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Effects of a dissipative coupling to the momentum of a particle in a double well potential

D. Maile ,1,2 S. Andergassen ,2 and G. Rastelli 1,3

1Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
2Institut für Theoretische Physik and Center for Quantum Science, Universität Tübingen, Auf der Morgenstelle 14, 72076 Tübingen, Germany

3Zukunftskolleg, Universität Konstanz, D-78457 Konstanz, Germany

(Received 29 November 2019; accepted 3 February 2020; published 28 February 2020;
corrected 16 February 2021)

Double well potentials offer the possibility of coherent state preparation and therefore constitute important
building blocks in the analysis of quantum information and quantum engineering devices. Here we present a
study of the coherent tunneling in a parabolic double well potential in the presence of different dissipative
interactions. Specifically, we investigate the effects of an environmental coupling to the momentum and/or to
the position of a particle in the potential. Using the semiclassical approximation to calculate instanton paths in
Euclidean time, we find that momentum dissipation enhances the coherent tunnel splitting. In the presence of
both types of dissipation, momentum dissipation shifts the critical coupling strength of the dissipative phase
transition induced by the position dissipation.
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I. INTRODUCTION

Preserving and controlling quantum behavior is of the main
interest in today’s research, paving the way to quantum engi-
neered systems like quantum computers and quantum simula-
tors [1]. In experimental setups, the coupling to environmental
degrees of freedom is one of the main sources of decoher-
ence. To theoretically describe these systems accurately, we
therefore have to take unavoidable effects of the environ-
ment into account [2,3]. On the other hand, recent progress
in experimental setups promise the realizability of reservoir
engineered quantum systems, aiming to simulate dissipative
quantum problems or to control quantum information systems
[4–8]. In these perspectives, the seminal theoretical work of
Caldeira and Leggett on open quantum systems is still of
major importance in today’s research. They studied dissipative
effects on quantum tunneling, in particular, the decay out
of metastable potentials affected by dissipation, by using a
phenomenological model, in which the environment consists
of a bath of harmonic oscillators with a given spectral density
[9,10]. Since then the Caldeira-Leggett model had a huge
influence on the theory of open quantum systems with many
applications [2,3].

Double well potentials, potentially describing a qubit, are
important in the context of dissipative effects on quantum
information systems. In the reduction to a two-level system,
the analysis of quantum dissipation was investigated using the
spin-boson model [11,12]. In extensions beyond this reduced
scheme, the particle in the full potential is coupled to a
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Caldeira-Leggett bath of harmonic oscillators via its position
coordinate (conventional dissipation). While early works stud-
ied the second problem in the Ohmic regime analytically using
the instanton technique [13–15], other groups used numerical
Monte Carlo or renormalization group techniques [16–19].
All these approaches yield the important result that dissipation
destroys the coherent superposition states leading to a clas-
sical localized state (dissipative phase transition). Contrarily,
Fujikawa et al. observed an enhancement of quantum tunnel-
ing in the double well by dissipative interactions in the super-
Ohmic regime, because of a virtual mixing of the ground
states with excited states [20]. In the limit of low temperatures,
when the particle is coupled to an Ohmic environment through
a given operator, the quantum fluctuations of the respective
observable are squeezed. This effect leads to an enhancement
of the quantum fluctuations of canonically conjugate observ-
ables, since the Heisenberg uncertainty has to be fulfilled. For
example, coupling the environment to the momentum of the
particle increases the quantum fluctuations of the position.
Such a dissipative mechanism can lead to an enhancement
of quantum effects [21]. When both dissipative couplings
are present (termed dissipative frustration), the quantum fluc-
tuations in a harmonic oscillator become nonmonotonic as
a function of the dissipative coupling [22–24]. Dissipative
momentum and position couplings can be translated to dis-
sipative charge or dissipative phase couplings in electrical
quantum circuits, respectively [25]. In these systems, a variety
of effects, including dissipative quantum phase transitions
have been observed [26–28]. In the frustrated case in the
presence of both phase and charge dissipation, the critical
line in the phase diagram of a superconducting chain shows
a nonmonotonic behavior as a function of the dissipative
coupling [29]. On the other hand, coupling of two bosonic
baths within the spin-boson model to two noncommuting
observables in the Ohmic regime (e.g., σx and σy) results
in a canceling effect of both couplings preserving quantum
tunneling [30,31].
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In this work, we study how momentum (which we denote
as unconventional) dissipation affects the tunnel splitting of
a particle in a parabolic double well potential. We investigate
this system in the limit of zero temperature, where quantum
fluctuations are dominant. Further, we analyze the interplay
with conventional position dissipation and its implications on
the dissipative phase transition. We use the Euclidean path in-
tegral method to calculate the diagonal density matrix element
in presence of both dissipative couplings in the semiclassical
limit. The instanton method [32,33] allows us to evaluate
the tunnel splitting. Employing Anderson’s renormalization
group approach [34], we furthermore determine its effects
on the phase transition. We find that the tunnel splitting is
enhanced by increasing the dissipative momentum coupling.
For the case of both dissipative couplings present, the momen-
tum dissipation renormalizes the critical coupling strength
for the phase transition induced by the position dissipative
interaction. Specifically, we find that larger values of the
coupling strength are necessary in order to yield the particle
localization. This result is consistent with the interpretation
that the momentum dissipation increases the position quantum
fluctuations and, hence, competes with the mechanism of
classical localization of the particle caused by the position
dissipation. The effects we discuss have their origin in the
Heisenberg uncertainty relation between the momentum p̂ and
the position x̂. Our system is therefore fundamentally different
from the spin-boson model.

The paper is organized as follows. In Sec. II, we introduce
the parabolic double well model together with the Ohmic
dissipative couplings to the position and momentum. We dis-
cuss its treatment in the semiclassical approximation within
the instanton technique, which we generalize to the case of
momentum dissipation. In Sec. III, we present our results for
the different dissipative cases together with the basic steps
of the analytic calculations. For more details we refer to
Appendices. We draw our conclusions in Sec. IV.

II. MODEL AND APPROXIMATIONS

In this section, we introduce the parabolic double well, the
dissipative interactions, the semiclassical instanton method
and discuss the mapping of the dissipative tunneling problem
to a one-dimensional gas of interacting charges.

A. The action of the parabolic double well in presence
of conventional and unconventional dissipation

We consider the symmetric parabolic double well potential

V (x) = mω2
0

2
(θ (−x)(x + a0)2 + θ (x)(x − a0)2), (1)

with m the mass of the particle, ±a0 the positions of the
minima and ω0 the characteristic frequency of each parabola
[see Fig. 1(a)]. By construction the barrier height between the
wells is V0 = 1

2 mω2
0a2

0.
We introduce the dissipation via the Caldeira-Leggett har-

monic oscillator baths. The starting Hamiltonian reads

H = Hsys + HB,x̂ + HB,p̂, (2)

FIG. 1. (a) Parabolic double well potential with a barrier height
V0 = 1

2 mω2
0a2

0 and minima in ±a0. (b) Single instanton path.
(c) Bounce path of distance ξ formed by two instantons of opposite
sign.

where the part for the bare system is Hsys = p̂2/2m + V (x̂)
with x̂ and p̂ the position and the momentum operator of the
particle, respectively. The second part

HB,x̂ = 1

2

∑
i

[
P̂i

Mi
+ Miω

2
i

(
X̂i − λi

Miω
2
i

x̂

)2
]

(3)

is the bath coupled to the position with X̂i the position and P̂i

the momentum operator of the respective harmonic oscillator,
while

HB,p̂ = 1

2

∑
j

[
(P̂′

j − μ j p̂)2

Mj
+ Mjω

2
j X̂

′2
j

]
(4)

is the second bath coupled to the momentum, again with X̂ ′
j

and P̂′
j being the position and the momentum operator of the

respective harmonic oscillator j.
We use the imaginary time path integral formalism to

calculate the density matrix elements of the system [2]. We
integrate out the momentum p̂, the bath coordinates P̂i, X̂i and
P̂′

j, X̂ ′
j leading to an effective Euclidean action of the system

S[x] =
∫ β

2

− β

2

dτ

(
m

2
ẋ2(τ ) + V [x(τ )]

)
+ Sdis[x], (5)

with imaginary time τ , β = h̄/kBT is related to the inverse
temperature and Sdis containing the dissipative effects. In the
calculation of the dissipative part of the action, we chose
Ohmic spectral densities for the environments [29]. This
yields

Sdis = 1

2

∫∫ β

2

− β

2

dτdτ ′x(τ )x(τ ′)F (τ − τ ′)

+ 1

2

∫∫ β

2

− β

2

dτdτ ′ẋ(τ )ẋ(τ ′)F̃ (τ − τ ′), (6)

where F (τ ) = m
β

∑∞
l=−∞ γ |ωl |eiωl τ is the Ohmic kernel

for the conventional position dissipation and F̃ (τ ) =
m
β

∑∞
l=−∞

−τp|ωl | fc (
|ωl |
ωc

)

1+τp|ωl | fc (
|ωl |
ωc

)
eiωl τ the one for the unconventional

momentum dissipation. The position fluctuations diverge in
presence of momentum dissipation. This divergence is cured
by the Drude cutoff function fc(|ωl |/ωc) = (1 + |ωl |/ωc)−1,
where ωc is the high frequency cutoff [2]. γ and τp are the
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coupling parameters to the respective baths and ωl = 2π l/β
are Matsubara frequencies. Note that although Eqs. (3) and (4)
are symmetric for the coupling in position and momentum in
the Hamiltonian representation, while Eq. (6) is not symmetric
anymore, as we use the path integral in position represen-
tation. Finally, the unnormalized density matrix elements of
the effective system given by the particle in the double well
affected by dissipation reads

ρx1,x2 =
∫

x(− β

2 ) = x1

x(+ β

2 ) = x2

D[x(τ )] e− 1
h̄ S[x], (7)

where the integral extends over all possible paths starting in
x1 and ending at x2.

