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Nonlinear cochlear mechanics without direct vibration-amplification feedback
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Recent in vivo recordings from the mammalian cochlea indicate that although the motion of the basilar
membrane appears actively amplified and nonlinear only at frequencies relatively close to the peak of the
response, the internal motions of the organ of Corti display these same features over a much wider range of
frequencies. These experimental findings are not easily explained by the textbook view of cochlear mechanics,
in which cochlear amplification is controlled by the motion of the basilar membrane (BM) in a tight, closed-loop
feedback configuration. This study shows that a simple phenomenological model of the cochlea inspired by the
work of Zweig [J. Acoust. Soc. Am. 138, 1102 (2015)] can account for recent data in mouse and gerbil. In this
model, the active forces are regulated indirectly, through the effect of BM motion on the pressure field across
the cochlear partition, rather than via direct coupling between active-force generation and BM vibration. The
absence of strong vibration-amplification feedback in the cochlea also provides a compelling explanation for the
observed intensity invariance of fine time structure in the BM response to acoustic clicks.
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I. INTRODUCTION

The peripheral auditory system transforms air-borne pres-
sure waves into neural impulses that are interpreted by the
brain as sound and speech. The cochlea of the mammalian
inner ear is a snail-shaped electrohydromechanical signal am-
plifier, frequency analyzer, and transducer with an astounding
constellation of performance characteristics. These include
sensitivity to subatomic displacements with microsecond me-
chanical response times; wide-band operation spanning ten
or more octaves in frequency; an input dynamic range cor-
responding to a million-million-fold change in signal energy
(120 dB); and the ability to rapidly vary the response gain
over 2–3 orders of magnitude while keeping the phase nearly
invariant [1–3]. All of this nonlinear signal detection and
analysis—attained with minimal power consumption [4,5]
and little harmonic and intermodulation distortion [6,7]—is
achieved not with the latest silicon technology or by exploiting
the power of quantum computers, but by self-maintaining
biological tissue, most of which is salty water.

Understanding how the mammalian cochlea achieves its
remarkable performance has been a long-standing problem
in biological physics (e.g., Refs. [8–13]). Figure 1 illustrates
the “spherical cowchlea”: a highly simplified representation
of relevant cochlear anatomy. During normal hearing, sound-
induced vibrations of the stapes launch hydromechanical
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waves visible in the transverse motion of the basilar mem-
brane (BM). Waves produced by pure tones travel along
the cochlea and peak at a location dependent on the sound
frequency and intensity [9]. The frequency that produces the
largest BM response at each location, measured at sound lev-
els near the threshold of hearing, defines the local character-
istic frequency (CF). The resulting tonotopic map (CF versus
distance from the stapes) is nearly exponential [14]. Simple
hydrodynamic considerations well supported by experiments
[15,16] indicate that, to leading order, BM traveling waves
mirror the pressure difference across the cochlear partition
(organ of Corti).

Interestingly, theoretical analyses [17–20], measurements
of intracochlear pressure [16], and the existence of sponta-
neous otoacoustic emissions [21]—narrow-band sounds gen-
erated within the cochlea and detectable using microphones
placed in the external ear canal—all imply that these slow-
traveling, transpartition pressure waves not only transfer en-
ergy to the organ of Corti but also receive energy from it. In
other words, transpartition pressure waves appear actively am-
plified as they propagate to their CF place. The dominant view
in the field is that cochlear amplification involves piezoelectric
forces produced by the outer hair cells [OHCs, Fig. 1(b)],
whose soma actively expand and contract in response to mo-
tions of the stereociliary bundle [22]. The resulting coherent
wave amplification enables the cochlea to act as a biological,
hydromechanical analog of a laser amplifier [20]. Although
the profound contributions of this nonlinear active process to
normal hearing have been appreciated for many years, there
is as yet no clear consensus on how the spatially coordinated
amplification is actually brought about.

Unfortunately, the daunting complexity of the cochlea,
which consists of many thousands of coupled electrome-
chanical elements that respond nonlinearly to sound, renders
it impossible to deduce how the system works solely from
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FIG. 1. Cartoon of cochlear anatomy. (a) The cochlea consists of
three fluid-filled chambers: the scala vestibuli, scala media, and scala
tympani. The scalae vestibuli and tympani join at the helicotrema
near the apical end of the cochlear spiral, which is shown here
unrolled. The middle ear transfers sound-induced vibrations of the
eardrum to the cochlear fluids via the stapes, which pushes on the
oval window at the base of the cochlea. The round window, a compli-
ant membrane in the wall of the scala tympani, separates the cochlear
fluids from the air-filled middle-ear cavity and acts as a pressure
release. The scala media provides a special ionic environment to the
hair bundles that protrude from the reticular lamina (RL) at the upper
surface of the organ of Corti. The organ of Corti (b) is the sensory
organ of hearing, where mechanical vibrations are transduced by the
inner hair cells (IHCs) into neural impulses that travel along the
auditory nerve to the brain (not shown). In the scala media above
the organ of Corti (OoC) lies the tectorial membrane, an acellular
structure mechanically coupled to the organ of Corti through the
stereocilia of the outer hair cells (OHCs), whose piezoelectric action
helps to boost the sensitivity and dynamic range of hearing. The
basilar membrane (BM), whose motion has been a principal focus of
cochlear mechanics for the last century, forms the boundary between
the organ of Corti and the scala tympani. Although not illustrated
here, the organ of Corti comprises a variety of additional supporting
cells and structures.

measured data. Mathematical and computer models are there-
fore an essential tool for exploring the principles underlying
the remarkable mechanics of the cochlea.

Both because mechanical nonlinearities appear confined to
the peak region of the BM frequency response (e.g., Ref. [1]),
and because inverse methods applied in either 1- or 3D consis-
tently find a region of apparently negative BM damping basal

to the peak of the BM traveling wave (e.g., Refs. [18,19]),
models of cochlear mechanics almost universally posit the
existence of direct mechanical feedback between BM motion
and the forces generated by the cochlear amplifier (e.g.,
Refs. [18,23–25]). For example, 1D models often explicitly
assume that the active process manifests itself on the BM as a
form of nonlinear negative damping tuned in a fashion similar
to that of BM motion (e.g., Refs. [18,23]).

Recently, however, the existence of a direct vibration�
amplification feedback loop has been challenged by mechan-
ical measurements from the organ of Corti. Several different
laboratories have now consistently observed that the mechan-
ical responses of the outer-hair-cell (OHC) region near the
reticular lamina (RL) are broadly tuned and respond to sound
nonlinearly at frequencies where BM responses are nearly
linear [26–30]. Furthermore, Dewey et al. [31] have shown
that the forces that move the RL at low frequencies can be
suppressed without affecting the vibration of the BM. To-
gether, these measurements suggest that the forces underlying
the cochlear amplifier are only weakly coupled to the motion
of the BM. Thus the classic view of cochlear amplification
based on direct vibration� amplification feedback appears
suspect.

Independent of these experimental developments, Zweig
[32] derived a linear 3D model of cochlear mechanics based
upon the pioneering recordings of Rhode from the squirrel
monkey [33]. The derivation led Zweig to conclude that the
BM can be represented as an array of fluid-coupled harmonic
oscillators driven by the transpartition pressure and an active
force proportional to the time derivative of that pressure.
Interestingly, close inspection reveals that the active force in
the model is broadly tuned compared to the BM. Furthermore,
the force operates at low frequencies, where it only weakly
amplifies the vibrations of the BM. Thus the properties of the
active force in Zweig’s model bear a striking resemblance to
vibrations recently measured in the OHC region of the organ
of Corti.

