical temperature
of these materials is in the range Tc = 0.7–1.5 K for a car-
rier density n ≈ 1019 cm−3, a band mass m/me ≈ 0.1–0.3,
and a background permittivity that can be roughly estimated
to ε∗ ≈ 20 [57–60]. This corresponds to rs ≈ 0.5–1 and
Tc/TF ≈ 2–8 × 10−4 which is within the order of magni-
tude of our calculations, where Tc/TF ≈ 4.4(4) × 10−4. Thus,
within the present mechanism of superconductivity, we ex-
pect that the gap function of these materials is a singlet
s-wave order parameter. This stands in contrast with the recent
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proposition that YPtBi is a line-node superconductor from
indirect evidences like the behavior of its magnetic suscepti-
bility with temperature [28,61]. However, this interpretation
of the measurements is arguable due to the small value of
the lower critical field Bc1 [62]. Moreover, YPtBi shows
deviations of its upper critical field Bc2(T ) with tempera-
ture [58,63,64] which are not explained with the assumption
of nodal superconductivity [58]. These discrepancies may
come from the approximation of a contact pairing poten-
tial used to compute Bc2(T ) [63–65] which is questionable
for the Coulomb potential and call for further theoretical
investigation.

There is also evidence that the pyrochlore iridate Pr2Ir2O7

[66,67] is a Luttinger semimetal with a carrier density n ≈
1018 cm−3, a band mass m/me = 6.3, and a background di-
electric constant ε∗ ≈ 10, such that rs ≈ 10–15 and TF ≈
8 meV. This material was studied down to 30 mK [68] without
any report of a superconducting behavior. Our model suggests
that this is due to the very small Fermi temperature of this
material. Using our result Tc/TF ≈ 4.4 × 10−4, we propose
that it would be superconducting below Tc ≈ 40 mK. The
critical temperature can be lower because superconductivity
would presumably compete against magnetic interactions in
Pr2Ir2O7 [68].

These comparisons to experiments should, however, be
treated with caution. First, one can question the validity of the
Luttinger model for small and for large doping. Indeed, for
a smaller carrier density (large rs) the Coulomb interaction
may lead to a non-Fermi-liquid behavior [22–24] and to an
interaction-driven topological insulator [69]. However, this
regime with small carrier density appears difficult to ob-
serve experimentally, even in Luttinger semimetals with small
Fermi temperatures such as the pyrochlore iridate Pr2Ir2O7

[67]. At large doping (small rs), the validity of the k · P
Hamiltonian (1) is questionable because other bands might be
involved. And thus, even if we find Tc/TF ≈ 4.4 × 10−4 down
to rs ≈ 0.01, we expect strong deviations from this relation for
large values of TF .

A second reason for caution is that in this work we
only partially consider the coupling of electrons to phonons
[5,70,71]. The competition of the electron-phonon coupling
and the electron-electron repulsion is a long-standing issue
where the Coulomb potential is usually evaluated as a per-
turbation [72,73]. In YPtBi, superconductivity due to the
electron-phonon coupling [11] and the polar-phonon mech-
anism [15] would happen for a critical temperature Tc <

10−3 K which is much smaller than in the present theory and
in the experiments, where Tc ≈ 0.7–0.9 K [57–60]. This sug-
gests that the electron-phonon coupling only affects the crit-
ical temperature perturbatively in YPtBi and we thus expect
no isotopic effect for this material. However, this observation
cannot be generalized to all Luttinger semimetals and further
work is needed to understand the situation where the electron-
phonon coupling and the Coulomb repulsion compete [74,75].

Another limitation of the present description is that we
neglect local-field corrections to the Coulomb potential, as
described by vertex corrections [76–79]. Here, the amplitude
of such terms cannot be simply related to the ratio of some

characteristic frequency to the Fermi energy, as in Migdal’s
theorem [80]. This was discussed in the context of super-
conductivity from Coulomb repulsion in a single quadratic
band in Refs. [34,81–84], where vertex corrections renormal-
ize the critical temperatures for intermediate values of the
Wigner-Seitz radius [84]. Similar behavior may also happen
for Luttinger semimetals, but an explicit expression of the
vertex corrections is currently missing.

