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Characterization of multilevel quantum coherence without ideal measurements
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Coherent superpositions are one of the hallmarks of quantum mechanics and are vital for any quantum me-
chanical device to outperform the classically achievable. Generically, superpositions are verified in interference
experiments, but despite their longstanding central role, we know very little about how to extract the number of
coherently superposed amplitudes from a general interference pattern. A fundamental issue is that performing a
phase-sensitive measurement is as challenging as creating a coherent superposition so that assuming a perfectly
implemented measurement for verification of quantum coherence is hard to justify. In order to overcome this
issue, we construct a coherence certifier derived from simple statistical properties of an interference pattern,
such that any imperfection in the measurement can never overestimate the number of coherently superposed
amplitudes. We numerically test how robust this measure is to underestimating the coherence in the case of
imperfect state preparation or measurement and find it to be very resilient in both cases.
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I. INTRODUCTION

The superposition principle allows wave mechanics, in
particular, quantum mechanics, to feature dynamics that are
unthinkable for classical particles. The prospect of exploiting
quantum coherence for applications in quantum computation,
communication, metrology, and thermodynamics [1–5] has
resulted in numerous activities towards the classification and
quantification of quantum coherence [6–13].

Those developments are inspired by earlier work in the
theory of entanglement. There is, however, a central dif-
ference between entanglement and coherence that poses a
fundamental challenge in its experimental characterisation. To
create entanglement it is necessary to use coherent interac-
tions between particles that go beyond local operations and
classical communications (LOCC). It can however be detected
using only local measurements and classical processing of the
resulting data, e.g., in terms of Bell inequalities, witnesses
or state tomography [14,15]. Thus verifying entanglement
requires less challenging experimental tools than to prepare
it.

This distinction between resources needed for preparation
and detection does not typically exist for coherence. Co-
herence is always defined with respect to a basis and this
is generically the only basis in which measurements can
be performed. Creating coherence requires an operation that
maps a basis state into a coherent superposition of basis
states; detecting coherence requires a measurement in such a
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superposition basis. As the latter typically cannot be done, it
is instead replaced with an operation that maps the state back
to an incoherent one (essentially the reverse of the preparation
step), followed by a projection onto one of the basis states.
This results in the awkward situation that any measurement
that is supposed to verify the successful preparation of a
coherent superposition is reliable only under the assumption
that coherent superpositions can be created.

As we show here, this is not an insurmountable obstacle.
We can find suitable figures of merit that offer a detailed char-
acterisation of coherence properties, but that do not require
any assumption on the ability to realize operations that can
create coherent superpositions.

Doing this first requires a rigorous definition of the aspects
of coherence that we want to certify. For any given reference
basis {| j〉}, one can define pure states |ψ〉 = ∑

j ψ j | j〉 with at
least k nonvanishing amplitudes ψ j to be k-coherent. Extend-
ing this, a mixed state ρ is k-coherent if all decompositions
ρ = ∑

i pi|ψi〉〈ψi| into pure states |ψi〉 with pi � 0 contains
at least one k-coherent pure state [6]. We denote the set of
k-coherence state for a given Hilbert space by Ck , and have
the natural relation that Ck+1 ⊂ Ck for k � 1 and where C1 is
the full state space.

Following this definition, the concept of k-coherence is
closely analogous to genuine k-partite entanglement. Most
of the prior literature on quantum coherence has not yet
addressed this fine classification of different classes of co-
herence, but there are figures of merit that characterize k-
coherence quantitatively [6,16] or qualitatively [9]. Almost all
existing approaches do rely on the assumption that measure-
ments can be performed reliably in a basis other than that of
the one-coherent states, which is highly problematic for the
reasons described above. The only exception we are aware
of is from one of the proposals in Ref. [16] where the co-
herence is instead bounded by the probability of success of a
quantum game, which comes with its own assumptions about
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the dynamics on the system and the measurements performed.
Our method does away with these different assumptions and
instead requires only the acquisition of relative phases and the
ability to perform some rank-1 measurement afterwards.

We envision an experiment similar to the famous Ramsey
sequence. This involves a preparation unitary Up such that
Up |0〉 = ∑

j ψ j | j〉 = |ψ〉, followed by an evolution U (t )
generated by the system Hamiltonian H for a time t . This
is followed by an effective projection onto a state |χ〉 =∑

j χ j | j〉 which is realized by the unitary evolution Ur , de-
fined by U †

r |0〉 = |χ〉, and a subsequent projection onto the
basis state |0〉. As such, the probability of getting a “click” in
the detector for an initial pure state |0〉 is given by p(t ) =
|〈χ |U (t )|ψ〉|2. This defines the interference pattern that is
observed.

The coherence of |ψ〉, with respect to the eigenbasis of H ,
can be characterized in terms of the statistical moments of
this probability distribution, Mq = 〈pq〉, where the average is
taken over the period of the dynamics. When |χ〉 is promized
to be an equal superposition of all the eigenstates of H (a state
denoted by |W 〉), these moments provide a rigorous indicator
of k-coherence. That is, there is a threshold value such that
moments above this threshold value can only be achieved with
states that are at least k-coherent [9]. The intuition behind
this is that the interference pattern of higher coherent states
exhibit higher peaks and deeper troughs than low coherent
states; in an analogous way to how the interference pattern
of a diffraction grating and a double slit differ. This behavior
can be detected with the statistical moments, with higher
moments being more sensitive to the more extreme peaks and
troughs.

As argued above, it is highly problematic to assume that
the desired projection onto the state |W 〉 can be performed
reliably. Assuming that such a projection was performed when
a different measurement was realized can suggest a higher
degree of coherence than there is. This can easily be seen with
the extreme case of |χ〉 = |0〉. In this case, p(t ) is maximized
with the incoherent initial state |0〉, and since this holds for
all t , also all moments adopt their maximum value for this
state. Erroneously implementing a measurement including the
projection onto the state |0〉 rather than the projection onto
a balanced superposition of all basis states is certainly not a
realistic experimental scenario, but it helps to illustrate that
uncontrollable experimental imperfections can result in wrong
conclusions if assumptions on the type of measurement are
made. In order to have trusted certification, we require a
function that can identify coherence in the case of suitable
measurements, but that does not result in false positives.

In this paper, we introduce a family of functions which
do this, based on the ratio of moments of an interference
pattern. We will show that those are convex functions of
a quantum state, which makes them directly applicable to
mixed states. The maximum value that such functions can
adopt for a k-coherent state will be shown to be bounded
from above independently of the Hamiltonian H and the
projector |χ〉 〈χ |. Experimental limitations in the realization
of the desired measurement will thus not result in wrong
conclusions on the coherence properties of the state, but will
in the worst case only result in the failure to exceed the
threshold.