Are these qualitative similarities between model and data
mere coincidence, or has Zweig’s analysis captured something
essential? Because the derivation is based on application of an
inverse method to extrapolated measurements from squirrel
monkeys with compromised cochlear sensitivity, there are
reasons to doubt the model generality. Furthermore, the inver-
sion procedures and their conclusions have never been tested
against more modern recordings, or even in other species,
most of which appear to manifest quantitatively different
behavior. (For example, unlike other small laboratory mam-
mals, squirrel monkeys have unusually long low-frequency
group delays in the tail region of their transfer functions; see
Sec. II.)

Starting from the simple representation of local BM me-
chanics deduced by Zweig [32], we fit a 3D model to BM
transfer functions recently recorded in two common animal
models of cochlear mechanics—the base of the gerbil cochlea
and the apex of the mouse. In contrast to Zweig [34]—
who concluded that the cochlear amplifier provides not only
an active force but also modifies the damping and stiffness
of the cochlear partition—we find that fitting the model to
more recent data requires a relatively large partition damping
whose value remains independent of stimulus level. This large
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damping, combined with the distributed effect of active forces
on the BM, produces a tall and broad peak in the BM trans-
fer function that matches experimental data from sensitive
animals. Eliminating the active force produces tuning curves
remarkably similar to those measured post-mortem or at very
high sound levels. In addition, rendering the active force
nonlinear demonstrates that the model preserves the approx-
imate intensity invariance of fine time structure evident in
BM responses to acoustic clicks (zero-crossing invariance; see
Refs. [2,35]). Zero-crossing invariance is difficult to achieve
in models with a mechanically tuned cochlear amplifier
[36,37] and requires an intricate co-variation of parameters in
more phenomenological models [2,34]. This aspect is further
analyzed in Appendix A, where the BM oscillator equation
derived by Zweig [32] is obtained as the simplest equation
for an active model of the cochlea that respects zero-crossing
invariance. Overall, the model indicates that a simple, leading-
order description of organ-of-Corti mechanics, coupled with
an idealized but basically realistic representation of the 3D
geometry of the scalae, captures the main features of linear
and nonlinear cochlear mechanics. The behavior of the active-
force term also mirrors that seen in recent recordings from the
organ of Corti.

II. THE MODEL

We employ a 3D model of the cochlea based upon the
work of Zweig [32] that combines the long- and short-wave
approximations. Whereas Zweig focused on deriving the
wavelength from the data, and therefore employed different
BM admittances in the long- and short-wave regions, we
embed his results about the functional form of the cochlear os-
cillators within a model of the cochlear fluids whose physical
realization requires a geometry that is qualitatively consistent
with that observed in the mammalian cochlea. The resulting
model contains a simple, minimalist mechanical model of the
cochlear partition. Unfortunately, because the hydrodynamics
of the cochlea is rather complex, the overall model formula-
tion is not as straightforward as the local mechanics of the
partition. In particular, it has been known for a long time that
the ratio between transverse and longitudinal motion of the
fluids near the BM depends on both location and frequency
[11,32,38,39].

Two key differences between the proposed model and that
of Zweig [32,34] are the determination of model parameters
and the manner of their variation in the nonlinear regime.
Zweig [32] deduced the parameters of the BM impedance
from mathematical extrapolations performed on Rhode’s mea-
surements in the squirrel monkey [33]. The extrapolation to
low stimulus levels shows sharp BM tuning near the char-
acteristic frequency (CF) and unusually long group delays in
the low-frequency tail region of the transfer function. Near-CF
group delays are also substantially longer than those observed
in other species, making them hard to reconcile with the
delays of otoacoustic emissions, even in primates such as
humans whose otoacoustic delays are exceptionally long [40].
The unusual sharpness and delay of the extrapolated BM
transfer function lead Zweig to conclude that the effective
damping of the partition must be small at low stimulus lev-

FIG. 2. Assumed geometry of the cochlea. Whereas the scalae
cross-sectional areas decrease from base to apex, the mass of the
organ of Corti and the width of the BM increase. These opposing
tapers are consistent with the geometry of the real cochlea and allow
us to assume that the cochlear input impedance is approximately real
[41]. At the same time, we assume that the tapering of scala height
is gentle enough that the height can be regarded as approximately
constant over the peak region of the traveling wave. This approxi-
mation greatly simplifies the equations of wave propagation in the
peak region. Note that in this model the acoustic mass of the BM is
determined by the mass per unit length of the organ of Corti divided
by the BM width. Since the BM width is small compared to the scala
width, the acoustic mass of the BM is large even though the area of
the organ of Corti spans but a tiny fraction (∼1%, see text) of the
total cross-sectional area of the scalae.

els, where the cochlea is approximately linear.1 Under this
hypothesis, capturing the level-dependent tuning of the BM
then requires assuming that the oscillator damping increases
with level, as Zweig proposed [34]. In contrast, we find that
the best results are obtained by keeping the damping constant
and varying only the magnitude of the active force. As detailed
in Appendix A, this assumption preserves the approximate
intensity-invariance of the fine time structure (e.g., the zero
crossings) of the BM click response in a straightforward
manner.

A. Overview and assumptions

Figure 2 illustrates the assumed geometry of the model
and its opposing tapers. Whereas the effective cross-sectional
area of the scala (S) decreases from base to apex, the area
of the organ of Corti (A) and the width of the BM (b) both
increase (see Secs. II C and II D). In our model, the tapering
is necessary to reduce the reactive part of the cochlear input
impedance (see Ref. [41]), allowing us to approximate it
as real. Although the model does not incorporate a detailed
anatomical description of the cochlea, its tapered geometry is
consistent with morphological data (see Sec. II C). We further
assume that the tapering of the scala height is gentle enough
to enable Siebert’s [38] short-wave approximation in the peak
region of the traveling wave (see Sec. II D).

Unlike Zweig [32], we do not assume that the motion of the
BM is perfectly scaling symmetric. For tonal stimuli, scaling
implies that BM transfer functions depend not on location
and frequency independently but on the dimensionless ratio
ω/ωc(x), where ωc/2π is the natural frequency of the local

1In his solution to the inverse problem, Zweig found an oscillator
with negative damping stabilized by a delayed feedback force [32].
In this case, the effective dimensionless damping can be obtained
by taking the real part of locations of the principal poles of the BM
admittance. The resulting value (∼0.03) is much much less than one.
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BM oscillator.2 On the other hand, we assume local scaling3

of the wave number of the slow-traveling pressure-difference
wave that drives the motion of the cochlear partition. Thus,
when the cochlear map is exponential, the pressure wave is
locally shift-invariant. This assumption greatly simplifies the
mathematical description of cochlear mechanics by allowing
use of a single variable to express frequencies and relative
distances in the cochlea (see Sec. II C).

In addition, we assume that deformations of the organ of
Corti (e.g., due to internal forces) have little effect on the
transpartition pressure field, and their influence (i.e., the gen-
eration of fast compressional waves) is therefore neglected.4

With these assumptions, the model solutions are nearly equiv-
alent to those obtained in a 2D box model. The exception
occurs in the low-frequency tail of the response, where the
input impedance of the box model retains a larger reactive
component.