B. Semiclassical approximation

We restrict our discussion to the so-called semiclassical
limit in imaginary time, where V0 � h̄ω0. Here the classical
path in the path integral Eq. (7) yields the largest contribu-
tion to the density matrix element. Using such a path, we
expand x(τ ) ≈ xcl(τ ) + δx(τ ), where xcl(τ ) is the path that
minimizes the action in Eq. (5) with the boundary conditions
xcl(−β/2) = x1 and xcl(β/2) = x2. The part δx(τ ) represents
the fluctuations around this path satisfying δx(±β/2) = 0.
The minimizing path is also known as “classical path” since it
can be mathematically obtained as the solution of a Newton
equation (nonlocal in time) of the particle moving in the
inverted potential −V (x) and in the presence of dissipation.
However, it does not represent at all the classical physical
path of the particle moving in the double well potential. The
latter path can not exist classically since the particle has to
be confined in one of the two wells in the ground state.
Within this expansion, we find for the action Eq. (5) S[x] ≈
S[xcl(τ )] + Sδ[δx], where the first part is the action Eq. (5) on
the given path xcl(τ ) and the second

Sδ[δx] =
∫ β

2

− β

2

dτ

[
m

2
δẋ2(τ ) + 1

2

d2V [x(τ )]

dx2

∣∣∣∣
xcl (τ )

δx2(τ )

]
+ Sdis[δx] (8)

contains the fluctuations. In the following discussion, we are
interested in the diagonal elements ρ±a0,±a0 of the density
matrix of the particle. These are given by the sum of all paths
starting at x1 = −a0 and ending at x2 = −a0. In the semiclas-
sical limit, we consider all possible paths that minimize the
action as well as the fluctuations around them. These extreme
paths are given by the sum of n individual paths that cross the
origin x = 0 once. Such a path with a single crossing is called
instanton x(1)

cl (τ ) [see Fig. 1(b)]. For example, two instantons
form a bounce path x(2)

cl with spacing ξ , as shown in Fig. 1(c).
The diagonal elements ρa0,a0 and ρ−a0,−a0 include only paths
formed by an even number of instantons

ρ−a0,−a0 =
∑

n even

ρ
(n)
−a0,−a0

, (9)

where each addend can be written in the form

ρ
(n)
−a0,−a0

= F (n)e− 1
h̄ S[x(n)

cl ], (10)

where

F (n) =
∮

δx( β

2 ) = 0
δx(− β

2 ) = 0

D[δx(τ )] e− 1
h̄ Sδ,n[δx] (11)

accounts for the quantum fluctuations around the classical
path.

C. The instanton technique

The path of the first contribution (n = 1) is the single
instanton path shown in Fig. 1(b). The action on this clas-
sical path diverges in presence of conventional dissipation.
Therefore, we cannot calculate the action for one instanton. To
make the action convergent we introduce a second instanton
at a distance ξ , as shown in Fig. 1(c). With this bounce
path contribution, we calculate ρ

(2)
−a0,−a0

= z(2)
L of the diagonal

density matrix element. More generally, we can calculate the
contribution formed by a given number of instanton pairs with
opposite direction (bounces). In this way, we can write

ρ−a0,−a0 = ZL =
∞∑

k=0

z(2k)
L , (12)

where n = 2k single instantons and z(2k)
L = ρ

(2k)
−a0,−a0

.

1. The action on the instanton bounce path

In order to calculate the action on the classical path, we
make the ansatz for the classical bounce (n = 2) starting at
x1 = −a0 and ending at x2 = −a0

x(2)
cl (τ ) = xT +

∞∑
l=1

vl

ωl

[
sin

(
ωl

(
τ + ξ

2

))

− sin

(
ωl

(
τ − ξ

2

))]
, (13)

where xT = −a0 + v0ξ and v0 = 2a0/β. This ansatz gives
x(τ = 0) → a0 for ξ → ∞ and has been obtained by com-
bining an instanton x(1)

cl (τ ) going from −a0 to a0 with an
instanton −x(1)

cl (τ ) for the opposite event centered at different
times. Inserting the ansatz into Eq. (5) and minimizing the
action with respect to vl , we find1

v
(cl )
l = 4ω2

0a0

β
(
ω2

0 + ω2
l

1+τpωl
+ γωl

) . (14)

We insert this expression for v
(cl)
l into the action and obtain

S
[
x(2)

cl

] = −16V0

β

∞∑
l=1

ω2
0

ω2
l

(1 − cos (ωlξ ))(
ω2

0 + ω2
l

1+τpωl
+ γωl

)
− 4V0ξ

(
ξ

β
− 1

)
. (15)

1Note that the action on the classical path is convergent and the
effect of the high-frequency cutoff function fc(|ωl |/ωc ) is irrelevant
here.
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In the limit of vanishing temperature, the sum over Matsubara
frequencies translates into an integral 1

β

∑∞
l=1 → 1

2π

∫ ∞
0 dω.

After a few steps of calculation, we get

Scl,2

h̄
= ε0

h̄ω0
+ I (γ , τp, ξ ), (16)

where Scl,2 = S[x(2)
cl ]. The first part does not depend on the

distance ξ and reads

ε0

h̄ω0
= 8

π

V0

h̄ω0

[
γ

ω0

(
C − ln(σ )

2

)
− s ln

(
�1

�2

)]
, (17)

with the Euler constant C and σ = 1 + γ τp. We also defined

s =
(

γ

ω0
�− − 1

)
2
√

�2− − 1
(18)

and

�1,2 =ω0

σ
(�+ ±

√
�2− − 1), (19)

with �± = (γ ± τpω
2
0 )/2ω0. The second part of Eq. (16)

containing I (γ , τp, ξ ) depends on the distance between the
two instantons ξ . We discuss the most general case of this
part in Appendix E. For a long bounce with ξω0 � 1, we find

I (γ , ξ ) ≈ η

ω0
ln(ω0ξ ) + O(1/(ξω0)2), (20)

where

η = 8

π

V0

h̄ω0
γ . (21)

The action on the classical path is generally of the same
form as in the pure conventional dissipative case, but has a
renormalized quantity ε0 due to momentum dissipation. We
show examples of Scl,2 in Fig. 7 in Appendix E.

2. The prefactor for one instanton bounce

For the calculation of the prefactor, we follow the proce-
dure given in Ref. [15]. Thus we generalize the treatment
of Weiss et al. to the case of two dissipative baths. For
the integration of the cyclic path integral in Eq. (11), we
diagonalize the action Sδ in Eq. (8) containing the second
derivative of the time dependent potential in Eq. (1)

d2V [x(τ )]

dx2

∣∣∣∣
x(2)

cl

= V (τ ) = mω2
0

2

(
2 − 4δ

(
x(2)

cl (τ )
)
a0

)
. (22)

We do this via the ansatz δx(τ ) = ∑∞
q=0 cqyq(τ ), where yq(τ )

are the eigenfunctions of the secular equation

λ(2)
q yq(τ ) =

(
−m

d2

dτ 2
+ V (τ )

)
yq(τ )

+
∫ β

2

− β

2

dτ ′F (τ − τ ′)yq(τ ′)

−
∫ β

2

− β

2

dτ ′F̃ (τ − τ ′)
d2

dτ ′2 yq(τ ′), (23)

yielding

Sδ,2 = 1

2

∞∑
q=0

λ(2)
q c2

q. (24)

The first line in the differential Eq. (23) is equivalent to a
time dependent Schrödinger equation describing a particle in
a delta potential. For the treatment of the full model with the
dissipative parts, we refer to Appendix C. For the ansatz for
δx(τ ), we also have to perform the substitution δx(τ ) → cp in
the path integral yielding∮

δx( β

2 ) = 0
δx(− β

2 ) = 0

D[δx(τ )] →
∞∏

q=0

∫ ∞

−∞

dcq√
2π h̄

N , (25)

where N is the Jacobian factor for the transformation. Due to
translational invariance of the bounce position on the imagi-
nary time axis dx(2)

cl /dτ = y0 solves the right side of Eq. (23)
with eigenvalue zero λ

(2)
0 = 0. Assuming a bounce path in

which the two instantons are very far from each other, we get
a second translational invariance for ξ yielding a second zero
eigenvalue λ

(2)
1 = 0 with eigenfunction dx(2)

cl /dξ = y1. The
presence of the position dissipation introduces a logarithmic
term in the distance between the instantons. The action now
weakly depends on ξ . In the limit of ξ → ∞, we are back
to the case of two independent instantons. However, for finite
ξ , we treat the function dx(2)

cl /dξ as an approximate eigen-
function, leading to λ

(2)
1 ≈ 0. For a more detailed analysis of

this problem we refer to the Appendix B and Ref. [15]. The
eigenvalues λ

(2)
0 and λ

(2)
1 lead to divergences in the density

matrix due to their invariance in τ or the weak logarithmic
dependence in ξ . To cure this divergences, we have to elim-
inate λ

(2)
0 and λ

(2)
1 from the eigenvalue spectra and substitute

the integral

∞∏
q=0

∫ ∞

−∞

dcq√
2π h̄

→
∫ β/2

−β/2

dτ0

Aτ0

∫ β

0

dξ

Aξ

∞∏
q=2

∫ ∞

−∞

dcq√
2π h̄

, (26)

where 1/Aτ0 and 1/Aξ originate from the second Jacobian
transformation. We hence restored the translational invariance
with the integrations over τ0 and ξ .