V. CONCLUSION

We have investigated the superconductivity of the three-
dimensional quadratic band touching Luttinger semimetal
from the screened Coulomb repulsion. We have derived a
symmetric form of the gap equation at the critical temperature
and solved it numerically. The critical temperature is linear
with the Fermi temperature Tc/TF ≈ 4.4(4) × 10−4, and ex-
tends to small values of the Wigner-Seitz radius, which is not
the case for a single quadratic band. We used a variational
principle of the gap equation to compute the sensitivity of
the critical temperature to changes in the dielectric function
ε(i�, q). It shows the importance of plasmons and the discon-
tinuity of the dielectric function at 2kF in this mechanism of
superconductivity, for both the single quadratic band and the
quadratic band touching. The critical temperature we find is
in the order of magnitude of some superconducting Luttinger
semimetals, like YPtBi. Finally, we use our results to propose
that the pyrochlore iridate Pr2Ir2O7 may be superconducting
below Tc ≈ 40 mK.

There are multiple extensions to this work, such as describ-
ing the influence of the electron-phonon pairing on the critical
temperature, determining the effect of asymmetric electron
and hole masses [38] or introducing vertex corrections in
the dielectric function. One could also study how the s-wave
gap function competes with the other, anisotropic, supercon-
ducting order parameters proposed for Luttinger semimetals
[15,18,19]. In the context of the mechanism considered in
this work, the structure of the Eliashberg equation for su-
perconducting order parameters beyond s wave was recently
discussed [85]. It was found that spin-orbit coupling could
lead to an enhancement in the � = 1 channel for instance. A
numerical calculation will be needed to identify the preferred
channel. Finally, because the magnetic response of supercon-
ductors is usually computed by assuming a contact pairing
potential [63–65], it is worth considering how accurately it
applies to pairing from the Coulomb repulsion.
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APPENDIX A: ELIASHBERG EQUATION FOR SINGLET
SUPERCONDUCTIVITY

In this Appendix we derive the Eliashberg equation due
to the electron-electron repulsion with account of screening,
self-energy corrections, and for a pseudospin-singlet pairing,
i.e., with opposite Kramer partners within a band. Because
of rotation symmetry, the Eliashberg equation can be de-
composed on the spherical harmonics Y�,m(θ, φ) and in the

main text we only discuss the situation where � = 0 (s-wave
channel).

The eigenstates |σ, λ, k〉 of the Hamiltonian Ĥ0 (1) define
the fermionic operators ĉkσλ = ∑

s〈σ, λ, k|ψks〉ψ̂ks, where
σ = ± indicates the upper or lower subband, λ = ± the
Kramer partners within a subband, and s = { 3

2 , 1
2 ,− 1

2 ,− 3
2 }

indicates the eigenvalues of Ĵz for the j = 3
2 fermions. In this

basis, the normal-ordered Hamiltonian is

Ĥ =
∑
k,σλ

ξσ (k)ĉ†
k,σλ

ĉk,σλ + 1

2V
∑
q �=0

∑
k1σ1τ1
σ3λ3

∑
k2σ2τ2
σ4λ4

V0(q)〈σ3λ3k1 + q|σ1λ1k1〉〈σ4λ4k2 − q|σ2λ2k2〉ĉ†
k1+qσ3λ3

ĉ†
k2−qσ4λ4

ĉk2σ2λ2 ĉk1σ1λ1 .

(A1)

We consider the equations of motion of the Green’s functions Gσλ(τ, p) = 〈T̂τ ĉpσλ(τ )ĉ†
pσλ(0)〉, Fσ (τ, p) = 〈T̂τ ĉpσ+(τ )ĉ−pσ−(0)〉,

and F ∗
σ (τ, p) = 〈T̂τ ĉ†

−pσ−(τ )ĉ†
pσ+(0)〉 for singlet superconductivity

(
∂

∂τ
+ ξσ (p)

)
Gσλ(τ, p)

= δ(τ ) −
∑
q �=0

V0(q)
∑

kσ1σ2σ
′

λ1λ2λ
′

〈σλp|σ ′λ′p + q〉〈σ1λ1k|σ2λ2k − q
〉〈T̂τ ĉ†

kσ1λ1
(τ )ĉk−qσ2λ2 (τ )ĉp+qσ ′λ′ (τ )ĉ†

pσλ(0)
〉
, (A2)

(
∂

∂τ
+ ξσ (p)

)
Fσ (τ, p)