The construction of these coherence certifiers is presented
in Sec. II, where their properties are also discussed. The
technical aspects of the proofs are left to the appendices. In
the cases where the exact threshold values are not known, we
use numerical methods to approximate them; a discussion of
these results is given in Sec. III. This is followed in Sec. IV by
a discussion of the ability of the proposed framework to verify
k-coherence in the presence of various imperfections, and we
conclude in Sec. V.

II. COHERENCE CERTIFIER

To talk in precise terms about the coherence certifiers
we introduce, it is necessary to specify exactly the range
of systems under consideration. The coherence of a state
is defined with respect to a basis, and the natural basis to
use for a Ramsey-like experiment is the eigenbasis of the
system Hamiltonian. We make no restrictions on this Hamil-
tonian other than it being time-independent and having a
discrete and commensurate spectrum (all finite Hamiltonians
are discrete and ε-close to being commensurate). It may
contain some degeneracies but, as degenerate levels always
have the same relative phases, these will never get picked up
by the interference pattern and so the amount of coherence
would be underestimated. As we are only lower bounding
the coherence, this is not a problem. In order to simplify the
analysis it is therefore convenient to ignore these degeneracies
and, furthermore, expand the Hilbert space of the system by
adding new levels such that the spectrum of the Hamiltonian
is equally spaced. As this does not affect the evolution of the
physical state, there is no loss of generality in only considering
Hamiltonians

H =
∑

n

n |n〉 〈n|, (1)

with the spectrum of a harmonic oscillator. For the certifier
of coherence we introduce below, any anharmonicity in the
physical Hamiltonian will lead to less coherence being mea-
sured, and therefore cannot result in a false certification of the
amount of coherence present in the state.

As discussed in the introduction, the basic objects we use to
study coherence are the moments of the interference pattern.
The nth moment is

Mn(ρ, |χ〉) = 1

2π

∫ 2π

0
p(t )n dt

= 1

2π

∫ 2π

0
〈χ |e−iHt ρ eiHt |χ〉n

dt, (2)

where the duration of the integral is due to the energy scale
picked in Eq. (1). The key object of interest is the ratio

Rn(ρ, |χ〉) = Mn

Mn−1
1

(3)

of the moments Mn and Mn−1
1 for n > 2. In particular, we

will focus on R3 as it is the lowest order which can act as a
coherence certifier.

A central property of these functions is their convexity
under the mixing of states

Rn(λρ1 + (1 − λ)ρ2) � λRn(ρ1) + (1 − λ)Rn(ρ2), (4)
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TABLE I. The maximum values that R3(ρ, |χ〉) can attain, under
any Hamiltonian, for any |χ〉 and for any ρ ∈ Ck as a function of
k. As such, exceeding these values means that the state must be at
least (k + 1)-coherent. The middle column is an upper bound to this
highest value obtained analytically. The last column is the highest
value we found after conducting a thorough numerical optimisation.

k-coherence R3 threshold R3 best known

1 1 1
2 5/4 1.25
3 179/96 ≈ 1.86 1.77

with the same |χ〉 throughout, as proven in Appendix A. As
Ck is itself convex, it is highly desirable for our certifier to also
have this property as it implies that Rn is maximized for pure
states, i.e.,

max
|ψ〉〈ψ |∈Ck , |χ〉

Rn(|ψ〉, |χ〉) � max
ρ∈Ck , |χ〉

Rn(ρ, |χ〉), (5)

where the ket in the first argument of Rn stands for the
corresponding pure state. Because of this, the maximum found
for pure states also applies to mixed states directly.

Another useful feature of Rn is that its maximum is reached
when the measurement projector and the initial state are the
same, i.e.,

max
|ψ〉〈ψ |∈Ck

Rn(|ψ〉, |ψ〉) � max
|ψ〉〈ψ |∈Ck , |χ〉

Rn(|ψ〉, |χ〉). (6)

This is not necessary for a coherence certifier, but is never-
theless desirable for two reasons. Firstly, it aligns with the
intuition of a Ramsey-like interferometer, where the highest
contrast is obtained by projecting onto the initial state, which
is also what was found in prior work where |χ〉 was assumed
to be the equal superposition state |W 〉 [9]. Secondly, it
further simplifies calculating the threshold values, rather than
maximising over the 4d real variables that define |ψ〉 and |χ〉:
it is enough to consider only the d variables, ψiχ

∗
i , which can

always be chosen such that they are real. This is proven in
Appendix B.

Of particular importance is the need for Rn to be hierarchi-
cal, such that it obeys the strict inequality

max
ρ∈Ck+1, |χ〉

Rn(ρ, |χ〉) > max
ρ∈Ck , |χ〉

Rn(ρ, |χ〉), (7)

where the maximum for a given k is known as the threshold
value for k + 1. As proven in Appendix C, this holds for
k = 1, 2, and 3 independently of the dimension of the system
Hilbert space. Observing a higher value than those thresholds,
given in Table I, therefore proves that the state is at least 2, 3,
or four-coherent, respectively.

The assumption so far is that the measurement is projec-
tive. In practice, however, the realization of the unitary Ur can
be affected by noise, and repetitions of the experiment that are
required to obtain good statistics will suffer from fluctuations
in Ur .

The signal on the measurement device will thus not reliably
indicate projection onto the state |χ〉, but rather randomly a
projection onto one out of several states |χ j〉 occurring with

probability q j . In this case, the recorded interference pattern
reads

p(t ) =
∑

j

q j p j (t ), where (8)

p j (t ) = 〈χ j | U (t )ρ U †(t )|χ j〉, (9)

and the definition of moments given above in Eq. (2) general-
izes to

Mn(ρ, σχ ) = 1

2π

∫ 2π

0
(Tr e−iHt ρ eiHt σχ )n dt

with σχ = ∑
j q j |χ j〉〈χ j |. In exactly the same way that

Rn(ρ, σχ ) = Mn(ρ, σχ )/M1(ρ, σχ )n−1 is convex in the first
argument ρ for any given σχ , it is also convex in the second
argument for any given ρ such that

Rn(ρ, σχ ) �
∑

j

q jRn(ρ, |χ j〉), (10)

for any state σχ and convex decomposition into pure states∑
j q j |χ j〉〈χ j | = σχ . Since no projective measurement can

overestimate the degree of coherence, no fluctuations in the
realisation of such a measurement can result in a false positive
either.

III. NUMERICAL THRESHOLD VALUES

While the previous section details analytically proved re-
sults about the threshold values for k up to 4, we can go
to much higher coherence levels numerically. We do this
by maximising the value of Rn over all ρ ∈ Ck and all |χ〉,
for given values of n and k. This problem is substantially
simplified using the results of the previous section, which
lets us set ρ = |ψ〉 〈ψ | and |ψ〉 = |χ〉 which only contain
real coefficients in the eigenbasis of the Hamiltonian. We
are confident that the results found this way are an excellent
approximation of the true maxima as they are stable under
different parametrizations of the problem and for different ini-
tial conditions in the numerical optimisation. These numerical
results can also be compared to the upper bounds given by the
analytic results, thereby illustrating how tight they are.