3. The partition function element for one bounce

With this substitution we can integrate out the remaining
cq and finally find the integral equation for the density matrix
element of one bounce path

z(2)
L = N

2π h̄

∫ β

2

− β

2

dτ0

Aτ0

∫ β

0

dξ

Aξ

∞∏
q=2

√
1

λ
(2)
q

e− 1
h̄ Scl,2 . (27)

We further rewrite Eq. (27) by introducing the determi-
nant for the particle staying in the left well

∏∞
q=0 λ(0)

q ,
and define the partition function element for zero bounces

z(0)
L = N /

√∏∞
q=0 λ

(0)
q , corresponding to the partition func-

tion of a particle in the harmonic potential V = mω2
0x2/2

affected by dissipation. We introduce the ratio of determi-

nants RB =
√∏∞

q=0 λ
(0)
q /

∏∞
q=2 λ

(2)
q and the Jacobian prefactor
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FIG. 2. Path for one bounce. (a) Extended bounce for different
dissipative couplings. The nondissipative bounce reaches a0 expo-
nentially in ξω0, while the unconventional bounce reaches a0 with
1/(ξω0)2. The conventional bounce does only reach a0 with 1/(ξω0).
[(b) and (c)] Annihilation of two instantons by reducing the spacing
for different dissipative cases (τ is scaled with 1/ω0).

LB = 1
Aξ

1
Aτ0

of a bounce path obtaining

z(2)
L = z(0)

L

2π h̄

∫ β

2

− β

2

dτ0

∫ β

0
dξ LBRBe− 1

h̄ Scl,2 . (28)

The quantities RB and LB originate from the prefactor of one
bounce. We discuss their calculation in Appendixes C and D
in detail. Note that they generally depend on the distance of
the bounce ξ . We insert the action on the classical path to
obtain

z(2)
L = z(0)

L

∫ β

2

− β

2

dτ0

∫ β

0
dξ AB e−I(γ ,τp,ξ ), (29)

where we introduced the activity

AB = RBLBe− ε0
h̄ω0√

2π h̄
(30)

of one bounce. Equation (29) is the term for a bounce path
starting and ending in the left well. It contains paths starting
and ending at −a0 meaning that also paths that do not cross
the barrier (or are mostly under the barrier in the right region)
are included (ξω0 ≈ 1, see Fig. 2). Because we are interested
in the delocalization of the particle we define a modified
partition function element z̃(2) that only contains “extended
bounces” reaching deep into the other well (ξω0 � 1). These
bounces only depend logarithmically on their spacing to order
O(1/(ξω0)2) (see Appendix E). Therefore we only use the
logarithmic ξ dependent part defined in Eq. (20) and introduce
a hard core τ̄ for each instanton to cut off the small bounces
that do not contribute to the delocalization. In Appendix E,
we show that in this limit the prefactors do not depend on the
distance and write

RB = R2
I and LB = L2

I , (31)

where RI and LI are the respective prefactors calculated for
one instanton. Note that, although the action on the classical
path diverges for one instanton in presence of position dissipa-
tion, we still can calculate the fluctuation prefactors (LI , RI ).

Inserting Eq. (20), we finally obtain

z̃(2) ≈ z(0)
L A2

I

∫ β

2

− β

2

dτ0

∫ β

τ̄

dξ e− 1
h̄

η

ω0
ln(ω0ξ )

, (32)

where

AI = RILIe− ε0
2h̄ω0√

2π h̄
≡ e

μ

h̄ω0 (33)

is the activity for one instanton with the quantity

μ =
[

h̄ω0 ln

( LIRI√
2π h̄

)
− ε0

2

]
. (34)

Now the partition function element in Eq. (32) is of the
form of two logarithmically interacting charges on a one
dimensional line with chemical potential μ. The chemical
potential describes the amount of energy an instanton/charge
needs to be created. Because μ < 0, (i.e. it is the needed
energy to create an instanton) the activity is small in the
semiclassical limit and an instanton (or a bounce) is a rare
event. The approximation we made above can be brought
in the following physical context: we do not consider the
annihilation of charges that are very close to each other.
The charges we consider have a hard core of size τ̄ . To
produce one bounce/dipole out of the vacuum we have to
overcome the chemical potential 2μ. The nontrivial lowest
energy contribution in the partition function is a bounce path
with spacing τ̄ . We further plot the change in the action on
the classical path in Appendix E. We point out that, although
Eq. (28) is of the same form as in [15], Scl,2, LI and RI
are renormalized due to the dissipative term in momentum in
Eq. (6) as we see in Sec. III.

4. The partition function element for two bounces

To obtain ZL we sum all even n instanton addends z(n)
L . The

path x(4)
cl is then the next contribution via z(4)

L . The ansatz for
the two bounces reads

x(4)
cl (τ ) = − a0 + x(1)

cl

(
τ + ξ1

2

)
− x(1)

cl

(
τ − ξ1

2

)
+ x(1)

cl

(
τ − d + ξ3

2

)
− x(1)

cl

(
τ − d − ξ3

2

)
, (35)

where ξ1 is the distance between the first two instantons and ξ3

is the spacing of the second bounce. Further, d = ξ2 + ξ1+ξ3

2 is
the distance between the center of both bounces (see Fig. 3).
We insert this path into the action and find that it separates
into

Scl,4 = Scl,2[ξ1] + Scl,2[ξ2] + Scl,2[ξ3] + Scl,2[ξ4]

− Scl,2[ζ1] − Scl,2[ζ2], (36)

where ξi denote all distances for the attractive interactions and
ζi the ones for all repulsive interactions, respectively. Using
Eq. (16), we find

Scl,4 = 2
ε0

h̄ω0
+

4∑
i=1

I[ξi] −
2∑

j=1

I[ζ j]. (37)

Until now we used the relative distances between the bounces.
We can rewrite the interaction parts by using the imaginary
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FIG. 3. Path for two bounces. In presence of position dissipation,
the instantons behave like charges on the imaginary time axis.

time coordinates defined in Fig. 3 and obtain
4∑

i=1

I[ξi] −
2∑

j=1

I[ζ j] = I[|τ1 − τ2|] − I[|τ1 − τ3|]

+ I[|τ1 − τ4|] + I[|τ2 − τ3|]
− I[|τ2 − τ4|] + I[|τ3 − τ4|]

≈ − η

ω0

∑
i< j

(−1) j−i ln(ω0|τi − τ j |)

(38)

for ω0|τi − τ j | � 1. The action in Eq. (36) still describes the
behavior of interacting charges on a one dimensional line. To
complete the discussion, we deal with the prefactors for two
bounces R2B and L2B. In the Appendix E, we show that the
prefactors factorize like in Eq. (31) for large spacings. Be-
cause the activity of one bounce path is very low and because
bounces only weakly interact (like dipoles) it is reasonable to
assume that a dilute gas of bounces with large intra-bounce
distance (meaning ξ2ω0 � 1) forms. Hence we therefore use
R2B = R4

I (and L2B = L4
I ). In this limit we obtain the partition

function element for two extended bounces by distributing all
four instantons on the imaginary time line, yielding

z̃(4) ≈ z(0)
L A4

I

∫ β

2

− β

2

dτ4

∫ τ4−τ̄

− β

2

dτ3

∫ τ3−τ̄

− β

2

dτ2

×
∫ τ2−τ̄

− β

2

dτ1 e
η

ω0

∑
i< j (−1) j−i ln(ω0|τi−τ j |), (39)

where we again introduced the hard core τ̄ .

5. Instanton gas

Having discussed two bounce paths, the generalization to
the case of many bounces is straightforward. We just add
charges on the imaginary time line leading to the action on
the classical path for 2k instantons (k bounces)

Scl,2k

h̄
= k

ε0

h̄ω0
+ η

ω0

k∑
i< j

(−1)( j−i) ln(ω0|τi − τ j |), (40)

where the prefactor in front of the interaction guarantees the
appearance of alternating charges only. Now, dealing with an
instanton gas we have to distribute all instantons on the imag-
inary time line. The translational invariance of each instanton
is restricted by the position of the others. Using the same

arguments as before, we can write the integral equation for the
diagonal density matrix element for k extended bounces as

z̃(2k)
L ≈ z(0)

L A2k
I

∫ β

2

− β

2

dτ2k−1

∫ τ2k−1−τ̄

− β

2

dτ2k−2

∫ τ2k−2−τ̄

− β

2

dτ2k−3...