Finally, we assume that the equations of motion obey a
form of stimulus and spatial universality [34]. Thus, although
the parameter values may vary along the cochlea, the equa-
tions themselves depend neither on cochlear location nor on
the nature of the stimulus. Consequently, equations deduced
from measurements obtained using narrow-band stimuli re-
main applicable when the stimulus is more complex.

B. Basic definitions and notation

The external force per unit length acting on the BM is

fext (x, t ) = b(x)p(x, t ), (1)

where p(x, t ) is the driving pressure difference across the BM
and b(x) is the BM width. The effective mass per unit length
of the BM is determined by the cross-sectional area, A(x), of
the attached organ of Corti, defined as the effective area of
the tissues and fluids that move with the BM, including the
(unknown) inertial load of the TM:

m(x) = ρA(x), (2)

where we have taken the mass density of the cellular structures
populating the organ of Corti to be similar to that of the
surrounding fluids (ρ). At any location, the local mechanics of
the BM are represented by a harmonic oscillator driven both

2Note that the natural frequency of the model oscillators (ωc/2π )
differs from the characteristic frequency (CF) of the transfer func-
tion. Whereas the natural frequency is an internal parameter of the
model, the CF is an emergent property defined as the best frequency
of the BM velocity response at low stimulus levels.

3Perfect scaling is assumed only within the peak region of the BM
traveling wave; see Sec. II D.

4This assumption, which implies that the center of mass of the
organ of Corti moves approximately proportionally to the BM,
requires further experimental validation. As justification for adopting
it here, we note that whereas deformations of the top of the organ
of Corti (i.e., at the level of the RL) are nonlinear at frequencies
for which the BM responses are linear [26–30,42], intracochlear
pressure measurements show that the pressure near the organ of Corti
is nonlinear only at frequencies where BM responses are nonlinear
[15].

by the transpartition pressure and an additional active force,
fact,

m

(
v̇BM + 2ζωcvBM + ω2

c

∫
vBM dt

)
= fext + fact. (3)

In this equation, vBM is the transverse BM velocity, the
diacritical dot denotes differentiation with respect to time, ζ

is the dimensionless damping coefficient, and ωc is the natural
angular frequency of the oscillator. Note that the parameters
in Eq. (3) depend on x. Following Zweig [32], we assume that
for small BM vibrations the active force is proportional to the
time derivative of the external driving force (the transpartition
pressure):

fact (x, t ) ∝ ḟext (x, t ) ∝ ṗ(x, t ). (4)

where ∝ indicates proportionality. When the active process is
disabled (e.g., post-mortem), fact = 0.

To simplify the description of cochlear mechanics, we
assume harmonic time dependence and adopt the complex-
valued scaling variable s(ω, x) = iω/ωc(x), whose magnitude
represents the stimulus frequency normalized by the local
resonant frequency of the oscillator. As we explain below,
the scaling variable s(ω, x) also represents relative distances
in the cochlea, allowing one to describe cochlear macrome-
chanics as a function of a single variable (s) instead of two (x
and ω). Note that s = i when ω = ωc. Except in the extreme
apex of the cochlea, the cochlear frequency-position map is
approximately exponential [14]. Thus

s(ωc, x) = ie(x−xc )/�, (5)

where � is the “space constant” of the map and xc is the loca-
tion whose oscillator frequency is ωc. Consequently, ds/dx =
s/�.

Solving for the BM admittance, defined as

YBM(x, s) = VBM(x, s)/P(x, s), (6)

where VBM(x, s) and P(x, s) indicate BM velocity vBM(x, t )
and transpartition pressure p(x, t ) in the frequency domain,
yields

YBM(x, s) = b(x)

m(x)ωc(x)

s(1 + τ s)

s2 + 2ζ s + 1
, (7)

where the term τ s represents the active force [Eq. (4)]. Both
the force coefficient τ and the damping factor ζ are assumed
constant within the cochlear region of interest.

C. Long-wave region

In regions far basal to the peak of the traveling wave—
or, equivalently, at frequencies in the tail region of the BM
frequency response—the wavelength of the traveling wave is
much larger than the height of the scalae and wave propa-
gation is well described by the long-wave model. Newton’s
second law and conservation of mass imply that

∂P

∂x
= −iω

ρ

S(x)
U (8)

and
∂U

∂x
= −b(x)VBM = −b(x)YBMP, (9)
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where S(x) is the effective cross-sectional area of the scalae
and U denotes fluid volume velocity.5 Equations (8) and (9)
describe a transmission line in which the traveling, transparti-
tion pressure wave satisfies the uncoupled equation

d2P

dx2
− d ln Z

dx

dP

dx
− ZYBMP = 0, (10)

with Z = iωρb(x)/S(x).
Equation (10) simplifies by assuming scaling symmetry in

the long-wave region; we therefore take b(x)/A(x) ∼ ωc(x)
and b(x)/S(x) ∼ 1/ωc(x), where ∼ indicates approximate
proportionality.6 With this assumption the dependence on x
is removed and the wave equation becomes a function of the
scaling variable s [18],

d2P

ds2
− κ2

s P = 0, (11)

where κs denotes the (dimensionless) complex wave number
in the “s domain:”

κs(s) = 2πτwf

√
1 + τ s

s2 + 2ζ s + 1
. (12)

In this equation, τwf denotes the wave-front group delay ex-
pressed in cycles of CF.7 Under our assumptions, τwf amounts
to a constant factor,

τwf = �

2π

√
b2(x)

S(x)A(x)
≈ constant, (13)

in agreement with the experimental data [2].
As a reality check, we used Eq. (13) to estimate the

effective cross-sectional area of the organ of Corti (A) in the
mouse by combining anatomical measurements [44,45] with
estimates of the wave-front delay derived from published BM
transfer functions [29]. The result yields an organ of Corti area
amounting to roughly 0.4% of the total cross-sectional area of
the scalae in the base and 12% in the apex.8 These quantities

5Denoting the areas of scala tympani and scala vestibuli by St

and Sv , respectively, then S = St ||Sv = St Sv/(St + Sv ). The variable
U represents the fluid volume-velocity difference between the two
scalae.

6The assumption of approximate scaling symmetry in the long-
wave region is equivalent to the assumptions that (1) the cochlear
input impedance is approximately real [43] and (2) the onset-delay
of the BM click response, expressed in cycles of CF, is approximately
constant in the base of the cochlea [2]. Condition (1) requires
that Z (x)m(x) ∼ ω−2

c [41], while (2) requires Z (x)/m(x) ≈ constant
[see Eq. (13)].

7The quantity 2πτwf is denoted 4N by Zweig [18], where N
represents the number of wavelengths of the traveling wave along
the BM. We changed the notation for two reasons. First, τwf is a
delay that can be directly estimated from the slope of the phase of
the BM transfer function at low frequencies. Second, the relationship
between wave-front delay and the number of wavelengths of the
traveling wave along the BM is expected to differ in 1D and 3D
models.