These numerical results are listed in Table II, which also
shows the state |	k〉 that gives the maximum value of Rn

over all states in Ck , and how this value compares to the
value given by the equally balanced state |Wk〉 = 1√

k

∑k
i |i〉.

These states are, surprisingly, not the same, although they both
share the property of having k adjacent basis states populated
while the others have zero amplitude. |	k〉 has a concentration
of population towards the middle of the occupied energy
levels. One way to understand this is to note that interferences
between basis states with small energy differences contribute
more to Rn than those with large energy differences. As the
basis states in the middle of the spectrum are closer to more
of the basis states, the function is maximized by populating
them more than the others. This intuition is more visible in the
re-parametrisation of Rn done in Appendix C. Furthermore,
the larger k is and the smaller n is, the more pronounced the
difference between |Wk〉 and |	k〉 is.

In all cases of interest, however, the difference in the Rn

value between |	k〉 and |Wk〉 is relatively small, which can be
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TABLE II. Numerical results for the first three hierarchical ratios
for up to five-coherent states; showing their behavior as coherence
certifiers. The values of Rn are given for the equal superposition state
|Wk〉, and for the state |	k〉 which maximizes the value (in all cases
the basis for the projector |χ〉 is equal to the state itself as we know
that this maximizes Rn). The states |Wk〉 and |	k〉 only have adjacent
energy levels populated, spacing these levels out always results in a
decrease in Rn (unless they are spaced out equally in which case they
are effectively adjacent levels for a different harmonic Hamiltonian).
|	k〉 is found through numerical optimisation and is stable through
different parametrizations of the problem and from different initial
points. The amplitudes squared of |	k〉 are also listed as a vector to
show how it differs from the uniform case of 1/k.

Rn k Rn(|	k〉) Rn(|Wk〉) �k

R3 2 1.25 1.25 (0.50, 0.50)
3 1.77 1.74 (0.31, 0.38, 0.31)
4 2.32 2.27 (0.22, 0.28, 0.28, 0.22)
5 2.88 2.80 (0.17, 0.21, 0.23, 0.21, 0.17)

R4 2 2.19 2.19 (0.50, 0.50)
3 4.61 4.56 (0.32, 0.36, 0.32)
4 8.02 7.90 (0.23, 0.27, 0.27, 0.23)
5 12.42 12.21 (0.18, 0.21, 0.22, 0.21, 0.18)

R5 2 3.94 3.94 (0.50, 0.50)
3 12.39 12.28 (0.32, 0.36, 0.32)
4 28.71 28.39 (0.24, 0.26, 0.26, 0.24)
5 55.52 54.84 (0.19, 0.21, 0.21, 0.21, 0.19)

seen in Fig. 1. This figure also compares these to the analytic
thresholds which shows how tight they are. Furthermore, the
maximal values grow linearly (tested up to k = 30, not shown
on the graph). This constant interval means that R3 would also
be able to distinguish between more highly coherent states.
The functions R4 and R5 seem to have even faster growth,
potentially making them more useful in such circumstances,
although the additional experimental difficulty in accurately
reconstructing higher moments should not be neglected [17].

IV. VERIFICATION OF k-COHERENCE IN THE
PRESENCE OF IMPERFECTIONS

In this section, we demonstrate that the present approach
can verify coherence properties, even in the presence of
substantial imperfections in the projective measurement and
that coherence can be detected even in highly mixed states.

A. Measurement tolerance

Having proved that an imperfect measurement will never
overestimate the coherence of a state, it is important to
demonstrate that it does not underestimate it too strongly ei-
ther. Therefore, we quantify this implication of measurement
imperfections here. To achieve this, we produce a sample
of random faulty measurements and estimate the deviation
from perfect measurement required to reduce the value of the
maximum k-coherent state below the threshold below which
k-coherence is not verified anymore.

We define the states |χk (τ )〉 that define a projective mea-
surement in terms of a random Hamiltonian Hr via the

FIG. 1. Comparison of numerical and analytical threshold val-
ues. The crosses show the maximum value that we found for R3 for
ρ ∈ Ck as a function of k. The solid blue line is a linear fit for these,
showing how they are equally spaced. The dashed orange line shows
what value the equal superposition state |Wk〉 has for the optimal
measurement for comparison and is given by 4+5k2+11k4

20k3 (derived in
Appendix D), which is asymptotically linear. The horizontal lines are
the analytic threshold values. For the two-coherent case, the equal
superposition and optimal states overlap, and lie immediately below
the threshold for certifying three-coherence. For the three-coherent
case and higher, there is a finite but small gap between the equally
balanced and optimal states. The threshold for four-coherence also
does not lie exactly above the maximum for three-coherence, but the
gap is again very small and, as we are lower bounding the amount
of coherence present, this only means that R3 is occasionally too
cautious.

relation

|χk (τ )〉 = U (τ ) |	k〉 := eiHrτ |	k〉, (11)

with |	k〉 given in Table II; the random Hamiltonians Hr are
drawn from the Gaussian unitary ensemble (GUE) [18].

The degree to which the projective measurement deviates
from the ideal measurement can be quantified by the norm

D(τ ) := || |χk (τ )〉 − |χk (0)〉 || ≡
d∑

i=1

[Ui j (τ )χ j − χi]
2, (12)

for each realisation of Hr .
Figure 2 depicts the ensemble average of R3(|	k〉 , |χk (τ )〉)

with the average performed over 100 random Hamiltonians
as function of D(τ ) with black lines for k = 3 and 4. The
blue and pink lines depict the width of the underlying dis-
tribution, and the horizontal black dashed lines depict the
threshold values for the detection of three-coherence and
four-coherence. As one can see, a substantial value of τ is
required before the recorded values of R3 drop below the
threshold values. As one might have expected the verification
of three-coherence can tolerate a large amount of deviations,
but even for the verification of four-coherence, a deviation
D � 0.3 is typically good enough.
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FIG. 2. Ensemble average (black) of R3 for the states |	k〉 (k = 4
at the top, k = 3 at the bottom) obtained with faulty measurements
as function of the measurement deviation D defined in Eq. (12).
The standard deviation of the random distribution is depicted with
solid (blue) and dotted (pink) lines centered around the average. The
values of D, for which the threshold values (Table I) are reached, are
depicted in turqoise crosses (ensemble average) with solid horizontal
red lines for the width of the distribution.

B. Decoherence tolerance

Since our central aim is the ability to verify coherence in
the presence of experimental imperfections, the big remaining
question is on the degree of decoherence that can be present,
before the present criteria fail to verify a desired level of
coherence. Repetitions of the experiment may result in some
instances of initially mixed states which are then evolved
through the system. The decoherence effects of such a faulty
state preparation is to reduce the visibility of the interference
pattern, thus rendering the task of bounding coherence more
challenging.