×
∫ τ1−τ̄

− β

2

dτ0 e
η

ω0

∑k
i< j (−1)( j−i) ln(ω0|τi−τ j |), (41)

where we distributed all n = 2k instantons. The full element
for extended bounces Z̃ = ∑∞

k=0 z̃(2k) is now of the form
of the partition function of a logarithmically interacting
gas of particles with alternating charges and activity A2k

I .
Because AI is small in the semiclassical limit, the appearance
of bounces are rare and the system forms a dilute gas of
bounces. Note that momentum dissipation renormalizes the
activity AI , but does not change the general nature of the
problem and the mapping to the one dimensional interacting
gas is still possible. Anderson et al. studied such a one
dimensional charge line in the context of the Kondo problem
using renormalization group arguments [34]. They predicted
a phase transition for a critical parameter ηc. We use the
resulting flow diagram in the next section for the study of the
effects of the momentum dissipation on the phase transition.

III. RESULTS

In this section, we present our results for the uncon-
ventional dissipation, recall briefly former results for the
conventional dissipation and finally discuss the frustrated
case in presence of both dissipative couplings. Although we
only consider extended bounces in the partition function,
we start the discussion of the different dissipative cases by
analyzing the modifications of the classical bounce path in
presence of the respective dissipation.

A. Unconventional dissipation

We start by considering the dissipative momentum cou-
pling only (γ = 0). After shortly discussing the implications
of this coupling on the bounce path trajectory, we calculate
the action on the classical path and then determine the pref-
actor which includes the fluctuations around this path. We
subsequently use this results to determine the renormalized
tunneling splitting formula and discuss its implications.

1. The classical bounce path

We calculate the classical bounce path for unconventional
dissipation by inserting v

(cl )
l of Eq. (14) into the ansatz (13)

with γ = 0. Taking the zero temperature limit we find the
integral

x(2)
cl = −a0 + 2ω2

0a0

π

×
∫ ∞

0
dω

[
sin

(
ω

(
τ + ξ

2

)) − sin
(
ω

(
τ − ξ

2

))]
ω

(
ω2

0 + ω2

1+τpω

) . (42)

The numerical solution for τ > 0 and τ < 0 is shown in
Fig. 2. The red dotted curve corresponds to the unconventional
case. We see that the trajectory is steeper than in the nondissi-
pative case (solid black line) meaning that the unconventional

013226-6



EFFECTS OF A DISSIPATIVE COUPLING TO THE … PHYSICAL REVIEW RESEARCH 2, 013226 (2020)

(a) (b)

(c) (d)

FIG. 4. Results for unconventional dissipation: (a) ε0 depending
on τp and scaled with ε0(0)/h̄ω0 = 4V0/h̄ω0. (b) Ratio of deter-
minants (RI is scaled with

√
mω2

0). (c) Jacobian prefactor for one
bounce as a function of the unconventional coupling τp. (d) Tunnel
splitting as a function of τp for V0/h̄ω0 = 8, with �0 being the tunnel
splitting in absence of dissipation.

bounce can have smaller spacings before it annihilates. The
bounce reaches a0 asymptotically with 1/(ξω0)2.

2. The action on the classical path

For the unconventional dissipation the action on the classi-
cal path for a single extended bounce path in Eq. (16) reduces
to

S(γ=0)
cl,2

h̄
= V0

h̄ω0

4

π

ln
(

�1
�2

)√
τ 2

p ω2
0

4 − 1
= ε

(γ=0)
0

h̄ω0
, (43)

where we again assumed ξω0 � 1. Here, the instantons do
not have any long distance interaction and neglecting small
bounces is equivalent to the dilute gas approximation used in
the literature for the case without dissipation. It is easy to show
that S(γ=0)

cl,1 = 1
2 S(γ=0)

cl,2 . Figure 4(a) shows the change of the
action due to the dissipative coupling τp. The dissipation leads
to a reduction of the chemical potential, which is reflected in
an increased tunnel splitting as we will illustrate below.

3. The prefactor of one bounce

We determine the prefactor of a single bounce by calcu-
lating the ratio of the determinants R(γ=0)

I and the Jacobian
prefactor L(γ=0)

I . The detailed procedure of the calculation
can be found in Appendixes C and D. We find an ultra-
violet divergence in R(γ=0)

I for the unconventional Ohmic
dissipation, which originates from diverging position quantum
fluctuations in presence of this coupling [23]. This diver-
gence is cured by a high-frequency cutoff function fc =
(1 + ωl/ωc)−1, where ωc is the cutoff [2]. In Fig. 4(b), we
illustrate the change of the behavior due to the presence of
unconventional dissipation. R(γ=0)

I (τp) increases monotoni-
cally with increasing τp (for the nondissipative case, we find

R
(γ=0,τp=0)
I =

√
2mω2

0). We also show the weak cutoff depen-
dence of this result by presenting data for different values of
ωc and proceed from now on with ωc/ω0 = 1000. The re-
maining factor L(γ=0)

I contains all Jacobian factors 1/Ax. Fig-
ure 4(c) shows that L(γ=0)

I increases monotonically with τp.

4. The tunnel splitting with unconventional dissipation

Inserting Eq. (43) and the quantities RI and LI into
Eq. (41), the integrand turns out to be independent of τi.
Hence, we can perform all integrations yielding the distribu-
tion factor∫ β

2

− β

2

dτ2k−1

∫ τ2k−1−τ̄

− β

2

dτ2k−2...

∫ τ1−τ̄

− β

2

dτ0 = β2k

2k!
, (44)

where we used the approximation (β − 2kτ̄ )2k ≈ β2k which
is valid for small temperatures (β → ∞). With this we get

Z̃ = z(0)
L

∞∑
k=0

(
A(γ=0)

I
)2k β2k

2k!
. (45)

The quantity z(0)
L is the semiclassical fluctuation prefactor of a

harmonic oscillator with unconventional dissipation. We can
rewrite it in general as

z(0)
L = 1√

2π

√
1

〈x2〉e− β

2 ω(τp), (46)

where h̄ω(τp)/2 corresponds to the lowest energy level in each
parabola and 〈x2〉 are the quantum position fluctuations in
presence of unconventional dissipation. We then perform the
summation in Eq. (45) and finally obtain

Z̃ = 1

2
√

2π

√
1

〈x2〉e− β

2 ω(τp)(eβ
�(τp )

2 − e−β
�(τp )

2
)
, (47)

with

�(τp)

2
= A(γ=0)

I = RI (τp)LI (τp)e− ε0 (τp )
2h̄ω0√

2π h̄
. (48)

By comparing this expression to the spectral representation
of ZL (reported in Appendix A), we find that �(τp) is the
tunnel splitting of the coherent superposition of the ground
states in the left and the right well. Figure 4(d) shows the
behavior of this splitting as a function of τp. In the limit
τp = 0, we find the well-known nondissipative result for
the splitting in a symmetric parabolic double well �0 =√

2h̄ω0V0/π exp(−2V0/(h̄ω0)), whereas the generic tunneling
dependence �(τp) exhibits an increasing behavior with the
dissipation.

B. Conventional dissipation

The effect of conventional dissipation (γ �= 0, τp = 0) on
quantum systems is by far more explored then the effect
of the above discussed unconventional coupling. Although
Caldeira and Leggett mention the possibility of momentum
couplings in their early works, the quantum systems inves-
tigated theoretically are mainly coupled in the conventional
sense. Chakravarty et al. and Bray et al. studied the quartic
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FIG. 5. Results for conventional (red dotted line) and frustrated
dissipation. (a) Noninteracting part of the action. (b) Ratio of de-
terminants (RI is scaled with

√
mω2

0). (c) Jacobian prefactor for
one bounce as a function of conventional dissipation for different
values of unconventional couplings. (d) Flow diagram for the gas
of interacting instantons. The blue shaded region in the parameter
space corresponds to the localization. By changing γ the interaction
η (x axis) and the activity AI (y axis) change. The resulting lines
are plotted for V0/h̄ω0 = 4. Different lines correspond to different
unconventional couplings. The stars indicate the phase transition
points.

double well in presence of position dissipation analytically
[13,14]. They mapped the problem into a gas of interacting
particles and used Andersons renormalization procedure to
predict a transition from tunneling to localization by increas-
ing the dissipative coupling strength. Matsuo et al. determined
the localization transition in a quartic double well via a
numerical path integral Monte Carlo treatment [16,17]. The
full treatment of calculating the action on the classical path
and the prefactor for a bounce path in a parabolic double well
is studied in Ref. [15]. We recover the same result for τp = 0
and a single bounce.

1. The classical bounce path for conventional dissipation

We can calculate the classical bounce path in the same
way as in the unconventional case, with v

(cl )
l (τp = 0). The

result is shown as blue dashed line in Fig. 2. We see that the
path affected by conventional dissipation only asymptotically
reaches a0 with 1/ξω0. The bounce path for ξω0 = 15 is
nevertheless an extended bounce because the interaction be-
tween the instantons is logarithmic to order O(1/(ξω0)2) [see
Fig. 7(a) in Appendix]. By bringing the two instantons closer,
we see that they start to annihilate already for larger spacings
ξ than the nondissipative case [see Figs. 2(b) and 2(c)].