= −
∑
q �=0

V0(q)
∑

kσ1σ2σ
′

λ1λ2λ
′

〈σ+, p|σ ′λ′p + q〉〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(τ )ĉk−qσ2λ2 (τ )ĉp+qσ ′λ′ (τ )ĉ−pσ−(0)
〉
. (A3)

The retardation effects are included by deriving the time evolution of 〈T̂τ ĉ†
kσ1λ1

(τ )ĉk−qσ2λ2 (τ )Ô〉 in the random phase
approximation (RPA). This is similar to the retardation effects from the electron-phonon coupling [70]. The detailed calculation
can be found in Appendix B and leads to

V0(q)
∑
kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(τ )ĉk−qσ2λ2 (τ )Ô
〉

=
∫

dτ ′V (τ − τ ′, q)
∑
kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(τ ′)ĉk−qσ2λ2 (τ ′)Ô
〉
, (A4)

where V (τ, q) is the screened Coulomb potential. After including this retardation effect in the four-operators Green’s functions,
we decompose them over the normal and anomalous Green’s functions with Wick’s decomposition. For example,

∑
kσ1σ2σ

′
λ1λ2λ

′

〈σλp|σ ′λ′p + q〉〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(τ ′)ĉk−qσ2λ2 (τ ′)ĉp+qσ ′λ′ (τ )ĉ†
pσλ(0)

〉

=
(∑

σ ′λ′
|〈σλp|σ ′λ′p + q〉|2〈T̂τ ĉp+qσ ′λ′ (τ )ĉ†

p+qσ ′λ′ (τ ′)〉
)

〈T̂τ ĉpσλ(τ ′)ĉ†
pσλ(0)〉 (A5)

−
∑
σ ′λ′

〈σλp|σ ′λ′p + q〉〈σ λ̄,−p|σ ′λ̄′−p − q〉〈T̂τ ĉ−p−qσ ′λ̄′ (τ ′)ĉp+qσ ′λ′ (τ )〉〈T̂τ ĉ†
pσλ(0)ĉ†

−pσ λ̄
(τ ′)〉, (A6)
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where λ̄ = −λ. The index λ = ± describes Kramer partners so, because the system is time-reversal symmetric, one has
〈σλp|σ ′λ′p + q〉〈σ λ̄,−p|σ ′λ̄′−p − q〉 = |〈σλp|σ ′λ′p + q〉|2 and∑
kσ1σ2σ

′
λ1λ2λ

′

〈σλp|σ ′λ′p + q〉〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(τ ′)ĉk−qσ2λ2 (τ ′)ĉp+qσ ′λ′ (τ )ĉ†
pσλ(0)

〉

=
(∑

σ ′λ′
|〈σλp|σ ′λ′p + q〉|2Gσ ′λ′ (τ − τ ′, p + q)

)
Gσλ(τ ′, p)−

∑
σ ′λ′

|〈σλp|σ ′λ′p + q〉|2Fσ ′ (λ′(τ − τ ′), λ′(p + q))F ∗
σ (λτ ′, λp).

(A7)

The equations being time-reversal and inversion symmetric, one can consider different anomalous Green’s functions with even
or odd parity in either time and wave vector

Fσ (τ, p) = (−1)πT Fσ (−τ, p) = (−1)πT +πI Fσ (−τ,−p), (A8)

with πT , πI ∈ {0, 1}. Then, the anomalous Green’s functions in the last line of Eq. (A7) are

Fσ ′ (λ′(τ − τ ′), λ′(p + q)) = λ′πT +πI Fσ ′ (τ − τ ′, p + q) (A9)

and the summation identically vanishes if πT + πI is odd. A nonzero gap function must be either even or odd for both time and
space, and in the following we only consider the situation of an even gap function (i.e., πT = πI = 0).

We replace these Wick decompositions in the original equation which we also Fourier transform over Matsubara frequencies
ωn = (2n + 1)πT :

Gσλ(τ1 − τ2, p) = T
∑
ωn

Gσλ(iωn, p)e−iωn (τ1−τ2 ), (A10)

Fσ (τ1 − τ2, p) = T
∑
ωn

Fσ (iωn, p)e−iωn (τ1−τ2 ). (A11)

This leads to the following set of equations:

(−iωn + ξσ (p))Gσλ(iωn, p) = 1 − �σλ(iωn, p)Gσλ(iωn, p) − �σ (iωn, p)F ∗
σ (iωn, p), (A12)