We explore the impact of decoherence by introducing the
Werner-like state [19]

ρW = (1 − λ) |Wk〉 〈Wk| + λ

k
Ik, (13)

and exploring the ability of the ratios to distinguish its level
of coherence. The Werner-like state is given by a mixture
of the equal superposition k-coherent state and the totally
incoherent state Ik/d . The degree of mixedness is varied
with the parameter λ ∈ [0, 1]. For λ = 0, the system is pure
and k-coherent, while λ = 1 corresponds to a completely
mixed state. Therefore, there must be a theoretical upper
bound λdec(q) above which the system is in Cq, but not Cq+1,
and as the noise increases further there must be another bound
above which the coherence drops further. For a k-dimensional
system, these bounds λdec(q) are given by

λdec(q) = k − q

k − 1
, 1 � q � k, (14)

as proved in Appendix E and also discussed in Ref. [16].
Similarly, we can define threshold values λ

(n)
thr (q) at which a

given certifier Rn fails to verify (q + 1)-coherence in a system
from its interference pattern. The values λ

(n)
thr (k − 1) at which

a given certifier Rn fails to identify k-coherence are depicted
in Table III for R3, R4, and R5, and numerical expressions for
λdec(q) are given for comparison.

TABLE III. Numerical expressions for decoherence thresholds
for the state ρW from Eq. (13), for R3, R4 and R5 between consecutive
levels of coherence for k = 3 to 10.

k 3 4 5 6 7 8 9 10

λ
(3)
thr (k − 1) 0.18 0.13 0.10 0.08 0.06 0.06 0.05 0.04

λ
(4)
thr (k − 1) 0.28 0.19 0.14 0.11 0.09 0.08 0.07 0.06

λ
(5)
thr (k − 1) 0.33 0.22 0.16 0.13 0.11 0.09 0.08 0.07

λdec(k − 1) 0.5 0.33 0.25 0.2 0.17 0.14 0.13 0.11

As one can see, the threshold values for the detection
of k-coherence are larger the smaller k is. k-coherence can
thus be identified for rather strongly mixed states as long
as k is sufficiently low. R5 can identify coherence for larger
values of λ (i.e., more strongly mixed states) than R4 for
any value of k, and R4 outperforms R3 in the same sense.
If a given Rn fails to verify k-coherence in a strongly mixed
state, one can thus resort to a certifier Rn with a larger value
of n, and find better performance. Even for R5, however, the
threshold value λdec(k − 1) is about 50% larger than λ

(5)
thr (q),

and higher moments would be required in order to identify the
k-coherence in very strongly mixed states.

C. Best approximations of interference pattern

In addition to the thresholds λdec(q) and λ
(n)
thr (k − 1) dis-

cussed above, there is also the threshold λpatt(q) at which
a given interference pattern no longer allows to verify q-
coherence. As Rn is a scalar functional of the interference
pattern, it can contain up to as much information as the pattern
itself, and a small difference between λpatt and λ

(n)
thr indicates

that only little information is lost by looking at the ratio of
specific moments instead of the full interference pattern.

These thresholds, for all n, satisfy the relation

0 < λ
(n)
thr (q) � λpatt(q) � λdec(q) < 1, (15)

for all n. The value of λpatt(q) is strongly dependent on the
measurement projection |χ〉 〈χ |, and we show in Appendix E
that the threshold values λpatt(q) and λdec(q) nevertheless
coincide for Werner-like states, with a projection onto the
equal superposition k-coherent state |Wk〉. Strikingly, this
verifies that in this case a single interference pattern can
provide enough information for a complete classification of
q-coherence.

For λ � λpatt(q), a q-coherent state is mixed enough to
produce a pattern p(t ) which can be reproduced by states
of lesser coherence. Patterns p(t ) resulting from states with
λ < λpatt(q), on the other hand, cannot be reproduced by states
in Cq−1. In order to exemplify the differences in interference
patterns that the present criteria aim at identifying, for a given
interference pattern p(t ) produced by a k-coherent state with
k > q, we introduce the best q-approximation p̄q(t ) to p(t ), as
the interference pattern resulting from q-coherent states only
with minimal deviation from p(t ).

In Fig. 3, we focus on R3 and we investigate the ability
to detect three-coherence on states ρW ∈ C3 with optimal
projection. The patterns corresponding to ρW are plotted for
λ = 0.18, 0.36, and 0.54 along with their best approximations

013220-5



BENJAMIN DIVE et al. PHYSICAL REVIEW RESEARCH 2, 013220 (2020)

(a)

(b) (c) (d)

FIG. 3. (a) Interference patterns p(t ) of ρW ∈ C3 in a three-
dimensional space with different values of λ projected under optimal
measurement state |W3〉 (solid/dotted curves), along with their best
approximations p̄2(t ) (dashed curves) reproduced by states in C2.
The R3 values of the states are, 1.26, 0.88, 0.60, with increasing
λ, so the system corresponding to λ = 0.18 can be certified by R3

as three-coherent. [(b)–(d)] Three linearly independent two-coherent
states that, when mixed with the given probabilities pm, provide the
best approximation of ρW at λ = 0.18.

p̄2(t ). As long as λ < λdec(3) = 1
2 , which is the case for

the red and blue curves (corresponding to λ = 0.18 and 0.36,

respectively), the pattern cannot be reproduced by states in
C2, as expected, since λpatt(3) = λdec(3). The green pattern
(λ = 0.54) can be reproduced by states in C2 exactly, because
in this case λ > λdec(3). If the projection was sufficiently far
from the optimal, the red and blue patterns would also be
exactly reproducible by patterns of two-coherent states. The
red pattern corresponds to ρW (λ = 0.18), and has a value
of R3 (when maximized over |χ〉) of 1.26, which lies above
the threshold given in Table I to certify a state as three-
coherent. The bottom part of the plot gives the patterns of
the three two-coherent states which, when mixed, provide
the best approximation to the red ρW pattern. Three is the
minimum number of basis states required to form the three-
dimensional Werner-like state. For λ > 2

3 , the patterns could
also be decomposed simply into incoherent states, as Eq. (14)
indicates.

V. CONCLUSION

Despite the numerous similarities between the theories
of entanglement and coherence, the equality in operation
required for creation and verification of quantum coherence
defines a crucial difference between those two theories. Our
proposed solution relies on easily observable quantities such
that an imperfectly implemented verification protocol can
never overestimate the degree of coherence. As such, it offers

very practical and robust avenue to rigorously verify coher-
ence properties beyond the two-level setting.