8For simplicity, we assumed that scala vestibuli and scala tym-
pani have equal areas [0.22 mm2 in the base (CF ≈ 50 kHz) and

correspond respectively to equivalent partition thicknesses of
25 and 135 μm in the base and apex, respectively. These ef-
fective thicknesses seem plausible, although they are perhaps
somewhat too small in the base and too large in the apex.
We note that the large effective acoustic masses necessary in
long-wave models do not require unrealistic dimensions for
the organ the Corti. Because the acoustic mass (or inertance)
represents mass per unit area, the relatively large BM iner-
tance arises from a small organ of Corti mass combined with
a narrow BM.9

Approximate solutions to Eq. (11) for P(s) can be obtained
using the WKB method [18]:

P(s) ≈ P0√
κs

exp

[
−

∫ s

s0

κs(s
′) ds′

]
, (14)

where P0 is the pressure applied at the base of the cochlea
and s0 is the value of s at the base. Because |s0| � 1 except
at BM locations very close to the stapes, we henceforth take
s0 = 0 for simplicity. When the cochlear input impedance is
resistive, P0 is proportional to stapes velocity. Consequently,
the long-wave BM transfer function (i.e., the ratio between
either BM velocity and stapes velocity or BM displacement
and stapes displacement) becomes

Tlw(s) ∝ YBM√
κs

exp

[
−

∫ s

0
κs(s

′) ds′
]
. (15)

D. Short-wave region

The traveling wave slows down dramatically as it ap-
proaches the peak region, where the wavelength becomes
short enough that the long-wave approximation no longer
applies. Indeed, the wavelength becomes much smaller than
the height of the scalae [32,38,49], and the short-wave approx-
imation, in which the scalae heights are assumed effectively
infinite, is well suited to describe the propagation of the travel-
ing pressure wave. To employ the short-wave approximation,

0.075 mm2 in the apex (CF ≈ 10 kHz)] [44]. We took the BM width
to be 0.07 mm and 0.135 mm in the base and apex, respectively
[44,45]. We estimated the wave-front delay by fitting a line to the
low-frequency phase of the mouse BM transfer function published
in Ref. [29], leading to τwf ≈ 1.5 cycles of CF = 10 kHz (0.15 ms
group delay). The space constant of the cochlear map is taken to be
� = 1.8 mm [46].

9The effective mass of the BM in the real cochlea is determined by
the combination of the inertia of the fluids (external forces acting on
the organ of Corti dependent upon v̇BM) and by the attached mass
of the organ of Corti and the tectorial membrane load. Depending
on the particular assumptions and perspectives adopted by modelers,
different terms are used to represent the effective inertia (mass) of the
cochlear partition, which may or may not account for the inertia of
the surrounding fluids (see, e.g., Refs. [39,47,48]). Our model defines
the organ of Corti as a boundary between the two scalae, driven
by transpartition pressure. Hence, our mass term does not include
the inertial terms representing forces transmitted by the surrounding
fluids. These forces are accounted for in the long and short-wave
approximation equations for pressure, which are both derived from
Newton’s second law for an irrotational, incompressible, and inviscid
fluid (see [38]).
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we must also assume that the tapering of the cochlea occurs
on a scale long compared to the local wavelength, so that the
geometric parameters can be regarded as essentially constant
in the peak region. With this simplifying assumption, we can
use Siebert’s equation for a wave traveling from the base to
the apex [38]:

1

2ρω

dP

dx
= YBM(x, ω)P(x, ω). (16)

Using Eq. (7) and noting that ω = ωc|s| yields

dP

dx
= 2iρb

m

s|s|(1 + τ s)

s2 + 2ζ s + 1
P, (17)

leading to

dP

ds
− κsP = 0, (18)

where the short-wave wave number is

κs = 2πτsw
|s|(1 + τ s)

s2 + 2ζ s + 1
. (19)

Our assumptions imply that the parameter

τsw = bl/(Aπ ) (20)

is independent of x in the short-wave region.
Zweig [32] argues that the short-wave approximation be-

comes invalid past the peak of the traveling wave, where the
finite scalae heights play a role in determining the peculiar
shape of the BM transfer function above CF (e.g., sharp
notches accompanied by sudden phase jumps). We further
note that the short-wave equation breaks down near s = i.
In particular, the real part of the wavelength changes sign
at a frequency above CF whose exact value depends on the
model parameters. The unphysical consequence is that the
short-wave solution for the forward-traveling wave reverses
itself and becomes a backward-traveling wave.10 For these
reasons, we show model results only for |s| < 1, where the
solution remains valid.

E. Joining the two regions

Combining results for the long- and short-wave regions
gives

κs =
⎧⎨
⎩

2πτwf

√
1+τ s

s2+2ζ s+1 , |s| � |st|
2πτsw

|s|(1+τ s)
s2+2ζ s+1 , |st| < |s| < 1

, (21)

where st denotes the “transition point” beyond which the
long-wave approximation fails and the solution is assumed

10In the post-mortem case (τ = 0), the short-wave wavelength
approaches zero in the limit |s| → 1, meaning that the wave slows
down indefinitely and never travels beyond that point. This general
phenomenon is known as an acoustic black hole [50]. While the
slow-down of the traveling-wave phase velocity may play a role in
suppressing cochlear reflections (i.e., there may be a quasi-black-
hole effect), both 3D models (e.g., [32]) and experimental data show-
ing phase and amplitude plateaus above CF, indicate that the black
hole predicted by short-wave models is an artifact of the breakdown
of the short-wave approximation past the peak of the traveling wave.

short-wave. Unlike the situation in the real cochlea, where the
transition between the long- and short-wave regions occurs
smoothly, albeit presumably over a relatively small spatial
region, this “chimeric” approach introduces a discontinuity in
the complex wave number across st . A reasonable approach to
joining the solutions in the two regions is to require that the
(real) wavelength remains continuous at the transition. This
constraint,

lim
s→s+

t

Re[κs] = lim
s→s−

t

Re[κs], (22)

suffices to determine the parameter τsw. Once the wave
numbers are everywhere determined, the BM velocity (and
consequently the BM transfer function) can be computed to
within a constant factor:

VBM(s) ∝
{P0YBM√

κs
exp

[− ∫ s
0 κs ds′], |s| � |st|,

PtYBM exp
[− ∫ s

st
κs ds′], |st| < |s| < 1,

(23)

where Pt is the pressure at the transition point.

F. Reality check in a box model

To verify that the shotgun wedding we performed above—
the coerced conjunction of long- and short-wave solutions—
leads to no unphysical progeny, we compare the results of the
calculations against those performed in a 2D box model of the
gerbil cochlea. In particular, we use the equation of the BM
admittance [Eq. (7)] in a 2D box model [49,51]. The param-
eters of the 2D box model are the same as those of the 3D
model. The height of the scalae in the 2D model is 0.65 mm
(scala tympani and scala vestibuli areas of 0.4225 mm2),
based on gerbilline values from reference [52]. As discussed
in Sec. II A, we expect the 2D box model to produce solutions
close to those of the chimeric model except in the low-
frequency tail of the response, where the input impedance of
the box model retains a larger reactive component than the
chimeric model.