2. Partition function element and phase transition

Here we deal with the full interacting gas Z̃ = ∑∞
k=0 z̃(2k),

with z̃(2k) defined in Eq. (41). We calculate the ratio of
determinants R

(τp=0)
I and the Jacobian prefactor L(τp=0)

I in the
same way as in the unconventional case. In Figs. 5(b) and 5(c),

FIG. 6. Critical value for the conventional coupling as a function
of V0. Different lines correspond to different ratios τpω

2
0/γ . (a) Crit-

ical value for γ . (b) Critical value for η.

we show the results for these quantities together with

ε
(τp=0)
0

h̄ω0
= η

ω0
C + V0

h̄ω0

4

π

(
1 − γ 2

2ω2
0

)√
γ 2

4ω2
0
− 1

ln

(
�1

�2

)
(49)

in Fig. 5(a) (blue dotted lines). As discussed above, the prob-
lem is of the form of a one dimensional gas of logarithmically
interacting charges with the activity A(τp=0)

I . We therefore use
the procedure introduced by Anderson and Yuval in Ref. [34].
By integrating out small bounce contributions on this one-
dimensional charge line, one finds a renormalization of the
coupling η and of the activity A(τp=0)

I . The resulting flow
diagram is shown in Fig. 5(d), where the points left of the line

2 − η/ω0 = −4A(τp=0)
I τ̄ (50)

in parameter space (shaded region) scale to zero activity,
meaning infinite chemical potential μ = −∞. In this region
no bounce appears and the particle is localized in the left well.
The critical line depends on the small distance cutoff τ̄ . For
simplicity we choose τ̄ ≈ 1/ω0 from now on. So the closest
configurations we account for are purely logarithmically inter-
acting instantons with spacings |τi − τ j |ω0 ≈ 1. In absence of
the latter, all other nontrivial configurations do not appear. In
the limit V0/h̄ω0 → ∞, we infer from Fig. 5(d) that ηc/ω0 =
2, which implies that due to Eq. (21) an infinitesimal small dis-
sipative coupling γ already leads to localization in this limit.2

In Fig. 6(b), we show the phase diagram for the interaction
ηc as a function of V0 (black lines). The phase diagram for
the interaction can be compared to one of Matuso et al. [16]
in the regime V0/h̄ω0 � 1. The change of the critical value
ηc by decreasing V0 is purely due to the increasing activity
(note that the V0 dependence of η does not enter here). The
phase diagram for the dissipative coupling γc as a function of
V0 is reported in Fig. 6(a). The black solid line corresponds to
the conventional dissipative case. The particle is delocalized
below this line, above the particle is trapped in the left well.

2We use V0/h̄ω0 = 4 in Fig. 5(d) to illustrate the change of the
activity due to the unconventional coupling. The V0 dependence of
the result is plotted in Figs. 6(a) and 6(b).
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C. Conventional and unconventional dissipation

1. The classical bounce path with both dissipative couplings

The classical bounce path for this case is also shown in
Fig. 2. For an extended bounce, it almost coincides with
the one of purely conventional dissipation, while for small
bounces the effect of unconventional dissipation becomes
important. Here the path leaks further into the right well (and
annihilates later) as in the conventional case for ξω0 ≈ 3.
For ξω0 ≈ 1, the bounce is even more extended than the
nondissipative one.

2. Change in the phase transition due
to the unconventional dissipation

We finally discuss how the enhancement of the splitting
due to unconventional dissipation affects the phase transition
determined by the conventional dissipation. From Eq. (16),
we see that the unconventional part does not affect the
long-range interaction between the instantons for extended
bounces. However, the activity AI (γ , τp) is affected by it, as
illustrated in Figs. 5(a)–5(d). In particular, the decrease of ε0 is
more pronounced in presence of unconventional dissipation.
For a sufficiently large momentum dissipation, LI exhibits
a nonmonotonic behavior as a function of the dissipative
couplings [see Fig. 5(c)], while RI increases more for large
values of τp, see Fig. 5(b). The phase transition is determined
by the condition 2 − η/ω0 = −4AI τ̄ , as shown in Fig. 5(d).
The critical point in parameter space is highlighted by the
stars. We find that the activity increases with τp, leading
to a higher value for the critical interaction ηc. The change
in the phase transition point varies strongly with V0; for a
very high potential V0 → ∞, the activity is suppressed by the
large value of ε0 and AI → 0. This means that the effect of
unconventional dissipation is very small and the critical value
for the interaction of the bounces ηc/ω0 = 2 independently of
τp. However, by decreasing V0, the influence of the unconven-
tional dissipation becomes stronger and the change in ηc and
therefore in γc is more important. In Fig. 6(b), we show the
phase diagram for ηc. We find that the unconventional dissi-
pation shifts the critical coupling to higher values. In Fig. 6(a),
we report the critical values for the dissipative coupling γc for
different dissipative cases. Reducing V0, the unconventional
dissipation becomes more and more important, and increasing
the ratio between both dissipative couplings leads to larger
critical values and consequently to a more extended delo-
calized phase. By decreasing the ratio V0/h̄ω0, we approach
the regime in which the semiclassical approximation does not
hold a priori. The behavior of the critical line in Fig. 6 suggests
however, that in this regime the unconventional dissipation
may have a stronger impact on the quantum phase transition as
compared to the weak renormalization observed in the present
study.

IV. CONCLUSIONS

We studied a dissipative quantum system formed by a parti-
cle moving in a double well and coupled to two different baths
via noncommuting operators ( p̂ and x̂). We use the Euclidean
path integral method to analyze the problem in the semiclas-
sical limit at zero temperature. First we investigate the effect

of a single dissipative momentum coupling on a particle in
a double well potential. We find that this coupling enhances
the tunnel splitting favoring the quantum behavior of the
system. In contrast, position dissipation leads to a localization
phase transition by increasing the dissipative coupling. Hence,
the two dissipative couplings can exhibit competing effects.
We find that the momentum coupling affects the localization
transition originating from conventional position dissipation.
The momentum-induced reduction of the chemical potential
leads to a shift of the critical conventional coupling to higher
values. This can be related to the potential barrier height.
In the limit of a very high barrier the particle is strongly
confined and the influence of the momentum coupling is very
small. However, for decreasing V0, we find that momentum
coupling increases the critical value γc substantially, due to the
increasing importance of quantum fluctuations. We argue that
in the region h̄ω0/V0 � 1 not accessibile within the present
semiclassical description, momentum dissipation can lead to
an even more substantial change of the phase diagram. Finally,
dissipative momentum couplings can be translated into charge
couplings in electrical quantum systems. Therefore supercon-
ducting junctions are possible platforms to test the effect of
unconventional dissipative couplings [29].
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APPENDIX A: OFF-DIAGONAL DENSITY
MATRIX ELEMENTS

We start by considering two independent parabolas with
ground states |L0〉 and |R0〉. Forming the double well potential
Fig. 1(a) with this two parabolas, a particle that is localized in
one of the wells starts to tunnel through the barrier V0. Due
to this tunneling, the particle interferes with itself leading to
a superposition of the two states |L0〉 and |R0〉 and to the new
ground states of the combined system

|ψ±〉 ∼= 1√
2

(|L0〉 ± |R0〉) (A1)

with respective energies E± = h̄ω0 ∓ h̄�
2 , where � is the

tunnel splitting. The density matrix element ρ−a0,−a0 in the
spectral representation then reads

ρ−a0,−a0 = 〈−a0|e− βĤ
h̄ | − a0〉 =

∑
n

e− βEn
h̄ 〈−a0|n〉〈n| − a0〉

= e− βE+
h̄ 〈−a0|ψ+〉〈ψ+| − a0〉

− e− βE−
h̄ 〈−a0|ψ−〉〈ψ−| − a0〉, (A2)

where we considered only the two lowest eigenvalues since
we are in the semiclassical limit and at low temperature.
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APPENDIX B: BOUNCE PATH CALCULATION

1. Variable transformation

We follow in the discussion of the prefactor RB,
Refs. [15,33], and start by considering the path x(2)(τ, ξ ), i.e.,
one bounce as shown in Fig. 1(c). The position of the bounce
is denoted by τ0 and the spacing between the instantons by ξ .
For the solutions of the differential Eq. (23), there exists a zero
eigenvalue λ

(2)
0 = 0 for the eigenfunction y0(τ ) = Aτ0 ẋcl(τ )

because of translational invariance of the bounce on the whole
τ axis. Aτ0 is constant and ẋcl(τ ) = dxcl(τ )/dτ . Further, the
spectrum contains a small negative eigenvalue λ

(2)
1 � 0 due

to the dissipation induced interaction between the instantons
forming the bounce. Therefore the parameter ξ is the relevant
quantity in this case. These two eigenvalues lead to diver-
gences in the partition function element. We get rid of the two
eigenvalues λ

(2)
0 and λ

(2)
1 via changes of variables c0 → τ0 and

c1 → ξ with the ansatz

x(2)(τ, ξ ) = x(2)
cl (τ − τ0, ξ ) +

∞∑
q=2

cqyq(τ − τ0, ξ ). (B1)

As a consequence of translational invariance, we have
for the action on the classical path Scl,2(xcl,2(τ − τ0, ξ )) =
Scl,2(x(2)

cl (τ, ξ )) = Scl,2(ξ ). The Jacobian |dc0/dτ0| of the vari-
able transformations is obtained by the overlap of x(2)(τ, ξ )
with y0(τ ) = Aτ0 ẋcl(τ ) yielding

c0(τ0) =
∫ β

2

− β

2

x(2)(τ, ξ )y0(τ, ξ )

=
∫ β

2

− β

2

dτ

[
x(2)

cl (τ − τ0, ξ )Aτ0 ẋ(2)
cl (τ, ξ )

+
∞∑

q=2

cqyq(τ − τ0, ξ )y0(τ )

]
. (B2)

