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Magnetic penetration depth and Tc in superconducting nickelates
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We compute the nominal magnetic penetration depth of RNiO2 (R = La, Nd) from first-principles calculations
and discuss the results in relation to the superconducting Tc. We find a marked discrepancy with the well-
established phenomenology that correlates these two quantities in cuprates (Uemura plot). We also consider
the two-dimensional ultrathin limit and estimate the maximum attainable Tc to be ∼180 K according to the
Nelson-Kosterliz universal relation between the superfluid density and the transition temperature.
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I. INTRODUCTION

The recent discovery of superconductivity in Sr-doped
NdNiO2/SrTiO3 thin films [1] has attracted an instantaneous
research attention (see, e.g., [2–13]). After many attempts,
this can potentially be the first successful extension of high-Tc

cuprate superconductivity to isostructural/isoelectronic nick-
elates. This important breakthrough can thus shed light on
their elusive microscopic superconducting mechanism, even
if it poses some important challenges to current paradigms.
In particular, the parent nickelates are metals without mag-
netic order as opposed to their cuprate counterparts that are
antiferromagnetic charge-transfer insulators. Consequently,
Cooper pairing in (Nd,Sr)NiO2 seems to emerge from a rather
different normal nonsuperconducting state.

First-principles calculations based on density-functional
theory (DFT) consistently find that, among the five Ni-
3d bands, only the 3dx2−y2 states intercept the Fermi level
[2–6,14]. This establishes a promising analogy to CaCuO2,
i.e., the parent compound of high-Tc cuprates. In fact, the
electron-phonon coupling has been ruled out as the exclusive
origin of the observed superconductivity in (Nd,Sr)NiO2 [5].
At the same time, electrons in the Nd layer make additional
electron pockets in the Fermi surface that likely prevent
the system from being a simple Mott insulator, with Kondo
physics potentially playing a role [6–8]. Besides, the charge-
transfer gap between the Ni-3d states and O-2p states is larger
than that in cuprates [9]. On the other hand, spin fluctuations
may still be important for superconductivity, even if there
is no long-range magnetic order. In that case, the dominant
pairing has been proposed to yield a d-wave superconducting
gap [3,4] with a distinct spin resonance feature that can be
tested experimentally [10]. Here, we compute the nominal
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magnetic penetration depth of the superconducting nickelates
as a function of hole doping and discuss these theoretical
results in relation to the observed Tc.

II. PRELIMINARIES

A. Zero-temperature magnetic penetration depth
as a band-structure property

The magnetic penetration depth λ is pivotal to explain the
Meissner effect and therefore is a fundamental quantity of
superconductors [15]. This quantity can be determined exper-
imentally by means of different complementary techniques
such as the tunnel diode oscillator technique [16,17] and
muon-spin resonance (μSR) [18–21]. The temperature depen-
dence of λ maps the amount of excited quasiparticles and
thereby the structure of the superconducting gap. However,
in the London approximation, the zero-temperature magnetic
penetration depth in the clean limit reduces to λL(T = 0) =√

m∗
μ0nse∗2 , where m∗ is the effective mass of charge carriers, μ0

is the vacuum permeability, ns is the charge carrier density,
and e∗ is an effective electron charge. Thus, it basically
becomes a band-structure property formally unrelated to the
gap function. In fact, from a semiclassical generalization of
the London equation [22] or Eilenberger’s formulation of
superconductivity [23] (see Appendix A), a band-structure-
specific result can be obtained as

(λ2)−1
i j (T = 0) = μ0e2

4π3h̄

∮
FS

dS
vFivF j

vF
, (1)

where the integral is over the Fermi surface with vF being the
Fermi velocity (the subscripts i, j = x, y, z refer to principal
axes). In the following, we will make use of this result to
discuss the superconducting properties of the nickelates.

B. Computational methods

We computed Eq. (1) from DFT calculations that conve-
niently reproduce the reported band structure of the La and
Nd nickelates. Specifically, we used the FLAPW method as
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FIG. 1. First-principles band structure (left, “fatband” plot), orbital resolved density of states (middle), and top view of Fermi surface
(right) of LaNiO2.