G. Nonlinearities

We model the cochlear nonlinearity by assuming that the
only nonlinear element resides in the active-force term. In
particular, we assume that the linear active force fact ∝ τ ṗ
represents the first term of an expansion of a nonlinear func-
tion of ṗ. Hence, the nonlinearity can be modeled by making
τ a nonlinear function of ṗ. Implementing this ansatz in the
normalized-frequency (s) domain,11 we take

τ (s) = τ0(1 − tanh(|sP(s)|/Ṗsat ), (24)

11At any given location x we measure time in local, normalized
units (periods of the local natural resonant frequency) and define
tx = 2πt/ωc(x). Taking p(x, tx ) = |P| sin(|s|tx + ϕ) gives ṗ(x, tx ) =
|sP| cos(|s|tx + ϕ). The linear active force ( f L

act) therefore has the
form f L

act ∝ τ0 ṗ = τ0|sP| cos(|s|tx + ϕ). If g(·) is the nonlinear func-
tion, the nonlinear force is f NL

act ∝ g(τ0 ṗ). In the s domain, the
corresponding components of the active force at the fundamental
frequency are F L

act (s) = Fx{ f L
act (tx )} and F NL

act (s) = Fx{ f NL
act (tx )}, re-

spectively, where Fx{·} is the Fourier transform with respect to local,
normalized time. Note that F L

act (s) ∝ τ0|sP(s)|. Neglecting harmonic
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where τ0 is the value of τ in the linear regime (determined by
fitting transfer functions measured at low sound levels), Ṗsat

is a constant that controls the activation of the nonlinearity,
and sP represents the time derivative of the pressure in the
frequency domain.

Assuming that harmonic distortions produced by responses
to pure-tone stimuli have a negligible effect on the action at
the fundamental frequency, we adopt an iterative scheme to
compute the nonlinear responses via Eq. (23). Our scheme
is similar to that previously used by Kanis and de Boer
[53]. In particular, at each iteration step, we compute the
solution numerically over the spatial range of interest (i.e., the
appropriate range of s) and then update the value of τ at each
location according to Eq. (24). We stop the iteration and deem
the solution convergent when two successive solutions differ
by less than some criterion (in our case, 1%). This method
is conceptually similar to the method of averaging (e.g.,
Ref. [54]), where the nonlinearity is assumed to depend on
the response envelope. Because the envelope of the response
to a steady tone is constant over time, we need only iteratively
estimate the traveling-wave envelope to obtain an approximate
solution adequate to account for the activation of the nonlin-
earity. This method computes nonlinear effects on steady-state
responses and does not require making assumptions about the
kinetics of the nonlinearity.12

H. Zero-crossing invariance

The fine time structure (e.g., zero crossings) of BM and
auditory-nerve responses to acoustic clicks is nearly indepen-
dent of stimulus intensity (see Ref. [2]). This approximate
symmetry implies invariance of both the wave-front delay
and the characteristic oscillation frequency of the BM. In the
model, both the conjugated pole of the BM admittance—
and therefore the BM oscillation frequency—and the low-
frequency group delay are independent of the nonlinear term.
Consequently, the two conditions above are approximately
satisfied when τ < 1/|st|.13 Appendix A provides a heuristic
derivation of the model equations based on zero-crossing
invariance.

distortions, we can therefore write the nonlinear force in the form

F NL
act (s) ∼ τ0ḡ(s)|sP(s)|,

where ḡ(s) = F NL
act (s)/F L

act (s). When the nonlinear function g(·) is
compressive, ḡ(s) decreases when |sP(s)| increases. Not knowing
the precise form of g, we assume that τ0ḡ(s) can be approximated
by Eq. (24).

12Harmonic distortions do not greatly affect the response at the
fundamental frequency in models with instantaneous nonlinearity
(see Ref. [53]).

13In the long-wave region, the zero of the BM admittance becomes
a pole of the pressure in Eq. (14). Hence, if the location of this zero
(1/τ ) occurs within the long-wave region and changes with level,
the resulting pressure acquires a level-dependent phase, producing a
large violation of zero-crossing invariance. Conversely, if the zero is
far from the long-wave region, its variation does not greatly affect
the phase of the pressure.

I. Experimental data

We compare model predictions with experimental data col-
lected in two common animal models of mammalian hearing,
gerbil and mouse. The gerbil data, from the Dong laboratory
at Loma Linda University, consist of BM responses to pure
tones made with laser Doppler vibrometry. The mouse data,
from the Oghalai laboratory at the University of Southern
California, were collected with optical coherence tomography
(OCT) using the methods outlined in Ref. [31]. Both gerbil
and mouse recordings provide BM velocity and ear-canal
pressure (i.e., the sound pressure measured near the stimulus
loudspeaker). Because the gerbil middle-ear transfer function
is approximately constant [55], we assume a simple propor-
tionality between ear-canal pressure and stapes velocity in
this species. Thus we approximate the gerbil BM transfer
function (BM motion re stapes) by the ratio of BM velocity
to ear-canal pressure. In contrast to the gerbil, the mouse
middle-ear transfer function resembles a first-order high-pass
filter (6 dB/octave) in the frequency range analyzed here
(1–15 kHz) [56]. We therefore assume a proportionality be-
tween ear-canal pressure and stapes displacement and ap-
proximate the BM transfer function by the ratio of BM
displacement to ear-canal pressure. In both mouse and gerbil,
we correct phase responses for the middle-ear delay, which
amounts to approximately 20 μs in both species [56]. Al-
though the delay between loudspeaker and tympanic mem-
brane remains unknown, adding an additional delay of ap-
proximately 5–10 μs yields slightly different parameter values
but has no qualitative effect on our conclusions.

III. RESULTS

A. Gerbil model

1. Responses at low sound levels and post-mortem

The parameters of the model can be adjusted to fit BM
transfer functions measured in different species; the values for
gerbil and mouse are reported in Table I. In this section, we fo-
cus on the responses of the model tailored to recordings from
the base of the gerbil cochlea (CF ∼ 17–21 kHz). We compare
the predictions of the 3D chimeric and 2D box models with
BM transfer functions measured under conditions where the
cochlea behaves almost linearly: in vivo at low sound levels
and post-mortem. Because in vivo responses evoked by low-
level tones at frequencies in the low-frequency tail region are
too small to be measured, we compare model responses in this
region, where BM responses are approximately linear, with
data obtained at slightly higher levels.

TABLE I. Parameter values for the models tailored to gerbil and
mouse.

Parameter Gerbil Mouse

τwf 0.95 1.8
|st | 0.435 0.5
ζ 0.15 0.22
τ0 1.25 1.2
� (mm) 2.1 1.8
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The 3D model requires the determination of four param-
eters; the box model only three. First, we set the parameter
τwf by extrapolation from the group delay of the experimental
data in the low-frequency tail of the response (τwf = 0.95).
Second, in the chimeric model we need to define the transition
frequency between the long- and short-wave regions (|st |); this
transition is an emergent property of the 2D box model. Based
both on simulations of the 2D model and on the location of
the change of slope in the magnitude and phase of the mea-
sured data, we selected |st | = 0.435, which corresponds to a
frequency approximately 48% of CF. Finally, the parameters
τ0 and ζ can be empirically determined by noting (i) that
ζ controls the transfer function post-mortem, when τ0 = 0;
(ii) that τ0 controls the gain of the transfer function in vivo
relative to post-mortem; and (iii) that both τ0 and ζ0 affect
the bandwidth of the peak. From these observations, we found
that ζ = 0.15 and τ0 = 1.25 produce satisfying fits to the data.