Because of translational invariance, we can expand

x(2)
cl (τ − τ0, ξ ) ≈ x(2)

cl (τ, ξ ) + ẋ(2)
cl (τ, ξ )τ0 (B3)

and analogously y(τ − τ0, ξ ) ≈ y(τ, ξ ) + ẏ(τ, ξ )τ0. Inserting
these expressions into (B2), we find (x(2)

cl = xcl,2)

c0(τ0) =
∫ β

2

− β

2

dτ

[
Aτ0

(
xcl,2(τ, ξ )ẋcl,2(τ, ξ ) + ẋ2

cl,2(τ, ξ )
)

+
∞∑

q=2

cqẏq(τ, ξ )y0(τ )

]
τ0 (B4)

and hence∣∣∣∣dc0(τ0)

dτ0

∣∣∣∣ = 1

Aτ0

+ Aτ0

∫ β

2

− β

2

dτ

∞∑
q=2

cqẏq(τ, ξ )ẋcl,2(τ, ξ ),

(B5)

where we used that

Aτ0 =
(√∫ β/2

−β/2
dτ ẋ2

cl,2(τ )

)−1

, (B6)

which follows from the normalization condition∫ β/2
−β/2 y2

0(τ )dτ = 1. The small negative eigenvalue λ
(2)
1

can be dealt with in a similar manner.
The classical path depends logarithmically on the spacing

ξ between instantons. So the system only weakly depends on
changes of ξ , which makes

y1(τ, ξ ) = Aξ

d

dξ
xcl,2(τ, τ0, ξ ) = Aξ x′

cl,2(τ, τ0, ξ ) (B7)

an “approximate” eigenfunction of the differential Eq. (23).
Treating the problem in the same way as the zero mode we
deal with a spacing of the bounce ξω0 � 1 and introduce the
small change dξ to obtain

xcl,2(τ, τ0, ξ − dξ ) ≈ xcl,2(τ, τ0, ξ ) + x′
cl,2(τ, τ0, ξ )dξ (B8)

and y(τ, τ0, ξ − dξ ) ≈ y(τ, τ0, ξ ) + y′(τ, τ0, ξ )dξ . We hence
find for the coefficient

dc1(ξ ) =
∫ β

2

− β

2

dτ

[
Aξ x′2

cl,2(τ, τ0, ξ )

+ Aξ

∞∑
q=2

cqy′
q(τ, τ0, ξ )x′

cl,2(τ, τ0, ξ )

]
dξ . (B9)

Using the normalization condition
∫ β/2
−β/2 y2

1(τ )dτ = 1 to
determine

Aξ =
(√∫ β/2

−β/2
dτx′2

cl,2(τ )

)−1

(B10)

yields∣∣∣∣dc1(ξ )

dξ0

∣∣∣∣ = 1

Aξ

+ Aξ

∫ β

2

− β

2

dτ

∞∑
q=2

cqy′
q(τ, τ0, ξ )x′

cl,1(τ, τ0, ξ ).

(B11)

We therefore obtained the Jacobian transformation for the
substitutions c0 → τ0 and c1 → ξ .

2. Transformation of the integral measure and partition
function for one bounce

We also have to deal with the integration measure of the
path integral, we find for the general time sliced measure∮

−a0

D[x2(τ )] → lim
M→∞

M−1∏
i=0

∫ ∞

−∞

dx2,i√
2π h̄

, (B12)

where x0 = xM−1 = −a0. We use the (diagonal) ansatz x2,i =
xcl,2,i + ∑∞

q=0 cqyq,i for the path. The first step is to transform
to

lim
M→∞

M−1∏
i=0

∫ ∞

−∞

dx2,i√
2π h̄

= N
∞∏

q=0

∫ ∞

−∞

dcq√
2π h̄

, (B13)

where N is a constant determined by transformation dx2,i →
dcq. However, in order to avoid the divergences originat-
ing from the eigenvalues λ

(2)
0 and λ

(2)
1 , we use the path of

Eq. (B1). This implies the substitutions c0 → τ0 and c1 → ξ ,
together with the according modification of the measure in
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Eq. (B13). Further, since the action on the classical path
Scl,2(ξ ) depends on the parameter ξ , we cannot extract it
from the integral. We choose the functions yq(τ, τ0, ξ ) (now
q > 1) to be eigenfunctions of the differential equation (23),
therefore the action on the fluctuations excluding λ

(2)
0 and

λ
(2)
1 reads S̃δ,2 = 1

2

∑∞
q=2 λ(2)

q c2
q. With this we write for the

partition function of one bounce path

z(2)
L = N

∞∏
q=2

∫ ∞

−∞

dcq√
2π h̄

∫ β/2

−β/2

dτ0√
2π h̄

∣∣∣∣dc0(τ0)

dτ0

∣∣∣∣
×

∫ β

0

dξ√
2π h̄

∣∣∣∣dc1(ξ )

dξ

∣∣∣∣e− 1
h̄

1
2

∑∞
q=2 λ(2)

q c2
q e− 1

h̄ Scl,2[ξ ],

(B14)

where the product only affects the integral. The Jacobians
| dc0(τ0 )

dτ0
| and | dc1(ξ )

dξ
| are provided in Eqs. (B5) and (B11),

respectively. The divergence originating from the translational
invariance is now removed because of the integration bound-
aries of the integral over τ0. We integrate out the cq and find

z(2)
L = N

2π h̄

∫ β

2

− β

2

dτ0
1

Aτ0

∫ β

0
dξ

1

Aξ

e− 1
h̄ Scl,2[ξ ]

∞∏
q=2

√
1

λ
(2)
q

,

(B15)

where we used the fact that the second contributions of the
Jacobian prefactors in Eqs. (B5) and (B11) are linear in cq

and therefore vanish in the integration. The partition function
contribution z(2)

L still depends on the action on the classical

path Scl,2[ξ ], on the product of eigenvalues
∏∞

q=2

√
1

λ
(2)
q

and

on the Jacobians. In the following sections we will deal with
these quantities.

APPENDIX C: CALCULATION OF THE PREFACTOR RB

1. Basic formula

The ratio of determinants RB(γ , τp) =√∏∞
q=0 λ

(0)
q /

∏∞
q=2 λ

(2)
q for one bounce path can be calculated

by using the expression⎛⎝ ∞∏
q=2

λq

⎞⎠− 1
2

= e
− 1

2

∞∑
q=2

ln(λq )
= e

− 1
2

∫ ∞
mω2

0
dλ ln (λ)ρ(λ)

, (C1)

where ρ(λ) = ∑∞
q=2 δ(λ(2)

q − λ) is the density of eigenvalues.
Using this we express the ratio of determinants as

RB = e
1
2

∫ ∞
mω2

0
dλ ln (λ)(ρ0(λ)−ρ(λ))

, (C2)

where ρ0(λ) = ∑∞
q=0 δ(λ(0)

q − λ) is the density of eigenvalues
in the harmonic oscillator potential and λ(0)

q are the solutions
of the differential Eq. (23) with the constant potential part
V∗ = mω2

0. By transforming Eq. (23) to Matsubara frequen-
cies, we find

λ(0)
q = mω2

l + mω2
0 + Fl + ω2

l F̃l , (C3)

where Fl and F̃l are the Matsubara transformed kernels for the
two dissipative couplings respectively. Using this we find for

the density of eigenvalues

ρ0(λ) = 1

π
Im

(
1

β

∞∑
l=−∞

1

mω2
l + mω2

0 + Fl + ω2
l F̃l − λ − iε

)

= 1

π
Im

(
1

2π

∫ ∞

−∞
dω G̃(0)

λ (ω)

)
, (C4)

where we took the low-temperature limit and transformed to
continuous frequencies ω and ε → 0. Further, we defined the
Greens function in Matsubara space G̃(0)

λ (ω) with the Fourier
transform to imaginary time

G(0)
λ (τ ) = 1

2πm

∫ ∞

−∞
dω G̃(0)

λ (ω)eiωτ . (C5)

For the density of solutions for Eq. (23) with V (τ ) =
mω2

0
2 (2 − 4δ(x(2)

cl (τ ))a0), we use analogously

ρ(λ) = 1

π
Im

(
1

2π

∫ ∞

−∞
dω G̃λ(ω,ω)

)
, (C6)

where the Fourier transform

Gλ(τ, τ ′′) =
∫∫ ∞

−∞

dω

2π
dω′′G̃λ(ω,ω′′)eiωτ e−iω′′τ ′′

, (C7)

can be calculated via the Lippmann Schwinger equation

Gλ(τ, τ ′′) = G(0)
λ (τ − τ ′′) + 2mω2

0a0

∫ ∞

−∞
dτ ′G(0)

λ (τ − τ ′)

× δ(xcl(τ
′))Gλ(τ ′′, τ ′) (C8)

yielding the solution

Gλ(τ, τ ′′) = G(0)
λ (τ − τ ′′)+U

(
G(0)

λ

(
τ+ξ

2

)(
G(0)

λ

(
ξ

2
− τ ′′

)
× Nλ,2(ξ ) + G(0)

λ

(
ξ

2
+ τ ′′

)
Nλ,1(ξ )

))
+U

(
G(0)

λ

(
τ − ξ

2

)(
G(0)

λ

(
ξ

2
− τ ′′

)
Nλ,1(ξ )

+ G(0)
λ

(
ξ

2
+ τ ′′

)
Nλ,2(ξ )