implemented in the WIEN2K package [24] with the local den-
sity approximation (LDA) exchange-correlation functional
[25]. In order to avoid the ambiguous treatment of the f -
orbital bands, we followed [2,3] and focused on the mother
compound LaNiO2. Further, we modeled Sr doping as a
rigid shift of the Fermi level as in [4] and also within the
virtual-crystal approximation (VCA) as in [3]. We also con-
sidered NdNiO2 with the Nd-4 f states in the core as well
as the influence of epitaxial strain, with which we obtained
almost identical results. We performed spinless calculations
with muffin-tin radii of 2.5, 2.1, and 1.62 a.u. for the La
(Nd), Ni, and O atoms, respectively, and a plane-wave cutoff
RMTKmax = 7.0. The integration over the Brillouin zone was
performed using a 11 × 11 × 14 k mesh for the self-consistent
calculations, while a dense 48 × 48 × 48 k mesh was used to
compute and study the Fermi surface. In our calculations, the
Fermi velocity is directly obtained from the expectation value
of the momentum operator p (vF = pF /m), and the dense k
mesh was used to further perform the Fermi-surface integral.

III. RESULTS

Figure 1 illustrates the reference band structure of the
infinite-layer nickelates [2–4,14,27]. The Ni-3d states inter-
cepting the Fermi level give rise to the large holelike Fermi
surface α dominated by 3dx2−y2 contributions. Interestingly,
this pocket α seems to originate from two different bands
that undergo an avoided crossing along the Z-R path where
their dx2−y2 and dz2 characters swap (see Appendix B). To the
best of our knowledge, this feature was first pointed out in
[28]. We find that this avoided crossing and its concomitant
dx2−y2 -dz2 mix changes with doping (see Appendix B), thereby
having a potential effect on the superconducting instability
[29] that has not been considered so far. In addition, there is
a self-doping effect due to La-5d states that results into to the
extra electronlike Fermi surfaces β and β ′.

The nominal λ(0) of the superconducting nickelates as a
function of Sr doping is reported in Table I. These values are
obtained using a rigid shift of the Fermi level, and essentially
the same is obtained using VCA (see Appendix C). Even
if superconductivity has been reported for 20% doping so
far, the nominal values computed for other dopings allow
us to get an idea of the possible variations in λ(0) due to
physical changes in the corresponding band structure (which

can be taken as a sort of “error bar”). These results confirm
that (Nd,Sr)NiO2 is a type-II superconductor (i.e., κ ≡ λ/ξ >

1/
√

2, with ξ = 3.25 nm being the Ginzburg-Landau coher-
ence length [1]). In the case of the overall in-plane component
λx(0), the main contribution originates from the main hole
pocket α and does not vary dramatically with doping. The out-
of-plane component λz(0), in contrast, is initially dominated
by the electron pocket β and therefore undergoes a more
substantial change as β shrinks with doping. Note that, despite
the apparent two-dimensional (2D) character of α [14], the
anisotropy of this contribution is moderate compared to that in

TABLE I. Zero-temperature magnetic penetration length ob-
tained from DFT calculations in the London approximation for
different values of Sr (hole) doping (modeled as a rigid shift of the
Fermi level). Only the diagonal terms are nonzero by symmetry, and
are denoted by a single subscript (λx = λy and λz). The effective
lambda is defined as λeff = 31/4[1 + 2(λx/λz )2]−1/4λx , as probed by
μSR in polycrystalline samples [26]. The values for NdNiO2 are
obtained assuming the Nd-4 f states in the core.

Doping FS (λx (0), λz(0)) (nm) λeff (0) (nm)

LaNiO2 0 α (47, 245) 61
β (140, 120) 133
β ′ (365, 300) 340

Total (44, 101) 54

0.1 α (49, 170) 62
β (165, 140) 156

Total (47, 108) 57

0.2 α (50, 215) 64
β (205, 175) 194

Total (48, 136) 60

0.3 α (51, 160) 64
β (275, 240) 262

Total (50, 133) 62

0.4 α (54, 163) 68
β (450, 580) 486

Total (54, 156) 67

NdNiO2 0.2 α (49, 180) 62
β (190, 160) 179
β ′ (290, 220) 262

Total (47, 105) 57
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FIG. 2. Uemura log-log plot for the zero-temperature effective
magnetic penetration depth of (Nd,Sr)NiO2 computed from Eq. (1).
The solid circle corresponds to 20% Sr doping and Tc = 15 K, while
the open circles are associated to the 10%, 30%, and 40% dopings in
Table I assuming the same Tc.

cuprates and displays a nonmonotonous behavior with doping.
This should not be surprising if the α pocket results from two
different bands undergoing an avoided crossing that changes
with doping (see Fig. 3 in Appendix B). Beyond that, the
effective λeff probed by μSR turns out to be essentially that
of the hole pocket α (with β having the effect of reducing the
anisotropy resulting from α only).