(−iωn + ξσ (p))Fσ (iωn, p) = −�σ+(iωn, p)Fσ (iωn, p) + �σ (iωn, p)Gσ−(−iωn,−p), (A13)

(−iωn − ξσ (−p))F ∗
σ (iωn, p) = �σ−(−iωn,−p)F ∗

σ (iωn, p) − �̄σ (iωn, p)Gσ+(iωn, p), (A14)

where we have introduced the normal and anomalous self-energies

�σλ(iωn, p) = −T
∑

q �=0ωmσ ′λ′
V (i(ωn − ωm), q)|〈σλp|σ ′λ′p + q〉|2Gσ ′λ′ (iωm, p + q),

�σ (iωn, p) = −T
∑

q �=0ωmσ ′λ′
V (i(ωn − ωm), q)|〈σλp|σ ′λ′p + q〉|2Fσ ′ (iωm, p + q),

�̄σ (iωn, p) = −T
∑

q �=0ωmσ ′λ′
V (i(ωn − ωm), q)|〈σλp|σ ′λ′p + q〉|2F ∗

σ ′ (iωm, p + q), (A15)

with V (i�n, q) = V0(q)/ε(i�n, q) the screened Coulomb potential.
In the following, we write the expression for the normal and anomalous self-energy that we consider throughout our work.

There, we study the phase transition from the normal to the superconducting phase, that is the temperature T = Tc beyond which
the anomalous Green’s function Fσ vanishes (Fσ = 0).

1. Self-energy in the normal phase

In the normal state (Fσ = 0) the normal Green’s functions are

G(N )
σλ (iωn, p) = [−iωn + ξσ (p) + �σλ(iωn, p)]−1, (A16)

where the self-energies in the normal phase are

�
(N )
σλ (iωn, p) = −β−1

∑
�mσ ′λ′q

V0(q)

ε(i�m, q)
|〈σλp|σ ′λ′p + q〉|2G(N )

σ ′λ′ (i(ωn − �m), p + q) (A17)

≈ −(2β )−1
∑

�mσ ′q

V0(q)

ε(i�m, q)
Tr(P̂σ (p)P̂σ ′ (p + q))G(N0)

σ ′ (i(ωn − �m), p + q), (A18)
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with the bosonic Matsubara frequencies �m = 2mπT with T the temperature and m an integer. In the last line we have
approximated G(N )

σλ (iωn, p) ≈ G(N0)
σ (iωn, p) = ( − iωn + ξσ (p))−1 which is independent of the index λ. We have discussed

this expression of the self-energy for real frequencies in Ref. [37] and with the same approach we compute its behavior for
imaginary frequencies in Figs. 1(b) and 1(c). There, we decompose the self-energy over two real-valued functions Zσ (iωn, p)
and χσ (iωn, p):

�σ (iωn, p) = χσ (iωn, p) + iωn(1 − Zσ (iωn, p)). (A19)

2. Anomalous self-energy

The anomalous Green’s functions satisfy

Fσ (iωn, p) = [−iωn + ξσ (p) + �σ+(iωn, p)]−1Gσ−(−iωn,−p)�σ (iωn, p), (A20)

where the anomalous self-energy is

�σ (iωn, p) = −T
∑

σ ′λ′ωm,q �=0

V (i(ωn − ωm), q)|〈σλp|σ ′λ′p + q〉|2Fσ ′ (iωm, p + q). (A21)

Close to the critical temperature, one can neglect the amplitude of the anomalous Green’s functions Fσ ≈ 0. The normal
Green’s functions can also be approximated with their normal-state behavior that we have discussed in Ref. [37]: Gσλ(iωn, p) ≈
G(N )

σ (iωn, p). This leads to the linearized Eliashberg equations that we discuss in the next subsections and that we transform to
have it symmetric.

a. Linear Eliashberg equations

Near the phase transition T = Tc, we expand Eq. (A20) to the lowest order in Fσ :

Fσ1

(
iωn1 , k1

) = −Gσ1

(
iωn1 , k1

)
Gσ1

(−iωn1 ,−k1
)
T

∑
ωn2

∑
σ2k2

Iσ1σ2

(
iωn1 , k1; iωn2 , k2

)
Fσ2

(
iωn2 , k2

)
, (A22)

where the coupling between electrons in a pair is described by

Iσ1σ2

(
iωn1 , k1; iωn2 , k2

) = V0(|k1 − k2|)
ε
(
i
(
ωn1 − ωn2

)
, k1 − k2

)
1

2
Tr

(
P̂σ1 (k1)P̂σ2 (k2)