))
, (C9)

with U = 2mω2
0a0/|ẋ(2)

cl ( ξ

2 )|, where ẋ(2)
cl ( ξ

2 ) is the derivative of
the classical bounce path at τ = ξ/2 and we defined

Nλ,1(ξ ) = 1

U

[
U −1 − G(0)

λ (0)
]

n+
λ (ξ )n−

λ (ξ )
, (C10)

Nλ,2(ξ ) = 1

U

G(0)
λ (ξ )

n+
λ (ξ )n−

λ (ξ )
, (C11)

with n±
λ (ξ ) = U −1 − G(0)

λ (0) ± G(0)
λ (ξ ). We calculate the den-

sity of eigenvalues ρ(λ), by Fourier transforming Eq. (C9)
back to the frequencies ω. We obtain the form

G̃λ(ω,ω′) = G̃(0)
λ (ω)δ(ω − ω′) + G̃(0)

λ (ω)Tλ(ω,ω′)G̃(0)
λ (ω′),

(C12)
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where we defined the T matrix

Tλ(ω,ω′) = 2 cos
(
(ω + ω′) ξ

2

)
G(0)

λ (ξ )

n+
λ (ξ )n−

λ (ξ )

+ 2 cos
(
(ω − ω′) ξ

2

)[
U −1 − G(0)

λ (0)
]

n+
λ (ξ )n−

λ (ξ )
. (C13)

With Eq. (C12) we can rewrite Eq. (C2) as a function only
depending on G(0)

λ (ξ ). We find for the difference between the
densities of eigenvalues in Eq. (C2)

ρ0(λ) − ρ(λ) = − 1

2π

∫ ∞

−∞
dω G̃(0)

λ (ω)Tλ(ω,ω)G̃(0)
λ (ω).

(C14)

After some calculation, we identify the equality

d

dλ
ln(n+

λ (ξ )n−
λ (ξ ))

= − 1

2π

∫ ∞

−∞
dω G̃(0)

λ (ω)Tλ(ω,ω)G̃(0)
λ (ω) (C15)

and use the relation Im(ln(x)) = arg(x) to define the phases

φ
(±)
λ = arg

(
U −1 − G(0)

λ (0) ± G(0)
λ (ξ )

)
, (C16)

with the factor U −1 from below Eq. (C9). With this we per-
form the partial integration with respect to λ in the exponent
of Eq. (C2) yielding

ln(RB) = 1

2π
[ln(λ)(φ+

λ + φ−
λ )]∞mω2

0

− 1

2π

∫ ∞

mω2
0

dλ
1

λ
(φ+

λ + φ−
λ ). (C17)

The phases satisfy φ±
mω2

0
= −π (calculated in the next section)

and lim
λ→∞

φ±
λ = 0 leading to the result

ln(RB) = ln
(
mω2

0

) − 1

2π

∫ ∞

mω2
0

dλ
1

λ
(φ+

λ + φ−
λ ). (C18)

The last step is to calculate the phases φ±
λ depending on the

Greens function G(0)
λ (τ ) defined in Eq. (C5).

2. Calculation of the phases φ±
λ

In the last section, we defined the quantities φ±
λ in

Eq. (C16). We start by calculating the Greens function
G(0)

λ (τ ). In presence of Ohmic unconventional dissipation
this quantity diverges, because of diverging position quantum
fluctuations. This divergence is well known in the literature
and can be cured by adding a Drude cutoff function fc(ω)
with high frequency cutoff ωc. The dissipative kernel for
unconventional dissipation then reads

F̃ (ω) = −τp|ω|m fc(ω)

1 + τp|ω| fc(ω)
, (C19)

with fc(ω) = (1 + |ω|/ωc)−1. We also insert the dissipative
kernel for conventional dissipation, defined in the main text,
into Eq. (C5) and find

G(0)
p (τ ) = 1

πmωc

∫ ∞

0
dx

(1 + (1 + τpωc)x) cos(xωcτ )

−p2�2
c + χ (p2)x + αx2 + x3 − iε∗ ,

(C20)

with p2 = λ

mω2
0
− 1, x = ω/ωc, �c = ω0/ωc, α = (γ /ωc +

τpγ + 1) and

χ (p2) =
(

−p2�2
c (1 + τpωc) + γ

ωc

)
. (C21)

The denominator of Eq. (C20) is a cubic polynomial with
an imaginary part. We expand the polynomial part into its
roots x̃1,2,3 and obtain by introducing x̃1 = ν1, x̃2 = −ν2, and
x̃3 = −ν3

−p2�2
c − χ (p2)x + αx2 + x3 = (x − ν1)(x + ν2)(x + ν3),

(C22)

where νi > 0. Because the full form of the quantities ν1,2,3

is not important at this stage, we do not present them here
explicitly, but refer to Appendix F. With this definition we can
perform a principle value integration in Eq. (C20). We obtain
the result

G(0)
p (τ ) = 1

πmωc

[
3∑

i=1

Ũig[τωcνi] − Ũ1π sin(τωcν1)

]

+ i

mωc

(1 + (1 + τpωc)ν1) cos(ν1ωcτ )∣∣χ (p2) + 2αν1 + 3ν2
1

∣∣ , (C23)

where the prefactors Ũi originate from a partial fraction ex-
pansion also defined in Appendix F. The functions g(x) are
defined in Appendix E 1. For the factor U −1, we have to
calculate

ẋ(2)
cl

(
ξ

2

)
= 2ω2

0a0

π

∫ ∞

0
dx

(1 + (1 + τpωc)x)[1 − cos(ξω)]

�2
c + χ (1)x + αx2 + x3

,

(C24)

which has no imaginary part. We calculate the integral by
defining the polynomial in the denominator like

�2
c + χ (1)x + αx2 + x3 = (x + k1)(x + k2)(x + k3) (C25)

with Re(ki ) > 0 and find

U −1 = − 1

πmωc

3∑
i=1

T̃i(ln (ki ) + g[kiωcξ ]), (C26)

where the prefactors T̃i and the quantities ki are also defined
in Appendix F. Inserting τ = ξ in Eq. (C23) and calculating
G(0)

p (τ = 0), we find the result

n(±)
λ = − 1

πmωc

3∑
i=1

T̃i(ln (ki ) + g[kiωcξ ]) + 1

πmωc

[
3∑

i=1

Ũi(ln(νi ) ± g[ξωcνi]) ∓ Ũ1π sin(ξωcν1)

]

− i

mωc

(1 + (1 + τpωc)ν1)(1 ∓ cos(ν1ωcξ ))∣∣χ (p2) + 2αν1 + 3ν2
1

∣∣ . (C27)
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We calculate the phases via φ
(±)
λ = arg(n(±)

λ ). In the last sec-
tion, we used φ

(±)
mω2

0
= −π . We briefly comment on this here.

We see from Eq. (C20) that there is an infrared divergence
for G(0)

p (0) by inserting λ = mω2
0 → p = 0. This means that

n(±)
mω2

0
→ −∞ + ic, where c is a finite constant and therefore

φ
(±)
mω2

0
→ −π .

3. Final result for RB

We obtain the final solution for the ratio of determinants by
inserting n(±)

λ (ξ ) into Eq. (C18). We substitute p2 = λ

mω2
0
− 1

and obtain

ln(RB) = ln
(
mω2

0

) − 1

π

∫ ∞

0
d p

p

1 + p2

(
φ(+)

p + φ(−)
p

)
.

(C28)
In the limit of a large bounce ξωcνi � 1, the function
g[ξωcνi] ∝ 1/ξ 2 and can therefore be neglected (see Ap-
pendix E 2). The quantity ν1 depends on p (see Appendix F).
In the limit ξωcν1 � 1, the functions sin(ξωcν1) and
cos(ξωcν1) in Eq. (C27) are highly oscillating. They do only
weakly contribute to the integral over p and we neglect them.
With this approximations we find

ln(RB) = ln
(
mω2

0

) − 2

π

∫ ∞

0
d p

p

1 + p2
arg

(
U −1 − G(0)

p (0)
)
,

(C29)
which we solve numerically leading to the result shown in
Figs. 4(b) and 5(b).

APPENDIX D: THE JACOBIAN FACTOR LB

Here we show the calculation for Jacobian prefactor for one
bounce path. As defined above the factor due to the change of
the integral variables reads

LB(γ , τp) = 1

Aτ0

1

Aξ

=
√∫ β/2

−β/2
dτ ẋ2

cl,2(τ, ξ )

√∫ β/2

−β/2
dτx′2

cl,2(τ, ξ ),

(D1)

where ẋcl,2 = ∂xcl,2(τ,ξ )
∂τ

and x′
cl,2 = ∂xcl,2(τ,ξ )

∂ξ
with xcl,2 defined

in Eqs. (13) and (14). The derivative with respect to τ yields

ẋcl,2 = 4ω2
0a0

β

∞∑
l=1

v
(cl )
l

[
cos

(
ωl

(
τ + ξ

2

))

− cos

(
ω

(
τ − ξ

2

))]
. (D2)

Inserting ẋ2
cl,2 in to the first factor of Eq. (D1), performing the

integration over τ and substituting the sum with an integral
in the small temperature limit we obtain the integral over
frequencies ω∫ β

2

− β

2

dτ ẋ2
cl,2(τ, ξ )= 8ω4

0a2
0

π

∫ ∞

0
dω

(1 + τpω)2(1 − cos (ξω))

(ω2
0 + �̄ω + σω2)2

,

(D3)

where �̄ = τpω
2
0 + γ and σ = 1 + τpγ . The integration over

the summand containing cos(ξω) only leads to corrections
O(1/ξ 2) which we neglect in the limit ξω0 � 1. The rest of
the integral yields the ξ independent part∫ β

2

− β

2

dτ ẋ2
cl,2(τ, ξ ) = 8ω2

0a2
0

π
C(γ , τp), (D4)

where we introduced

C(γ , τp) =
2�+
ω0

− 4τp + 2τ 2
p ω0�+
σ

(4�2+ − 4σ )

+
(

1 − 2τpω0�+
σ

+ τ 2
pω2

0

σ

)
2σ ln

(
�2
�1

)
ω0(

√
4�2+ − 4σ )3

,

(D5)

with and �1,2 defined in Eq. (19) Using the same procedure
we find for the “breathing mode velocity”

x′
cl,2(τ, ξ ) = v0 +

∞∑
l=1

v
(cl )
l

2

[
cos

(
ωl

(
τ + ξ

2

))

+ cos

(
ωl

(
τ − ξ

2

))]
. (D6)

Analogously to the translational velocity, we get∫ β/2

−β/2
dτx′2

cl,2(τ, ξ ) = 2ω2
0a2

0

π
C(γ , τp).