Figure 3 compares the linear BM transfer functions pre-
dicted by the model with those measured in vivo and post
mortem. The solid and dashed lines show results from the 3D
“chimeric” and the nonscaling symmetric 2D box models, re-
spectively. Small differences between the responses of the two
models are evident at low frequencies, where the models have
different values for the cochlear input impedance. Computing
the transfer function of the 2D model as the ratio between
the BM velocity and the transpartition pressure at the base
of the cochlea (rather than the stapes velocity) reduces the
discrepancy between the 2D and 3D transfer functions to a
couple of dB (not shown).

Both models predict similar transfer-function magnitudes
and appear consistent with the experimental data. The 2D
box model, whose numerical solution is accurate at all fre-
quencies, predicts a plateau in the amplitude and phase of
the post-mortem BM transfer function beyond the peak, in
agreement with the data. The “in vivo” 2D box model also
predicts a notch followed by a plateau above the frequency
range displayed in Fig. 3.14

Figure 3(b) plots the residual (difference in dB) between
the gain of the transfer function predicted by the model and the
experimental data. For comparison, Fig. 3(b) also shows the
difference between the measurements from the two gerbils.
Over the range of frequencies analyzed, model predictions
differ by less than 5.5 dB from the experimental data, a range
similar to the intersubject variability manifest in the data.
Consistent differences between the in vivo data and the model
responses can be seen at frequencies about 20% below CF,
where the magnitude data show a downward inflection not
captured by the model. Also, at about 10% above CF the
model predicts a steeper magnitude cutoff than is evident in
the in vivo data. Both models fit the in vivo phase profile

14Notches and plateaus above CF are often attributed to the interac-
tion between transpartition (slow) pressure waves and compression
waves traveling at the speed of sound (e.g., Ref. [57]). However,
similar features are consistently observed in 2D and 3D models, that
do not incorporate fast compressional waves. The fearless reader is
referred to Zweig [32] for a proper mathematical treatment.

FIG. 3. Comparison between measured and model BM transfer
functions in gerbil. [(a) and (c)] The model in vivo and post-mortem
transfer functions are shown in red and black, respectively. The
unconnected symbols represent measured transfer functions from the
base of two gerbils (CF indicated in legend). The green symbols
represent measurements from animal G57 at 30 (©) and 50 dB (

�
)

SPL; the blue symbols represent data from animal G74 at 30 (©)
and 40 dB (

�
) SPL. The solid lines show the results calculated in the

3D “chimeric” model, while the dashed line are results from the 2D
box. Because the model predicts BM transfer functions only to within
an overall complex constant, we normalize the transfer function by
the peak magnitude measured at the lowest SPL in vivo. (b) Gain
difference between the predictions of the 3D model and the exper-
imental data. The blue and green lines give the difference between
the model prediction and the experimental data from animals G74
and G57, respectively. The black line shows the difference with the
post-mortem data, and the gray line that between the two animals.
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quite well. A discrepancy between the model and the data is
apparent in the somewhat larger phase difference between the
in vivo and post-mortem conditions at high frequencies.

Such discrepancies presumably reflect one or more of
our simplifying assumptions. These includes adopting an
uncomplicated form for the active force, neglecting possible
short-range effects of cochlear tapering when solving the
model equations, ignoring viscoelastic longitudinal coupling
between cochlear elements, and disregarding the internal
structure and deformation of the organ of Corti. Although
other parameter choices allow the model to better capture
specific features of the measured BM transfer function,15 the
model plainly has too few adjustable parameters to fit all
details seen in the data. Nonetheless, the model captures the
major trends, and the differences appear small in light of the
simplicity of the model mechanics.

2. Responses in the nonlinear regime

Nonlinear responses to tones can be simulated in the
chimeric model by using an iterative approach to estimate
the envelope of the traveling wave on the BM (see Sec. II F).
Figure 4 compares model BM frequency responses with ex-
perimental data from gerbil obtained at different stimulus lev-
els. Although the model does not match the data precisely, the
predicted magnitudes are in good qualitative agreement with
the measurements. The phase responses match the data very
well, showing only subtle variations with level below CF. We
note, however, that although the model captures the overall
shape and level dependence of the response magnitude, the
model requires a larger variation of stimulus intensities to
match the full dynamic range evident in the data. Although
adopting a different nonlinear function in Eq. (24) might allow
the model to better capture the level dependence of the BM
response, fine-tuning the nonlinearity is beyond the scope of
the present work, for which we opted to maintain simplicity
in the model equations.

Close inspection of Fig. 4 reveals another limitation of
the model, which fails to capture the downward inflections
evident in the magnitude data at frequencies corresponding
to approximately 40% and 80% of CF. These inflections are
accompanied by wobbles in the phase; at frequencies near
0.4CF the phase slope even becomes briefly positive (negative
group delay). Roughly speaking, the data resemble the result
of adding a small, quasiperiodic oscillation to a curve that
otherwise closely approximates the predictions of the model.
These observations suggest that the measured response con-
tains a small standing-wave component, in addition to the
dominant forward-traveling wave. Standing waves can arise
through multiple internal reflection [58] via processes that are
not represented in the model, which lacks both micromechan-

15Reducing both the damping of the partition (ζ ) and the strength
of the active force (τ ) yields a better match to the empirical phase
variation, both in vivo and post mortem. However, this change makes
the magnitude cut-off much steeper than seen in the data. On the
other hand, increasing both ζ and τ yields a better match to the
shape of the transfer function above CF but produces too much phase
difference between the in vivo and post-mortem conditions.

FIG. 4. Comparison between model and measured BM transfer
functions in the base of the gerbil cochlea (CF = 17 kHz) at var-
ious stimulus levels (10 dB steps). (a) Peak-normalized gain and
(b) phase. The solid line shows the predictions of the 3D chimeric
model; the open symbols show the experimental data. Different col-
ors encode different stimulus levels. The inset in (b) shows the model
synthetic click responses obtained by inverse Fourier transforming
the transfer functions.

ical irregularity to scatter the traveling wave and a reflective
boundary condition at the stapes.

Without a time-domain implementation of the nonlinear
model, we currently have no precise way of investigating the
level dependence of the model response to acoustic clicks.
Approximate methods include reducing the active force along
the entire cochlea by a constant factor or computing syn-
thetic click responses by inverse Fourier transforming the BM
frequency response. Naively, the first method might appear
justified by de Boer’s EQ-NL theorem [59], but the theorem
applies only for continuous broadband stimuli such as noise.
The second method suffers from the problem that the spatial
pattern and time course of nonlinear compression along the
cochlea differs between clicks and tones. Notwithstanding
these technical caveats, the two strategies produce similar
results, both experimentally and in the model. For example,
inverse transforming BM frequency responses measured with
tones produces synthetic click responses that closely match
those measured with clicks, except in the late ringing portion
of the response [35], which is often contaminated by internal
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FIG. 5. Comparison between model and measured BM transfer
functions in the apex of the mouse cochlea (CF = 9.2 kHz) at
various stimulus levels (30–80 dB SPL in 10 dB steps). (a) Peak-
normalized gain and (b) phase. The connected symbols represent the
experimental data. The solid lines show the predictions of the 3D
chimeric model. Different colors encode different stimulus levels.
The black lines and symbols represent post-mortem responses.

reflection. The inset in Fig. 4(b) illustrates the intensity depen-
dence of the model synthetic click responses. As expected, the
model exhibits approximate zero-crossing invariance, which
reflects the phase invariance of the BM transfer function
(see Sec. II H and Appendix A).16

B. Mouse model

Figure 5 shows the model fits to BM measurements from
the apex of the mouse cochlea. Parameter values are given in
Table I. The model provides a good fit to both the magnitude
and phase of the data at all levels tested. As with the gerbil
data, the model misses a downward magnitude inflection,

16The intensity dependence of the phase evident in both the mea-
sured and predicted transfer functions is largest above CF, where the
magnitude of the response is greatly attenuated relative to its peak.
For this reason, the modest phase variation above CF has negligible
effect on the fine structure of BM synthetic impulse responses.

and corresponding region of negative group delay, apparent
in the tail region of the response (in this case, around two
octaves below CF). Once again, the inflection may indicate
the presence of a standing-wave component in the response
due to internal reflections not present in the simple model.