Beyond the fundamental question when is a triple-slit in-
terference pattern so washed out, that one can not recognize it
anymore, the ability to verify the number of states contributing
to a coherent superposition has also very practical applications
in the verification that a potential quantum device is actually
able to operate in the quantum regime that it is supposed to.
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APPENDIX A: PROOF THAT Rn IS CONVEX
IN EITHER ARGUMENT

To prove that Rn is convex under the mixing of states it
suffices to show that

Rn(λρ1 + (1 − λ)ρ2, |χ〉)

� λRn(ρ1, |χ〉) + (1 − λ)Rn(ρ2, |χ〉), (A1)

for all pairs of states ρ1, ρ2, for all projectors |χ〉 〈χ |, and for
all λ ∈ [0, 1].

This property holds for the moments themselves, which are
convex and positive by construction. Products and sums of
such functions stay convex, but this is not necessarily the case
for ratios of them. We prove that this particular function is
indeed convex, for n � 2, by taking the second derivative of
Eq. (A1) with respect to λ and showing that it is always non-
negative.

This second derivative is

∂2
λRn = M3n−5

1

M4n−4
1

[
M2

1∂2
λMn − 2(n − 1)M1(∂λM1)∂λMn

+ n(n − 1)(∂λM1)2Mn
]
.

Denoting the integrand of Mn in Eq. (2) by pn and the
time average by 〈·〉, allows the derivatives to be calculated
according to

∂λMn = 〈n(∂λ p)pn−1〉,
∂2
λMn = 〈n(n − 1)(∂λ p)2 pn−2〉.

Substituting these expressions into Eq. (A2) gives

∂2
λRn = M3n−5

1

M4n−4
1

〈n(n − 1)pn−2[p〈∂λ p〉 − 〈p〉∂λ p]2〉, (A2)

where the fraction at the front is non-negative, as is the
squared term in the time average and its prefactor (for n � 2),
thereby showing that Rn is convex as desired.
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APPENDIX B: PROOF THAT Rn IS MAXIMIZED FOR
EQUAL PREPARATION AND PROJECTION

We begin by noting that the expression for the probability
distribution in Eq. (2) for pure states is given by the double
sum

p(|ψ〉 , |χ〉 , t ) =
∑
p,q

χ∗
pψpψ

∗
q χqe−i(p−q)t , (B1)

where |ψ〉 = ∑
p ψp |p〉, |χ〉 = ∑

q φq |q〉 and the basis states
are eigenkets of the Hamiltonian of Eq. (1) H = ∑

n n |n〉 〈n|.
By defining ψpχ

∗
p = αpeiφp , φpq = φp − φq and ωpq = p − q

this can be recast as

p(|ψ〉 , |χ〉 , t ) =
∑

p

α2
p + 2

∑
p>q

αpαq cos(ωpqt + φpq),

(B2)

where the α are real and non-negative by construction.
We now show that the maximum of this over k-coherent

|ψ〉 and any |χ〉 is reached when the phases φpq are all zero,
for all k. Firstly, because integrating cosines over an integer
number of periods gives zero, the first moment is independent
of them,

M1 = 2π
∑

p

α2
p. (B3)

It is therefore clear that changes in φpq (arising from different
phases between the state and the projector) affect the numer-
ator of Rn but not the denominator. The terms of M>1 which
depend nontrivially on the phases are inside the integral over
time and are of the form

∫ 2π

0

(∑
p>q

αpαq cos(ωpqt + φpq)

)m

dt . (B4)

To see which terms do not vanish when integrated over, it is
useful to look at the products of cosines individually

∫ 2π

0
αp1αq1 cos

(
ωp1q1t + φp1q1

)
× αp2αq2 cos

(
ωp2q2t + φp2q2

) × . . . dt . (B5)

which can themselves be expanded into a sum of cosines,
where each term is of the form

∝
∫ 2π

0
cos

[(
ωp1q1 ± ωp2q2 . . .

)
t + φp1q1 ± φp2q2 . . .

]
dt .

(B6)

If the sum (for the different permutations of signs) of fre-
quencies do not sum to 0, then the integral vanishes. If they
do sum to 0, the term is proportional to the cosine of the
sum (for the different permutations of signs) of the phases.
One of the solutions which maximizes this is to pick all the
φpq = 0, which simultaneously maximizes every such integral
no matter the number of terms or the sign configuration. This
itself increases Mn and therefore the value of Rn.

In this case that there are no relative phases, Rn can be
written in terms of a simplified Eq. (B2) as

Rn(|ψ〉 , |χ〉) =
∫ 2π

0

(∑
p α2

p + 2
∑

p>q αpαq cos(ωpqt )
)n

dt

2π
( ∑

p α2
q

)n−1 .

(B7)

From this it can be seen that the mapping αp → xαp changes
the function Rn → x2Rn. It is therefore desirable to scale the α

to be as large as possible. The extent to which this can be done
is bounded by the normalisations of the states, using Cauchy-
Schwarz we can express this as(∑

p

αp

)2

=
(∑

p

ψpχp

)2

�
(∑

p

ψ2
p

) (∑
p

χ2
p

)
= 1,

�⇒
∑

p

αp � 1, (B8)

Furthermore, any set of {αp} that satisfy this bound can be
realized by the normalized states |ψ〉, |χ〉 by picking their
amplitudes according to ψp = χp = √

αp.
Taking a step back, what we have shown by parametrizing

the function Rn in terms of {αp, φp}, is that the maximum of
Rn occurs when φp = 0 and

∑
αp = 1. These two conditions

are equivalent, in terms of the physical state and measurement
projector, to having |ψ〉 = |χ〉. Thus we know that Rn is
maximized when the input state is pure and the projective
measurement is equal to it, thereby greatly shrinking the space
over which we have to optimize. Note that this is not the same
as the subtly different question of whether the optimal |χ〉 that
should be picked for a given |ψ〉 is for them to be the same.
Here, we are only interested in the overall bound Rn can have
over any input state with a fixed k-coherence.

APPENDIX C: DERIVATION OF ANALYTIC
THRESHOLD VALUES

We now compute the maximum of Eq. (B7) for n = 3 as
a function for k where |ψ〉 〈ψ | ∈ Ck . For k = 2, this is easily
done by using the previously found constraint of

∑
αp = 1.

We denote the two nonzero α’s as x and 1 − x and can perform
the integration over time explicitely to arrive at

max
ρ∈C2,|χ〉

R3(ρ, |χ〉) = max
x∈[0,1]

1 + 2x(x − 1)(5x2 − 5x + 2)

1 + 2x(x − 1)
.

(C1)

The right-hand side is easily solved analytically and gives a
value of 5/4. Therefore measuring an R3 of greater than that
value implies that the state must be at least three-coherent.