Therefore we finally find

LB(γ , τp) = 2
V0

mω0
P (γ , τp), (D7)

where

P (γ , τp) = 4

π
C(γ , τp). (D8)

In the nondissipative case, we recover P (0, 0) = 1. The be-
havior of LB(γ , τp) is shown in Figs. 4(c) and 5(c).

APPENDIX E: EXTENDED BOUNCE APPROXIMATION

1. Action on the classical path for frustrated dissipation

To calculate the action on the classical path for a bounce
path, we use the ansatz Eq. (13) yielding the intergral in
Eq. (15). Solving this integral we find the chemical potential
part in Eq. (17). Further, due to the cosine in (15), we find the
interaction part

I (γ , τp, ξ ) = η

ω0

(
ln(ω0ξ ) + 1

2
(g(ξ�1) + g(ξ�2))

)

− 8V0

π h̄ω0

(
γ

ω0
�− − 1

)
2
√

�2− − 1
[g(ξ�1) − g(ξ�2)],

(E1)

where the quantities �1,2 are defined in Eq. (19) with the
functions

g(ax) = − cos(ax)Ci(ax) − sin(ax)Si(ax) + 1

2
sin(ax)π

=
∫ ∞

0

cos (aω)

(x + ω)
dω. (E2)
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FIG. 7. Action on the classical path as a function of ξ for
different dissipative cases: (a) no dissipation. The action becomes
zero for vanishing distance. The instantons decouple exponentially
for large ξ . (b) Conventional dissipation: logarithmic long-distance
behavior. (c) Unconventional dissipation: the instantons decouple
with 1/(ξω0)2. (d) Frustrated dissipation: same long range behavior
as in the conventional dissipative case.

For ξω0 � 1 and �− < 1, we find that g(�1ξ ) ± g(�2ξ ) ∝
1/(ξω)2. The short distance behavior of the functions g(ax) is
responsible for the annihilation process we show in Fig. 2. If
the distance ξω0 is large enough to neglect this function, we
call the resulting two instanton trajectory an extended bounce.
In the main text, we only consider instantons that reach far into
the right parabolic well as they contribute to the delocalization
transition.This extended configurations are manifested via an
instanton hard core size τ̄ . Hence, the extended bounces
we consider are noninteracting in the nondissipative and in
the unconventional, while logarithmically interacting in the
conventional and in the frustrated dissipative case. In the
discussion of the main text we choose τ̄ = 1/ω0 for the small
distance cutoff. Using this, the lowest energy extended bounce
path has spacing ξω0 ≈ 1 [see Figs. 7(b) and 7(d)] and is
logarithmically interacting (in the conventional and frustrated
case).

2. Factorization of the activity

We here show that the factorization of the activity AkB =
A2k

I for k bounces, defined in Eqs. (30) and (33) is a good
approximation in the limit ξω0 � 1. The activity in Eq. (30)
contains the quantities LB and RB originating from the fluc-
tuation prefactor. During the calculation we use RB = R2

I and
LB = L2

I , where RI and LI are the respective quantities for
one instanton. Here we show this valid by analyzing KB(ξ ) =
LB(ξ )RB(ξ ). If the ξ dependence vanishes, the factors of each
instanton become independent of each other and the bounce
prefactor factorizes. We start with the ratio of determinants RB

defined in Eq. (C18) with the ξ dependent phases φ
(±)
λ defined

in Eq. (C16) reading

φ
(±)
λ = arg

(
U −1 − G(0)

λ (0) ± G(0)
λ (ξ )

)
. (E3)

FIG. 8. [(a)–(c)] ξ dependence of the fluctuations prefactors and
KB(ξ ) = RB(ξ )LB(ξ ), scaled with the square of the respective quan-
tities for one instanton K2

I = R2
IL2

I . (d) System used in the discussion
of the paper.

We calculate the ratio RB/R2
I , and show in Fig. 8(a) that

already for ξω0 ≈ 3 the values of RB(ξ ) has almost converged
to the ξ independent one R2

I . As we analyze the system in
the limit ξω0 � 1 we neglect the ξ -dependence and use the
factorization RkB = R2k

I manifested in the choice of

φ
(±)
λ = arg

(
U −1 − G(0)

λ (0)
)
, (E4)

we use in Eq. (C29). The ξ dependence of the quantity LB

originates from the second term in Eq. (D3). For ξ → 0, we
see that the factor will vanish because cos(0) = 1 and the
integrand is zero. In Fig. 8(b), we further see how LB(ξ )
converges to L2

I . We also show the full fluctuation prefactor
KB(ξ ) = RB(ξ )LB(ξ ) in Fig. 8(c) and its ξ dependence. We
see that it converges quickly to the value used in the main
text. Finally, because we choose the quantity ε0 to be the part
of the action that is independent of ξ it satisfies ε

(k)
0 = kε0 by

construction. This leads to the factorization of the full bounce
activity defined in Eq. (30) yielding Eq. (33).

APPENDIX F: AUXILIARY VARIABLES

In the above section, we introduced the quantities T̃i, Ũi,
νi, and ki. The first two originate from the partial fraction
expansions of the integrands in Eqs. (C20) and (C24). The
latter ones are related to the roots of the denominators of
G̃(0)

λ (ω) and U −1. The prefactors read

T̃1 = 1 − (1 + τpωc)k1

(k1 − k2)(k1 − k3)
, (F1)

T̃2 = −1 + (1 + τpωc)k2

(k1 − k2)(k2 − k3)
, (F2)

T̃3 = −1 + (1 + τpωc)k3

(k1 − k3)(k3 − k̄2)
, (F3)
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and

Ũ1 = 1 + (1 + τpωc)ν1

(ν1 + ν2)(ν1 + ν3)
, (F4)

Ũ2 = 1 − (1 + τpωc)ν2

(ν1 + ν2)(ν2 − ν3)
, (F5)

Ũ3 = 1 − (1 + τpωc)ν3

(ν1 + ν3)(ν3 − ν2)
. (F6)

We use the basic formula for the roots of cubic polynomials
and find for the roots in Eq. (C25)

−k1 = α

3
+ 2

1
3 η(1)

3(�(1) +
√

4η3(1) + �2)
1
3

− (�(1) +
√

4η3(1) + �2(1))
1
3

3 · 2
1
3

(F7)

−k2 = α

3
− (1 + i

√
3)η(1)

3 · 2
2
3 (�(1) +

√
4η3(1) + �2(1))

1
3

+ (1 − i
√

3)(�(1) +
√

4η(1) + �2(1))
1
3

6 · 2
1
3

(F8)

−k3 = α

3
− (1 − i

√
3)η(1)

3 · 2
2
3 (�(1) +

√
4η3(1) + �2(1))

1
3

+ (1 + i
√

3)(�(1) +
√

4η(1) + �2(1))
1
3

6 · 2
1
3

, (F9)

where we defined

η(1) = (−α2 − 3χ (1)) (F10)

�(1) = −2α3 + 27�2
c − 9αχ (1). (F11)

Further, the roots for the polynomial Eq. (C22) read

ν1 = α

3
+ 2

1
3 η(p2)

3
(
�(p2) +

√
4η3(p2) + �2(p2)

) 1
3

−
(
�(p2) +

√
4η3(p2) + �2(p2)

) 1
3

3 · 2
1
3

(F12)

−ν2 = α

3
− (1 + i

√
3)η(p2)

3 · 2
2
3
(
�(p2) +

√
4η3(p2) + �2(p2)

) 1
3

+ (1 − i
√

3)
(
�(p2) +

√
4η3(p2) + �2(p2)

) 1
3

6 · 2
1
3

(F13)

−ν3 = α

3
− (1 − i

√
3)η(p2)

3 · 2
2
3
(
�(p2) +

√
4η3(p2) + �2(p2)

) 1
3

+ (1 + i
√

3)
(
�(p2) +

√
4η3(p2) + �2(p2)

) 1
3

6 · 2
1
3

,

(F14)

where

η(p2) = −α2 − 3χ (p2), (F15)

�(p2) = −2α3 + 27p2�2
c − 9αχ (p2). (F16)

In the Appendix C, we defined p2 = λ

mω2
0
− 1, �c = ω0/ωc,

and α = (γ /ωc + τpγ + 1).
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