IV. DISCUSSION

Our results are summarized in Fig. 2 in a Uemura plot. As
we can see, the calculated λeff ’s are totally off the expected
values for a cuprate with Tc ≈ 15 K (shaded region). The
modification of the effective mass due to correlations can to
some extent improve the agreement. However, the mass has
to be >10 times larger to do the job, which seems unlikely
according to DMFT results (see, e.g. [13]).

We note that a presumably related discrepancy has been
pointed out for the Hall resistance of the parent compound
[2]. Specifically, the Hall coefficient is inconsistent with the
large holelike Fermi surface α. To reproduce the sign of
the measured coefficient and obtain a fair agreement with
its numerical value, a gapped α pocket has to be assumed.
Analogously, in the case of the magnetic penetration depth,
the cuprate trend in the Uemura plot is regained if the α

contribution is neglected and only the electron pocket β is
taken account for λ(0) at 20% Sr doping. Even if the Hall
coefficient and λ(0) are both a measure of the DOS, one would
tend to think that is rather fortuitous coincidence. In any
case, this illustrates that reconciling these estimates with the
well-established phenomenology of cuprates seems to require
a rather significant modification of the corresponding band
structure (this, or the system is to be understood as a failed
room-temperature superconductor according to its λ).

Alternatively, superconductivity in (Nd,Sr)NiO2 thin films
can be a 2D phenomenon and hence a different rationale must
be applied. This will be naturally the case in the ultrathin
limit, and will also be relevant if superconductivity is even-

tually driven by the interface with the substrate [30,31]. The
magnetic penetration depth, being a measure of the superfluid
density, is also related to the superfluid stiffness Ds. This
relation can be exploited to set bounds on the superconducting
transition temperature since fluctuations of the phase of the
superconducting order parameter will be the ultimate limiting
factor in 2D [32]. Such a bound directly reads from Nelson-
Kosterlitz universal jump of the superfluid density [33]:

kBTc � πDs/2. (2)

The 2D superfluid stifness can be estimated from our previ-
ous calculations as Ds ≈ h̄2

4μ0e2
d

2π
λ−2

x , where d is the interlayer
spacing (i.e., the c lattice parameter). This gives a maximum
Tc of about 145 K. By restricting the integral (1) to the kFz = 0
line of the three-dimensional (3D) Fermi surface this value
increases to 180 K. While formally rigorous, this estimate has
to be understood as a rather conservative upper bound since
the superfluid density at T = 0, and hence the corresponding
stiffness, can reasonably be assumed to overestimate that
at Tc.

V. CONCLUSIONS

In summary, we have computed the zero-temperature mag-
netic penetration depth λ(0) of the newly superconducting
nickelate NdNiO2 relying on first-principles DFT calculations
to fully take into account its band-structure specific features.
λ(0) is a fundamental descriptor of superconductivity dis-
playing a phenomenological correlation to Tc in cuprates and
in other unconventional superconductors. Our calculations
confirm the system as a type-II superconductor. The in-plane
component of λ(0) is found to be dominated by the hole
Fermi-surface pocket and no substantial change is obtained
with doping. However, the extra electron pocket has a non-
negligible impact on the eventual anisotropy. Remarkably, the
nominal λ(0) and the reported Tc do not follow the same corre-
lation observed in the cuprates. If the same correlation were to
apply, NdNiO2 would be a room-temperature superconductor.
This suggests that either the reported band structure needs
to be revisited or the superconducting nature of nickelates is
different. In the 2D case relevant for the ultrathin limit and/or
if the actual phenomenon corresponds to interfacial supercon-
ductivity [30,31], the maximum attainable Tc is estimated to
be ∼180 K from the Nelson-Kosterlitz universal jump of the
superfluid density.
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APPENDIX A: DERIVATION OF EQ. (1).

Here, we outline the derivation of Eq. (1) within Eilen-
berger’s formulation of superconductivity. This derivation can
be found in more detail in [17,23], for example. Eilenberger’s
picture is obtained directly from Gor’kov equations after
integrating out fast-varying degrees of freedom [34]. Thus, the
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current density reads as

j = −4πekBT Im
∑
ω>0

〈vF g〉, (A1)

where g is the Eilenberger function associated to normal ex-
citations. Here, ω = (2n + 1)πkBT/h̄ are Matsubara frequen-
cies and the average is defined such that 〈X 〉 = ∫ d2kF

(2π )3 h̄vF
X .