)
. (A23)

This equation is similar to that developed in previous studies on the superconductivity mediated by plasmons [13] up to the
spin-orbit form factor 1

2 Tr(P̂σ1 (k1)P̂σ2 (k2)).
We introduce the gap functions φσ (iωn, k) = G−1

σ (iωn, k)G−1
σ (−iωn,−k)Fσ (iωn, k) for which the linearized Eliashberg

equation writes

φσ1

(
iωn1 , k1

) = −T
∑
ωn2

∑
σ2k2

Iσ1σ2

(
iωn1 , k1; iωn2 , k2

)
(
ωn2 Zσ2

(
iωn2 , k2

))2 + [
ξσ2 (k2) + χσ2

(
iωn2 , k2

)]2 φσ2

(
iωn2 , k2

)
. (A24)

Due to the rotational symmetry of the noninteracting Hamiltonian and of the Coulomb interaction, the electron-electron coupling
Iσ1σ2 (iωn1 , k1, iωn2 , k2) depends on k1 and k2 through their norms k1 = |k1|, k2 = |k2| and their relative angle θk1,k2 . This allows
to decompose the gap functions over the spherical harmonics Y�m(θ, φ):

φσ (iωn, k) =
∑
�m

φ�mσ (iωn, k)Y�m(θ, φ), (A25)

where θ is the angle between k and the z axis and φ is the angle between the projection of k in the xy plane and the x axis. The
Eliashberg equation is degenerate on the index m and the equations for the components φ� are

φ�σ1

(
iωn1 , k1

) = −T
∑
σ2ωn2

∫ ∞

0
dk2

k2

k1

I�σ1σ2

(
iωn1 , k1; iωn2 , k2

)
(
ωn2 Zσ2

(
iωn2 , q

))2 + [
ξσ2 (q) + χσ2

(
iωn2 , q

)]2 φ�σ2

(
iωn2 , k2

)
(A26)

with

I�σ1σ2

(
iωn1 , k1; iωn2 , k2

) =
∫ k1+k2

|k1−k2|
dq P�

(
k2

1 + k2
2 − q2

2k1k2

)
1

4

{
2 + σ1σ2

[
3

(
k2

1 + k2
2 − q2

2k1k2

)2

− 1

]}
qV0(q)N0

ε
(
i
(
ωn1 − ωn2

)
, q

) , (A27)

and where N0 = 1/(4π2) is the density of states per band at the Fermi surface. This equation is similar to that derived by Takada
in Ref. [13] and accounts for the spin-orbit corrections of a Luttinger semimetal, as in Ref. [15]. In practice, we consider a gap
function even in frequency, following our comment after Eq. (A7), and we can symmetrize the equation to have the summation
over positive Matsubara frequencies. This choice necessitates that the gap functions are even in momentum, which excludes odd
spherical harmonics. We observe that in Ref. [13] the author finds solutions for a singlet gap function, even in frequency and with
� = 1 (p wave) but it seems that the parity considerations in Eq. (A8) were omitted in his derivation of the Eliashberg equation.
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FIG. 5. Proportion of |φ̄+(iωn, k)| in percentage of |φ̄−(iωn, k)| + |φ̄+(iωn, k)| for � = 0 (s wave) and (a) rs = 1, (b) rs = 5, and (c) rs = 15.
The components of φ̄+ that dominate over φ̄− are above the gray plane, at 50%, and this happens away from the Fermi surface where k = kF

and ωn ≈ 0.

The numerical treatment of this equation was discussed in Ref. [13] where the gap function is made discrete over iωn and
k, such that for ωs < ωn < ωs+1 and kd < k < kd+1, φσ�(iωn, k) = �σ�(s, d ). The equation then resembles to an eigenvalue
equation

λ(T )�� = M̂� · ��, (A28)

for which we determine Tc by searching for the temperature where λ(T ) = 1.

b. Symmetrized linear Eliashberg equations

In the main text we used a different formulation of Eq. (A26). We have performed the transformation

φ̄�σ (iωn, k) = k

(ωnZσ (iωn, k))2 + [ξσ (k) + χσ (iωn, k)]2
φ�σ (iωn, k) (A29)

so that we instead have the following eigenvalue equation, with ρ(T = Tc) = 0:

ρφ̄�σ1

(
iωn1 , k1

) = −
∑
ωn2

∫ ∞

0
dk2

{
I�σ1σ2

(
iωn1 , k1; iωn2 , k2

)

+ δn1n2δk1k2δσ1σ2 T −1
((

ωn2 Zσ2

(
k2, iωn2

))2 + [
ξσ2 (k2) + χσ2

(
k2, iωn2

)]2)}
φ̄�σ2

(
iωn2 , k2

)
. (A30)

The asymptotic behavior shows that the parameter ρ satisfies ρ(T ) ∼ −1/T as T → 0 and ρ(T ) ∼ −T as T → ∞. Thus, the
largest possible eigenvalue ρ(T ) at a fixed temperature vanishes at the highest critical temperature [39,40]

ρmax(T = Tc) = 0. (A31)

Equation (A30) is symmetric when permuting the indices (σ1, iωn1 , k1) ↔ (σ2, iωn2 , k2). Thus, for any trial gap function φ̄t , one
has the following variational principle:

ρmax � φ̄t · Ŝφ̄t/(φ̄t · φ̄t ) = ρ t, (A32)

where ρφ̄� = Ŝφ̄� represents Eq. (A30). The scalar product refers to the canonical scalar product on indices (σ, iωn, k). This
inequality implies that any critical temperature T t

c one computes numerically with Eq. (A30) is bounded from above by the
analytic solution Tc > T t

c . This formulation is helpful when computing the variational derivative of the critical temperature over
ε(i�n, q) due to the Hellmann-Feynman theorem (see Sec. III).

c. Grid and asymptotic behaviour

The numerical solution of the symmetrized linear Eliashberg equation is obtained by decomposing the gap function over a
grid in frequencies and wave vectors (see Sec. II C). We have refined the grid points in order to obtain a stable solution for the
critical temperature. The eigenvalues ρ(T ) are computed using a C implementation of the LAPACK library (Intel MKL). It is
worth mentioning that we are limited by the precision of the numerical variables, which are double precision, and we observe
numerical errors for temperatures below T/TF ≈ 10−5.

The two components φ̄± of the gap functions are accounted for. We observe that φ̄+ is non-negligible away from k ≈ kF and
small ωn as depicted in Fig. 5. This is because both the s-wave pairing potential (11) and the kinetic energy (12) are almost
independent on the band index σ for k far away from kF and large frequency. In the case of non-s-wave pairing channels, which
we do not consider in this work, the contributions of the two bands may be asymmetric due to their respective helicity [15].
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FIG. 6. Asymptotic behavior of the gap function for (a) large frequencies for different k/kF and for (b) large wave vectors for different
ωn/EF , for � = 0 and rs = 5. The black line is a guide to the eye for the expected asymptotic behavior.

The critical temperature is small compared to the characteristic energy scale of the dielectric function (Tc/TF ≈ 4.4 × 10−4)
and we have to use a grid in frequency that can account for both scales. The numerical results reported in this work are obtained
with a grid of 80 logarithmically spaced frequencies on the range [10−6, 10]. We start with such a small frequency to be able
to compute ρ(T ) for smaller temperatures and compute its derivative ∂ρ/∂T in Eq. (18). To this we add 20 linearly spaced
frequencies up to 103 in order to reach the expected asymptotic behavior (see below). We do not have to introduce negative
frequencies because we consider gap functions even in frequency.

The diagonal elements in the gap equation (10) are dominated by the matrix elements of Kσ defined in Eq. (12). The smallest
value of Kσ is obtained for σ = −, the n = 0 Matsubara frequency, and k = kF , where its value is K−(n = 0, k = kF ) = Z2

F π2T .
Here, because we average the equation on extended intervals [kd , kd + 1], on the grid of wave vectors {kd}d∈[1,N2], this minimal
value is only obtained for a very dense grid near k = kF . Indeed, the average of K− (12) on the interval centered around k = kF ,
[1 − �k/2, 1 + �k/2] is

1

�k

∫ 1+�k/2

1−�k/2
dk K−(n = 0, k) = [π2T 2 + (1/3 + �k2/80)�k2]/T, (A33)

where we neglect self-energy corrections to make the expression simple. We thus properly describe the excitations at the Fermi
surface for Tc/TF ∼ 10−4 if �k/kF � 10−4 near k = kF . The necessity for such a narrow grid near the Fermi surface is also
present in other related works [13,14,33] and is seen as a dip in the resulting gap function (see Fig. 3). We used a dense grid with
60 points in the interval k/kF ∈ [0.99, 1.01] with the smallest interval of �k/kF = 10−6, which constitutes the smallest spacing
we can reach here with double numerical precision. This tight spacing close to the Fermi surface limits the exploration of the
critical temperature down to T/TF ≈ 10−5. To this we add 12 points in the interval [0,0.98] and 14 points in the interval [1.02,5].
This gives a smooth behavior away from k ≈ kF and allows to describe the asymptotic behavior.