IV. DISCUSSION

A. Modeling approaches

Cochlear models can be broadly categorized into two
partially overlapping classes. The first consists of models built
around detailed representations of cochlear micromechanics
and its material properties (e.g., Refs. [39,60,61]). These
models provide useful tools for exploring how the various
anatomical substructures within the organ of Corti contribute
to shaping response features seen experimentally (e.g.,
Refs. [61–65]). Although such models can successfully repro-
duce existing data, their complexity—albeit still considerably
less than that of the real cochlea—remains high. Indeed, they
generally have many degrees of freedom and a corresponding
number of uncertain parameters. Consequently, models in
this class run the risk of missing the forest for the trees.

Models in the second class arise from a complementary
perspective that averages over the trees to focus on the forest.
They achieve insights into cochlear mechanics not from the
bottom up, but from the top down; that is, by providing ap-
proximate functional relationships between measurable vari-
ables, such as those between the pressure across the partition
and the motion of the BM (i.e., the BM admittance). In con-
junction with a simplified macroscopic account of wave prop-
agation in the cochlear fluids, these models employ lumped-
element representations of the mechanics of the partition;
by comparison with the models in the first class, they are
coarse-grained and perhaps slightly out of focus.

Depending on the model, the representations in this sec-
ond class can be either deduced from data as solutions
to appropriate “inverse problems” (e.g., Refs. [18,66]), hy-
pothesized from considerations of structural and functional
anatomy (e.g., Refs. [23,24,67]), or imposed as univer-
sal descriptions imported from dynamical systems theory
(e.g., Refs. [68–70]). Although they usefully exploit approx-
imate symmetries in the data, the resulting equations sel-
dom retain an unambiguous mechanical interpretation and
they therefore provide only a phenomenological account of
cochlear micromechanics. Compared to their more detailed
brethren, these models provide less overtly realistic but
considerably more tractable representations of the cochlea.
Ideally, they are both simple enough to help identify gen-
eral mechanisms that underlie specific patterns in data (e.g.,
Refs. [25,41,71]) and specific enough to make testable pre-
dictions about how different phenomena correlate with one
another (e.g., Refs. [72,73]). Their computational efficiency
lends them practical utility for simulating cochlear responses
to complex signals such as speech, and they can therefore
be used for understanding the perception of sound, includ-
ing the role of the cochlea’s nonlinear signal processing in
shaping physiological responses obtained from other stages
of the auditory system [36,74,75]. Despite differences in their
levels of explanation, models in the two classes are mutually
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informative and must, one presumes, ultimately converge on
a consistent description of cochlear mechanics.17

B. Consistency with the physics of the real cochlea

Our focus here has been on a model in the second class.
Conceptually, the model is very simple. (1) The organ of
Corti is represented by an array of harmonic oscillators that
move in proportion to the local displacement of the BM. (2)
The BM inertance is made consistent with the width of the
BM and the mass of the attached organ of Corti. (3) The
local damping parameter is assumed constant, independent
of BM motion. (4) The motion of the BM is presumed
driven by the transpartition pressure and an additional force
that boosts the mechanical response, rendering the model
active and nonlinear. (5) The active force is approximated as
perhaps the simplest that fulfills the conditions necessary to
achieve intensity invariance of the zero crossings of BM click
responses (see Appendix A).

The model suggests that the tall, broad peak of the in vivo
traveling wave is produced by three interacting factors: (i) a
passive BM resonance at a frequency lower than the natural
frequency; (ii) a build-up of propagated driving pressure
caused by the active-force term; and (iii) the transition be-
tween long- and short-wave behavior that further enhances
the driving pressure near the peak of the traveling wave
(see, e.g., Ref. [49]).

The most interesting feature of the model—and also its
greatest enigma—is the active-force term, which depends on
the time derivative of the pressure [32]. Although presumably
a proxy for forces created by outer hair cells, the active force
offers no immediate micromechanical interpretation. In the
following section, we explore the implications of this peculiar
active force and show that its behavior is consistent with
recent measurements of cochlear micromechanics.

C. The active force resembles relative BM and RL motion

Since the discovery of OHC electromotility [22], the
idea that traveling-wave amplification involves negative or
antidamping—that is, an active force operating roughly in-
phase with BM velocity near the best place [18,23,24]—has
dominated thinking in the field. A common corollary is that
the active forces are tuned to provide maximal local am-
plification near the characteristic frequency. Both theoretical
(e.g., Refs. [36,76]) and experimental studies (e.g., Ref. [77])
have therefore sought mechanisms capable of generating the
narrowly tuned forces thought responsible for the sharp fre-
quency tuning manifest in basilar-membrane motion.

Following Zweig [32]—who obtained the result by rein-
terpreting his one-dimensional inverse solution in three

17Models in the first class often emerge from detailed considera-
tions of cochlear anatomy and assumptions about micromechanical
motions. Because errors in this realm—where there are necessarily
more unknowns and fewer functional constraints—may yield unre-
alistic macroscopic behavior, it may be more efficient to proceed
by first using macromechanical models to identify micromechanical
constraints than to work the other way around.

dimensions—the present model assumes instead that the ac-
tive force driving the BM depends not directly on local BM
velocity or displacement but on the time derivative of the
driving pressure. The consequences of this assumption are
markedly different from the classic view of a vibration�
amplification feedback loop in the cochlea. As demonstrated
in Fig. 6(a), which shows the magnitude of the active force in
the mouse model at different levels of stimulation, the active
force is broadly tuned (relative to BM motion) and nonlinear
even at tail frequencies, where BM responses are linear.
[For reference, the thin gray lines in Figs. 6(a) and 6(b) replot
the BM gain of Fig. 5(a) at the lowest and higher sound
level tested.] Figure 6(c) plots the ratio of the active-force
gain to BM velocity gain, demonstrating that the relative
magnitude of the active force reaches a minimum near the BM
response peak.18 Thus the principal contribution made by the
active forces to BM tuning and amplification occurs not via a
direct “push-pull” action on the BM. Rather, the sharpening
of BM tuning occurs as the active forces “tune” the driving
pressure as the traveling wave propagates towards its best
place (see Sec. IV E). The cochlear amplifier manifests itself
as a broadband force that provides narrow-band amplification
of BM motion.