In the clean case, Eq. (A1) for the current is supplemented by
the set of equations

(h̄vF · � + 2h̄ω) f = 2	g, (A2)

(−h̄vF · �∗ + 2h̄ω) f + = 2	∗g, (A3)

	(r, vF ) = 2πkBT
ωmax∑
ω>0

〈V (vF , v′
F ) f (r, ω, v′

F )〉v′
F
, (A4)

where � = ∇ − 2ie
h̄ A. Here 	 and V represent the gap

function and the effective coupling, respectively, while the
functions f and f + describe the superconducting conden-
sate and are such that f f + = 1 − g2. In the absence of cur-
rents and fields, the ground-state uniform solution of Eilen-
berger equations reads as f0 = f +

0 = 	0/(	2
0 + h̄2ω2)1/2,

g0 = h̄ω/(	2
0 + h̄2ω2)1/2. The presence of weak fields and

supercurrents can be treated perturbatively to obtain g = g0 +
g1, where the correction g1 reads as g1 = ih̄ 	2

0

2(	2
0+h̄2ω2 )3/2 vF ·

(∇θ + 2e
h̄ A), with θ being the overall phase acquired by 	,

f , and f +. Substituting this in Eq. (1) yields the London re-
lation ji = − 1

μ0
(λ2)−1

i j a j between the current and the “gauge-

invariant vector potential” a = h̄
2e∇θ + A, where

(λ2)−1
i j = 4πμ0e2kBT

∑
ω>0

〈
	2

0vFivF j(
	2

0 + h̄2ω2
)3/2

〉
. (A5)

FIG. 3. Zoom of the electronic band structure of LaNiO2 (top)
and La0.6Ba0.4NiO2 within VCA (bottom) in a “fatband” plot.

FIG. 4. Band structure of SrNiO2 and BaNiO2 compared.

In the T = 0 limit,

(λ2)−1
i j (T = 0) = 2μ0e2 h̄

〈
vFivF j

∫ ∞

0
dω

	2
0(

	2
0 + h̄2ω2

)3/2

〉

= 2μ0e2 h̄

〈
vFivF j

ω(
	2

0 + h̄2ω2
)1/2

∣∣∣∣∣
∞

0

〉

= 2μ0e2〈vFivF j〉, (A6)

which corresponds to Eq. (1).

APPENDIX B: AVOIDED CROSSING AND dx2−y2 -dz2 MIX

Figure 3 shows a zoom of the electronic band structure of
(La,Ba)NiO2 near the Fermi level. As we can see, the Ni-3d
states generating the holelike pocket in the Fermi surface (α in
Fig. 1) appears to be associated to two different bands. These
bands undergo an avoided crossing along the Z-R path that
changes with doping. Thus, the apparent 2D α pocket is in
reality a 3D one by its very nature.

TABLE II. Zero-temperature magnetic penetration length ob-
tained from DFT calculations in the London approximation for
different values of Ba (hole) doping (modeled using the VCA). The
effective lambda is defined as λeff = 31/4[1 + 2(λx/λz )2]−1/4λx , as
probed by μSR in polycrystalline samples [26].

La1−xBaxNiO2 FS (λx (0), λz(0)) (nm) λeff (0) (nm)

x = 0.1 α (49, 168) 62
β (164, 145) 157

Total (47, 110) 57

x = 0.2 α (50, 153) 63
β (210, 197) 205

Total (49, 121) 60

x = 0.3 α (51, 156) 64
β (284, 285) 284

Total (50, 138) 62

x = 0.4 α (52, 163) 65
β (345, 400) 361

Total (52, 151) 65
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APPENDIX C: VCA CALCULATIONS

Here, we report additional calculations using the virtual-
crystal approximation (VCA) and comment on this approach
for the infinite-layer nickelates. We restrict ourselves to the
mother compound LaNiO2 and consider the substitution of
La with Ba instead of Sr as in [3]. Thus, we consider the
La1−xBaxNiO2 material which is further modeled by a virtual
compund XNiO2 where the X atom has a nuclear charge Z =
57 − x. We note that this strategy would be perfect if the band
structure of SrNiO2 and BaNiO2 were identical. However, this
is not exactly the case as can be seen in Fig. 4. In particular,

the dispersion of the bands is noticeably different at the A
point which leads to non-negligible differences in the Fermi
surface. This will be more important for the case of electron
doping. Despite of such a difference, the values of λ(0)
calculated using the VCA are essentially the same as those
calculated with the rigid band approximation (see Table II).
In addition, the two methods yield the exactly same trend as
a function of doping: while both λx and the β contribution
to λz increase with doping, the α contribution to λz displays
a nonmonotonous behavior. The agreement obtained using
these two different approaches thus strengthens the validity
of our results.
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