The asymptotic behavior of φ̄�σ (iωn, k) is independent on � and can be determined from that of φ�σ (iωn, k) in Ref. [45]:

φ̄�σ (iωn, k) ∼
{

1/ω2
n for ωn 
 EF ,

1/k5 for k 
 kF .
(A34)

We use this asymptotic behavior to describe the large frequency and large wave-vector behavior beyond a frequency ωN1 and a
wave vector kN2 (see Sec. II C). We check that the gap function indeed converges to these asymptotic behaviors by plotting it on a
logarithmic scale (see Fig. 6). We typically use ωN2/EF = 103 and kN1/kF = 5 to converge to the expected asymptotic behavior.

APPENDIX B: RANDOM PHASE APPROXIMATION

The effect of retardation is discussed as for the electron-phonon coupling [70]. We have the equation of motion, for arbitrary
Ô, [

∂

∂τ
− [

ξσ1 (k) − ξσ2 (k − q)
]]〈

T̂τ ĉ†
kσ1λ1

(τ )ĉk−qσ2λ2 (τ )Ô
〉

= + 1

V
∑

pq′ �=0

∑
σ3σ4σ5
λ3λ4λ5

V0(q)
〈
T̂τ

(〈σ3λ3k − q|σ1λ1k〉ĉ†
k−q′σ3λ3

ĉk−qσ2λ2 − 〈σ2λ2k − q|σ3λ3k − q + q′〉ĉ†
kσ1λ1

ĉk−q+q′σ3λ3

)

× 〈σ4λ4p + q′|σ5λ5p〉ĉ†
p+q′σ4λ4

ĉpσ5λ5 Ô
〉
, (B1)
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which we simplify in the random phase approximation (RPA) by discarding contributions with q �= q′ and applying a Wick
decomposition on the right-hand side. Then,[

∂

∂τ
− [

ξσ1 (k) − ξσ2 (k − q)
]]〈

T̂τ ĉ†
kσ1λ1

(τ )ĉk−qσ2λ2 (τ )Ô
〉

= 1

VV0(q)〈σ2λ2k − q|σ1λ1k〉( fD
(
ξσ2 (k − q)

) − fD
(
ξσ1 (k)

)) ∑
pσ3σ4
λ3λ4

〈σ3λ3p|σ4λ4p − q〉〈T̂τ ĉ†
pσ3λ3

(τ )ĉp−qσ4λ4 (τ )Ô
〉
, (B2)

where fD(ξ ) is the Fermi-Dirac distribution. We perform the decomposition in a contribution independent on the potential and its
correction, up to the contribution in Ô, 〈T̂τ ĉ†

kσ1λ1
(τ )ĉk−qσ2λ2 (τ )Ô〉 = 〈T̂τ ĉ†

kσ1λ1
(τ )ĉk−qσ2λ2 (τ )Ô〉

0
+ 〈T̂τ ĉ†

kσ1λ1
(τ )ĉk−qσ2λ2 (τ )Ô〉

1
.

Then, after a Fourier transformation of the equation, multiplying it by a factor 〈σ1λ1k|σ2λ2k − q〉 and summing over
σ1, λ1, σ2, λ2, and k one finds∑

kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(iωn)ĉk−qσ2λ2 (iωn)Ô
〉
1

= V0(q)�(iωn, q)
∑
kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(iωn)ĉk−qσ2λ2 (iωn)Ô
〉
, (B3)

with �(iωn, q) = 1
V

∑
pσ1σ2
λ1λ2

|〈σ1λ1p|σ2λ2p − q〉|2(
fD (ξσ2 (p−q))− fD (ξσ1 (p))
−iωn+ξσ2 (p−q)−ξσ1 (p) ) is the RPA polarizability. The resulting expression is

then ∑
kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(iωn)ĉk−qσ2λ2 (iωn)Ô
〉