To deal with higher k, it is highly advantageous to
reparametris the optimsation problem. the starting point is
Eq. (B7) and we now make another simplification in the
notation by grouping together terms with the same frequency
ωpq = p − q. This allows the sum over the cosines to be
expressed as∑

p>q

αpαq cos(ωpqt ) =
∑

n

Dn cos(ωnt ) (C2)

013220-7



BENJAMIN DIVE et al. PHYSICAL REVIEW RESEARCH 2, 013220 (2020)

where the new variables are given by

Dn =
∑

p

αp+nαp, ωn = n, (C3)

which also lets us rewrite the term
∑

p α2
p = D0, thereby

unifying the notation. We also recall that, from previous
arguments, that

∑
p αp = 1 for the maximum of the func-

tion. Using this notation in Eq. (B7) for the case n = 3, we
obtain

R3(|ψ〉, |χ〉)

=
∫ 2π

0

[
D0 + 6

∑
i

Di cos(ωit )

+ 12

D0

∑
i j

DiDj cos(ωit ) cos(ω jt )

+ 8

D2
0

∑
i jk

DiDjDk cos(ωit ) cos(ω jt ) cos(ω jt )

⎤
⎦ dt .

(C4)

Performing the integrals in the way described earlier, only
terms where the ω sum to 0 contribute, which yields

R3(|ψ〉 , |χ〉) = 6D0

(
1
6 + ∑

i j
DiDj

D2
0

δi j + ∑
i jk

DiDj Dk

D3
0

σi jk

)
= D0

(
1
6 + ∑

i D̃2
i + ∑

i jk D̃iD̃ jD̃kσi jk

)
, (C5)

where σi jk is a phase matching condition which is 1 if i + j =
k and 0 otherwise, and D̃i = Di/D0.

Finding the maximum value of R3 over all k-coherent states
as a function of k has proved very difficult. What we have
found is a method to calculate an analytic upper bound for
this quantity for a given k. We have evaluated this bound for
small k and, although the method is applicable in general, it
may be too laborious to be practical for high k.

The key idea is to treat the {D̃i} as independent variables
to optimize over and D0 as a “free” parameter. Equation (C3)
is used to form linear constraints on the {D̃i}, which forms
an outer approximation to the physically allowed region for
a choice of D0. We then show that in this region R3 has a
positive definite Hessian, which implies that for any line cut-
ting through this region, the maxima of the function must be
reached where the line crosses the bounding surface. There-
fore the maximum value is attained at one of the vertices. As
this region is defined by linear constraints it is a polytope,
and hence has only a finite number of vertices which can be
individually evaluated to see which produces the largest value
of R3. The remaining step is then optimize over D0, which is
easily done numerically as the problem is reduced to finding
the turning points of a quotient of low order polynomials in
one variable.

Although we could not show that the Hessian is positive in
general, we do find that it is in all the cases of interest. For
convenience, it is useful to list its components here. These are

the derivatives of R3, which are given by

∂D̃a
R3 = 6D0

⎛
⎝2Da + 2

∑
jk

D̃ jD̃kσa jk +
∑

i j

D̃iD̃ jσi ja

⎞
⎠,

∂D̃a
∂D̃a

R3 = 12D0(1 + D2a), (C6)

∂D̃b
∂D̃a

R3 = 12D0(Da+b + D|a−b|). (C7)

We now apply the method outlined above to k = 3, treating
the case where the dimension of the Hamiltonian is truncated
at d = 3 and where it is unbounded separably. We also cal-
culate the case k = 4, d = 4 to show that the method can be
applied to higher coherence levels.

1. k = d = 3

For states which are at most three-coherent in a three-
dimensional Hamiltonian, the variables are explicitely given
by

D0 = α2
1 + α2

2 + α2
3,

D1 = α1α2 + α2α3,

D2 = α1α3,

1 = α1 + α2 + α3.

From this we can write some inequalities which constrain the
allowed values. Firstly, as the α’s are all positive we have that
0 � D0 and 0 � D̃i. Secondly, the triangle inequality implies
that

1

d
� D0 � 1. (C8)

The first nontrivial constraint comes about from the same
starting point

1 = (α1 + α2 + α3)2

= D0 + 2D1 + 2D2

= D0

(
1 + 2

∑
i

D̃i

)
. (C9)

From these two relations we upper bound the maximum
values of any D̃i

1

d

(
1 + 2

∑
i

D̃i

)
� 1,

∑
i

D̃i �
d − 1

2
,

D̃i �
d − 1

2
. (C10)

Other inequalities can be obtained by considering well chosen
sums of squares, the three useful ones are listed here. Firstly,

(α1 − α3)2 + α2
2 � 0,

D0 − 2D2 � 0,

1 − 2D̃2 � 0. (C11)
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Changing the sign gives a different inequality

(α1 + α3)2 + α2
2 � 1

2 ,

D0 + 2D2 � 1
2 , (C12)

D0(1 + 2D̃2) � 1
2 ,

where the triangle inequality is used in the first line. Lastly,
there is

(α1 − α2 + α3)2 � 0,

D0 − 2D1 + 2D2 � 0,

1 − 2D̃1 + 2D̃2 � 0. (C13)

The last three equations (for fixed D0) define a triangular
region of interest, while Eq. (C9) is a line that cuts through
it. They can be expressed as succinctly as

max

(
1 − 2D0

4D0
, 0

)
� D̃2 � 1

2
,

0 � D̃1 = 1 − D0

2D0
− D̃2 � 1,

0 � 1 − 2D̃1 + 2D̃2. (C14)

In order to be sure that the maxima of the function in this
region is located at the vertices, we need the Hessian, which
is (

1 + D2 D1

D1 1

)
,

which is strictly positive definite everywhere in the allowed
region. Therefore the only points that need to be examined are
the vertices of the polytope (in this case, just a line) defined by
Eq. (C14) for the valid range of D0. It therefore just remains to
find these vertices by solving these equations on the boundary
in the D̃1-D̃2 plane, which depends on the value of D0. They
can be summarized as

D̃1 D̃2 D0 max R3

1−D0
2D0

0 1
2 � D0 � 1 1.25

1−2D0
2D0

1
2

1
3 � D0 � 1

2 1.58
1

4D0

1−2D0
4D0

1
3 � D0 � 1

2 1.86

where the largest values of R3 over all D0 in the allowed
range are also given. From this we can conclude that if R3

is larger than 1.86 we can certify that the state is not a
three-coherent state lying in adjacent energy levels of an SHO.
For comparison, the perfectly balanced state gives 1.74 and
the largest value we could fine numerically was 1.77. The
largest value found for a four-coherent state (that we want to
distinguish from) is 2.32, while for a two-coherent state it is
1.25.