= 1

1 − V0(q)�(iωn, q)

∑
kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(iωn)ĉk−qσ2λ2 (iωn)Ô
〉
0 (B4)

and the inverse Fourier transform gives

V0(q)
∑
kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(τ )ĉk−qσ2λ2 (τ )Ô
〉

=
∫

dτ ′V (τ − τ ′, q)
∑
kσ1σ2
λ1λ1

〈σ1λ1k|σ2λ2k − q〉〈T̂τ ĉ†
kσ1λ1

(τ ′)ĉk−qσ2λ2 (τ ′)Ô
〉
0, (B5)

where V (τ, q) = ∑
ωn

eiωnτV0(q)/[1 − V0(q)�(iωn, q)] is the retarded Coulomb potential.

APPENDIX C: GREEN FUNCTION INTEGRATED OVER ANGLES

The calculation of the self-energy in Eq. (A17) involves the following integral:

�
(N )
σλ (iωn, p) = −(2β )−1

∑
�mσ ′

1

(2π )3

∫
dq q2 V0(q)

ε(i�m, q)

∫
dθ dφ sin(θ )Tr(P̂σ (p)P̂σ ′ (p − q))G(N0)

σ ′ (i(ωn − �m), p − q)(C1)

= β−1
∑
�m

∫
dq q2 V0(q)N0

ε(i�m, q)
Ḡσ (i(ωn − �m), p, q), (C2)

where we have introduced the averaged coupling function over angles

Ḡσ (i(ωn − �m), p, q) =
∑
σ ′

∫ 1

−1
du

1

4

{
2 + σσ ′

[
3(p + qu)2

p2 + q2 + 2pqu
− 1

]}
1

i(ωn − �m) − [σ ′(p2 + q2 + 2pqu) − sgn(EF )]
.

(C3)

We decompose this function over the real and imaginary parts Ḡ(1) and Ḡ(2):

Ḡσ (i(ωn − �m), p, q) = Ḡ(1)
σ (i(ωn − �m), p, q) + iḠ(2)

σ (i(ωn − �m), p, q), (C4)
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where

Ḡ(1)
σ (i(ωn − �m), p, q) = 1

2

∑
σ ′

{
− 3σ

4p2
+ 1

16pq

1

σ ′ p2

3σ sgn(EF )(p2 − q2)2

1 + (�m − ωn)2
log

(
(p + q)2

(p − q)2

)

+ 1

16pq

1

σ ′ p2
3σ (�m − ωn)

(
1 − (p2 − q2)2

1 + (�m − ωn)2

)(
arctan

[
sgn(EF ) − σ ′(p + q)2

ωn − �m

]

− arctan

[
sgn(EF ) − σ ′(p − q)2

ωn − �m

])
+ 1

32pq

1

σ ′ p2

(
8p2 + [3 sgn(EF ) + 2(p2 − 3q2)σ ′]σ

+3(p2 − q2)2sgn(EF )σ

1 + (�m − ωn)2

)
log

(
[sgn(EF ) − σ ′(p − q)2]2 + (�m − ωn)2

[sgn(EF ) − σ ′(p + q)2]2 + (�m − ωn)2

)}
, (C5)

Ḡ(2)
σ (i(ωn − �m), p, q) = 1

2

∑
σ ′

{
1

16pq

1

σ ′ p2

3σ (p2 − q2)2(�m − ωn)

1 + (�m − ωn)2
log

(
(p + q)2

(p − q)2

)

+ 1

16pq

1

σ ′ p2

(
8p2 + [3 sgn(EF ) + 2(p2 − 3q2)σ ′]σ + 3(p2 − q2)2sgn(EF )σ

1 + (�m − ωn)2

)

×
(

arctan

[
sgn(EF ) − σ ′(p + q)2

ωn − �m

]
− arctan

[
sgn(EF ) − σ ′(p − q)2

ωn − �m

])

− 1

32pq

1

σ ′ p2
3σ (�m − ωn)

(
1 − (p2 − q2)2

1 + (�m − ωn)2

)
log

(
[sgn(EF ) − σ ′(p − q)2]2 + (�m − ωn)2

[sgn(EF ) − σ ′(p + q)2]2 + (�m − ωn)2

)}
,

(C6)

where we have kept track of the sign of the Fermi energy sgn(EF ) in the calculation. All results reported in the main text are
obtained for sgn(EF ) = −1.
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