2. k = 3, d � 3

We now remove the restriction on the dimension and
instead restrict ourselves to a three-level state, which is to say
that only 3 of the α’s are nonzero. Without loss of generality,
we have as the three populated levels 1, p, q with 1 < p < q.
This means that the only nonzero variables are α1, αp, αq,

which gives

D0 = α2
1 + α2

p + α2
q, (C15)

Dp−1 = α1αp, (C16)

Dq−p = αpαq, (C17)

Dq−1 = α1αq (C18)

with the assumption that p − 1 �= q − p. If these are equal,
then the energy levels are equally spaced and we are back to
the three-level case considered in the first instance. As before,
we now find inequalities on the D̃’s to define a volume. As
each one only contains a single term, this can be done for each
independently by considering

(αi − α j )
2 + α2

k � 0, (C19)

(αi + α j )
2 + α2

k � 1
2 , (C20)

where i, j, and k are all different. This and results of
Eqs. (C8) and (C9) gives

max

(
0,

1 − 2D0

4D0

)
� D̃i �

1

2
, (C21)

1

3
� D0 � 1, (C22)

D̃p−1 + D̃q−p + D̃q−1 = 1 − D0

2D0
. (C23)

The first line defines a cube in D̃i space and the last two a
family of planes that cut through that space. We show that
within the cube the Hessian is always positive.

The function R3, and therefore the Hessian, depends on the
indices of the D̃ due to the σ “energy matching” term in the
triple sum. There are several triplets that could enter:

Dp−1 Dq−p Dq−1 (C24)

always contributes

Dp−1 Dp−1 Dq−1 or Dq−p Dq−p Dq−1 (C25)

are ruled out by the condition p − 1 �= q − p

Dp−1 Dp−1 Dq−p (C26)

if and only if q = 3p − 2

Dq−p Dq−p Dp−1 (C27)

if and only if q = 1
2 (3p − 1).

The first case is the generic one. The second case hap-
pens if the energy differences are equal, which we explicitly
rule out. The third case happens if the populated levels are
(1, 2, 4), (1, 3, 7), . . . where the energy difference is in the
ratio 1 : 2. The third case requires the populated levels to
be (1, 3, 4), (1, 5, 7), . . . where the energy difference has
the ratio 2 : 1. This is therefore identical to the previous
case under the Hamiltonian mapping H → −H , which clearly
leaves the interference pattern unchanged.
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There are thus two different cases to consider. The Hessian in the first case is⎛
⎜⎝

1 D̃q−1 D̃q−p

D̃q−1 1 D̃p−1

D̃q−p D̃p−1 1

⎞
⎟⎠. (C28)

This is positive definite as, from Eq. (C23) all principle minors of the matrix are themselves positive definite in the cubic region
of interest [20]. The second case has the Hessian⎛

⎜⎝
1 + D̃q−p D̃q−1 + D̃p−1 D̃q−p

D̃q−1 + D̃p−1 1 D̃p−1

D̃q−p D̃p−1 1

⎞
⎟⎠, (C29)

which is also positive everywhere, except potentially at some of the vertices of the cube.
The vertices can be found in much the same way as before, except that the boundaries are now symmetric between the D̃i.

We therefore give them as triplets where all permutations need to be considered separately for evaluating R3.

D0 D̃i D̃ j D̃k max R3(generic) max R3(1 : 2 ratio)
1
2 < D0 � 1 0 0 1−D0

2D0
1.25 1.25

1
3 � D0 � 1

2
1−2D0

4D0

1−2D0
4D0

1
2 1.27 1.33

(C30)

Importantly, these values are all lower than for the case
of a three-level system in adjacent energy levels. Therefore
the previous result we had is very significantly strengthened:
if R3 is larger than 1.86 then we know that the state is not
three-coherent for any Hamiltonian.

3. k = d = 4

To highlight that this algorithmic way of calculating the
threshold values can be extended to high dimensions, we
demonstrate it for the case of four-coherent states. In order
to reduce the number of cases to consider, we limit ourselves
to states where the four populated levels are all adjacent basis
states of an harmonic Hamiltonian. For this case, the variables
are

D0 = α2
1 + α2

2 + α2
3 + α2

4,

D1 = α1α2 + α2α3 + α3α4,

D2 = α1α3 + α2α4,

D3 = α1α4.

Equations (C8)–(C10) hold as before. Other bounds can be
obtained in a similar way to before by considering sums of
squares. These are firstly

(α1 − α3)2 + (α2 − α4)2 � 0,

1 − 2D̃2 � 0, (C31)

and

(α1 + α3)2 + (α2 + α4)2 � 1
2 ,

D0(1 + 2D̃2) � 1
2 . (C32)

Similarly there is

(α1 − α4)2 + α2
2 + α2

3 � 0,

1 − 2D̃3 � 0, (C33)

and

(α1 + α4)2 + α2
2 + α2

3 � 1
3 ,

D0(1 + 2D̃3) � 1
3 . (C34)

Finally

(α1 − α2 + α3 − α4)2 � 0,

1 − 2D̃1 + 2D̃2 − 2D̃3 � 0. (C35)

Rougher versions of these can be obtained by eliminating
D0 by taking the “worst case” approach, providing the simple
inequalities

D̃1 � 1, D̃1 + D̃3 � 1,

D̃2 � 1
2 , D̃3 � 1

2 , (C36)

which will be useful in proving the positivity of the Hessian.
The Hessian is given by⎛

⎝ 1 + D2 D1 + D3 D2

D1 + D3 1 D1

D2 D1 1

⎞
⎠. (C37)

The easiest way to prove positivity is, as before, to show
that each of the principle minors is itself positive definite in
Ref. [20], which is straightforward to compute in the region
of interest defined by the inequalities Eq. (C36). As before,
it remains to find the vertices as a function of D̃2. This is a
harder problem than before, which is most easily tackled by
rewriting the tighter inequalities as

max

(
0,

1 − 2D0

4D0

)
� D̃2 � 1

2
, (C38)

max

(
0,

1 − 3D0

6D0

)
� D̃3 � 1

2
, (C39)

0 � 1 − 2D̃1 + 2D̃2 − 2D̃3, (C40)

0 � D̃1 = 1 − D0

2D0
− D̃2 − D̃3 � 1. (C41)
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The first two describe a surface in the D̃2 − D̃3, with the
coordinates of the vertices depending on the value of D0. The
third equation states how this protrudes in the D̃1 direction.
The fourth describes a plane that cuts this volume, and im-
poses additional physical constraints. The way to solve this
is therefore, for a given range of D0, to find the vertices in
the D̃2 − D̃3 plane (a maximum of 4), find the corresponding
value of D̃1 and check if any additional constraints on D0 arise.
The results are summarized below.

D0 D̃1 D̃2 D̃3 max R3

1
2 < D0 � 1 1−D0

4D0
0 0 1

1−2D0
2D0

1
2 0 1.58

1
3 < D0 � 1

2
1−2D0

4D0

1−2D0
4D0

1
2 1.25

1
4D0

1−2D0
4D0

0 1.86
1−3D0

2D0

1
2

1
2 1.33

1
4 � D0 � 1

3
2−3D0

6D0

1
2

1−3D0
6D0

2.44
1−2D0

4D0

1−2D0
4D0

1
2 1.93

(C42)

We see that the plane can intersect the volume at a single
point (one vertex), in a plane (three vertices) or, in the case
that D0 = 1

4 in a line (two vertices). It is to be expected
that this geometry becomes far more complicated in higher
dimensions. This sort of analyses ought to generalize, but
doing so is probably difficult. Nevertheless, from the table we
can conclude that if R3 is larger than 2.44 we can certify that
the state is not a four-coherent state lying in adjacent energy
levels of an SHO. For comparison, the perfectly balanced state
gives 2.26 and the largest value we could fine numerically was
2.32. The largest value found for a five-coherent state (that we
want to distinguish from) was 2.88.

APPENDIX D: DERIVATION OF R3(|Wk〉, |Wk〉)

We seek an exact analytical expression for the value of the
certifier R3 for the maximally coherent state, R3(|Wk〉 , |Wk〉).
For the Hamiltonian in Eq. (1), the certifier can be rewritten
as

R3(|Wk〉 , |Wk〉) = 1

k
+ 12

k3

1

T

∫ T

0

⎛
⎝∑

i< j

cos (ωi, jt )

⎞
⎠

2

+ 8

k4

1

T

∫ T

0

⎛
⎝∑

i< j

cos (ωi, jt )

⎞
⎠

3

, (D1)

for energy level differences ωi, j = |i − j|.
The first and second integrals involve products of two and

three cosinusoidal terms, respectively. Using the trigonomet-
ric identity for terms of frequencies α > β > γ � 0,

cos (α) cos (β ) cos (γ )

= 1
4 [cos (α + β + γ ) + cos (−α + β + γ )

+ cos (α − β + γ ) + cos (α + β − γ )], (D2)

these products are reduced into linear terms. We need to find
those that survive and calculate the integrals for them. The
condition α = β + γ is equivalent to the statement that at

least one, and in fact exactly one, of the linearized terms
survives. In other words, the largest energy level spacing
must be equal to the sum of the two smaller ones. Once the
conditions for nonvanishing terms in the products of cosines
have been identified, it is a matter of counting the number
of combinations A and B of energy levels that obey these
conditions and survive in the first and second integral in
Eq. (D1) respectively, leading to

R3 = 1

k
+ 6

k3
A + 2

k4
B. (D3)

Calculating A is simple, since in this case γ = 0 and the
nonvanishing terms are the ones with identical cosines multi-
plied together. Therefore summing over all different values of
ωi, j gives

A =
k−1∑
n=1

n2 = k(k − 1)(2k − 1)

6
. (D4)

Calculating B requires that cosine terms multiplied to-
gether satisfy that the largest frequency equals to the sum
of the smaller ones. Let us label the largest frequency by
ωi,i+α , then it has multiplicity (k − α) and there are Sα ways
that two frequencies can sum up to ωi,i+α . Now, we seek all
frequencies ω j1, j1+β and ω j2, j2+γ of multiplicities (k − β ) and
(k − γ ) respectively, for which ωi,i+α = ω j1, j1+β + ω j2, j2+γ ,
for all indices i, j1, j2. The last factor to consider is that the
three cosines may be multiplied together in any order, so
there is a combinatorial coefficient of 3! when three different
frequencies are multiplied together and 3!

2! when the two
shorter frequencies are the same, as in when β = γ , which
can only happen for even α. We now reach the expression

Sα =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

3!
∑

β + γ = α

β �= γ

(k − β )(k − γ ) (α is odd)

3!
∑

β + γ = α

β �= γ

(k − β )(k − γ ) + 3!
2!

(
k − α

2

)2
(α is even)

(D5)

= 1
2 (α − 1)(α + α2 − 6αk + 6k2), (D6)

for any 0 < α < k. Finally, summing over all allowed energy
level differences,

B =
k−1∑
α=1

(k − α)Sα = 1

40
k(k − 1)(k − 2)(2 − 7k + 11k2).

(D7)
Substituting A and B in Eq. (D3), we get the desired sequence

R3(|Wk〉 〈Wk|, |χ0〉) = 4 + 5k2 + 11k4

20k3
. (D8)

APPENDIX E: DERIVATION OF DECOHERENCE
THEORETICAL AND PATTERN THRESHOLDS

We first derive the theoretical threshold of coherence for
the Werner-like state ρW of Eq. (13) and then prove that an
interference pattern gives a threshold equal to the theoretical,
under optimal measurement.

We observe that ρW ∈ Ck is fully symmetric under per-
mutations of basis states as well as that all the off-diagonal
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elements are 1−λ
k , resulting in

C�1 (ρW ) = (k − 1)(1 − λ), (E1)

where C�1 (ρ) := ∑
i �= j |ρi j | is the �1-norm as studied by Bera

et al. [21]. These two properties define a Werner-like state.
In general, the �1 norm of a q-coherent state is bounded

from above. The bound is obtained when the system state is
pure since C�1 is a convex measure [21]. Let ρ = |α〉 〈α| ∈ Cq

for a state |α〉 defined in the reference basis, so that ρi j =
αiα

∗
j = α∗

i α j and Tr[ρ] = ∑q
i=1 |ρii| = 1.

(q − 1) − C�1 (ρ) = (q − 1)
q∑

i=1

|ρii| − 2
∑
i< j

|ρi j | (E2)

=
∑
i< j

(|αi| − |α j |)2 � 0. (E3)

This means that the coherence of the system is bounded above,

C�1 (ρ) � q − 1, (E4)

with equality obtained when ∀i, j, |αi| = |α j | in the reference
basis, so that |α〉 is the maximally q-coherent state.

Using Eqs. (E1) and (E4), we obtain for the Werner-like
states in Cq

λ � k − q

k − 1
(E5)

∴ λdec(q) = k − q

k − 1
, 1 � q � k. (E6)

Now projecting with the optimal measurement |Wq〉 , we
get

p(t ) = 〈Wq|ρW |Wq〉 (E7)

� 1

k
+ 2

k

∑
i< j

|ρi j | = 1

k
+ 1

k
C�1 (ρ) (E8)

� 1

k
+ q − 1

k
= q

k
. (E9)

Therefore a pattern with a maximum higher than this
boundary value q/k cannot be decomposed into patterns aris-
ing from states of q-coherence or lower. We get the threshold
value λpatt(q) at which the interference pattern can no longer
distinguish consecutive coherence levels, by bounding the
interference pattern produced from the Werner-like state by
the probability maximum, so that

q

k
� 〈Wq|ρW |Wq〉 = 1 − λ + λ

k

⇒ λ � k − q

k − 1

∴ λpatt(q) = k − q

k − 1
, 1 � q � k, (E10)

which coincides with λdec(q).
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