Ultimately, the value of these observations depends on
identifying plausible connections between the mechanisms at
play in the model and those operating in the cochlea. Unfor-
tunately, relating the behavior of the model active force to rel-
evant aspects of cochlear micromechanics—most obviously,
perhaps, to the relative motions of the BM and RL—faces
considerable uncertainty, both theoretical and experimental.
For example, the relative motions of the BM and RL are influ-
enced by multiple, mutually entangled factors, including the
mechanical impedances of these two structures; the internal
OHC forces acting upon them, either directly or via the TM;
and the external forces that control the motion of their center
of mass. Furthermore, phase shifts arising both from the trav-
eling wave and from complex three-dimensional movements
of the organ of Corti render the experimental measurement
of micromechanical motions—including the relative phases of
BM and RL vibration—extremely sensitive to the orientation
of the laser beam used for the recordings [30].

Despite these interpretive uncertainties—none of which are
unique to the present report—some features of the model
can be qualitatively related to existing data. Assuming, for
example, that the active force in the model represents the
action of OHC somatic motility, the action-reaction principle
suggests that the OHC force acting on the RL can be equated
with the model active force, but pointing in the opposite
direction. Under this assumption, the tuning and extent of
nonlinearity of the active-force term appears consistent with
the nonlinear responses evident in measurements of RL vibra-
tions at low frequencies [Fig. 6(a)], where BM responses are
linear [26,27,29,30]. For comparison with the model active
force shown in Fig. 6(a), panel (b) shows the magnitude of

18This is not surprising as the ratio reflects the magnitude of the
BM impedance, which reaches a minimum near CF. In particular, in
the low-level linear regime, the ratio between active force and BM
velocity is iωτP/VBM ∝ iω/YBM.
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FIG. 6. (a) Gain of the active force relative to the pressure at the base of the cochlea (sτP/P0) in the mouse model at different stimulus
levels (10 dB steps). (b) Vibration gain (relative to ear-canal pressure) of the OHC region (“RL”) measured in the same mouse whose BM
responses are shown in Fig. 5. The thin gray lines in (a,b) show the BM gain of Fig. 5 at the lowest and highest sound levels tested. (c) Ratio
of active-force gain to BM velocity gain. (d) Phase of the active force relative to that of BM velocity.

RL vibration (normalized to ear-canal pressure) measured
concurrently with the BM data used as the reference for
determining the model parameters. The similarity between the
active force and the measured vibrations of the RL, both in
terms of their frequency tuning and their level dependence, is
striking [Figs. 6(a) and 6(b)].

Although the model contains no mechanical representation
of the RL, and can therefore make no explicit prediction
about its motion, the unconventional active term seems to
provide a compelling phenomenological description of OHC-
generated forces. Indeed, the relationship between BM mo-
tion and active-force magnitude appears qualitatively simi-
lar to that observed between BM motion and extracellular
potential—an electrical correlate of OHC force—in the ger-
bil cochlea [16]. Certainly, the active force in the model
appears more consistent with recent experimental findings
than a force tuned as or more sharply than BM velocity
(e.g., Refs. [18,36]).

Figure 6(d) plots the phase of the active force relative to
BM velocity. The force appears nearly in phase with BM
velocity below CF and then transitions to approach the phase
of BM acceleration at higher frequencies. Again, under the
assumption that the active force in the model represents OHC
generated forces, application of the action-reaction principle
implies that the force pushes and pulls on the RL in a
direction opposite to BM motion up to CF and in the same
direction well above CF. Further, because the gain of the
active force decreases relative to that of BM motion as the

wave approaches CF [Fig. 6(c)], the model suggests that
the motion produced by external forces (e.g., the transpartition
pressure, which accelerates the center of mass of the organ
of Corti) becomes progressively more important relative to
the motion produced by internal, OHC-generated forces in
determining the overall motion of the RL near CF. These
model suggestions seem compatible with the studies by Ren
and colleagues [26,27,78] that provide evidence for (i) an-
tiphasic and larger RL than BM motion at low frequencies
and (ii) similar BM and RL motion (magnitude and phase) ap-
proaching CF. By contrast, amplification by means of sharply
tuned OHC forces (i.e., amplification dominated by the local
contraction and elongation of the OHCs) would be expected to
introduce the largest differences between RL and BM motion
near CF.

D. Wavelengths and the long- and short-wave approximations

Figure 7(a) plots the wavelength (real part) of the traveling
pressure wave for the mouse model as a function of frequency
relative to CF. Solid lines give the wavelength in the low-level
linear regime; dashed lines give the wavelength post mortem.
Under the assumption of local scaling, which enables relative
frequency to be re-expressed as relative spatial location, the
top axis on the figure indicates the corresponding distance
from the peak of the traveling wave evoked by a tone at CF.
Both the in vivo and post-mortem wavelengths decrease as
the wave approaches its best place, meaning that the wave
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FIG. 7. (a) Real part of the wavelength of the pressure wave in the mouse model. The dashed horizontal line bisects the plane into an upper
region where the long-wave approximation is valid, and a lower region where the approximation breaks down (scalae height H ≈ 0.3 mm).
The dashed vertical line marks the transition between long and short-wave regions in the model. (b) Gain per unit length (imaginary part of
the wave number). The vertical line marks the place of maximal BM velocity for the in vivo model. Note that the peak of the pressure wave is
determined by the zero crossing of the gain function. (c) Gain of the driving pressure relative to the pressure at the base of the cochlea. The
space constant of the mouse cochlear map was taken as � ≈ 1.8 mm [46]. (d) Comparison of peak-normalized model gain functions for the
pressure, active force (relative to pressure at the stapes), and BM motion (relative to stapes motion). Note that the active force is abolished post
mortem.

slows down in the peak region. Both wavelengths also begin
to increase again beyond the peak. (Note that the peak of the
traveling wave shifts basally post mortem.)

By taking the height of the scalae in the mouse apex as
H ≈ 0.3 mm [44], one can bisect the plane into two regions
(horizontal dotted line): an upper region, where the long-wave
approximation is theoretically valid (λ > 2πH), and a lower
region where the approximation breaks down. The vertical
dotted line marks the location of the model transition between
assumed long- and short-wave behavior, where the solutions
have been forcibly conjoined.19 Although proximity of inter-
section was not a criterion for selecting the transition point,

19A second transition region, from short-wave back to long-wave
behavior, occurs at frequencies above CF (or, equivalently, at loca-
tions apical to the best place). Because the region of validity of the
short-wave model is limited, it is difficult to predict precisely how

the wavelength curves cross the theoretical limit of validity
close to the vertical line. In the region just apical to the vertical
line, neither the long- nor the short-wave conditions are fully
satisfied. Thus the chimeric approach employed here extends
both the long- and short-wave solutions slightly beyond their
ostensible regions of validity. Fortunately, the existence of
this “zone of mutual invalidity” creates few problems—in
the transition region the responses of the chimeric model are
almost identical to those obtained in the computational 2D box
model (see Fig. 3).

the wavelength varies in this region. Nevertheless, the post-mortem
wavelength evidently increases enough beyond CF that it once again
becomes larger than the height of the scalae. In this region beyond the
peak of the traveling wave, the imaginary part of the wave number
[see Fig. 7(b)] becomes large enough that neither the short- nor the
long-wave approximations are especially meaningful.
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E. The spatial build-up of amplification

Experiments that interfere with normal OHC function—for
example, by selectively damaging the cochlea [79] or by
reducing prestin-based somatic motility via photoinactivation
[80]—have demonstrated that the amplification of BM travel-
ing waves occurs over a relatively short region basal to the
peak. Using OCT and a two-tone suppression paradigm to
extend these experiments to structures beyond the BM, Dewey
et al. [31] recently explored the amplification and spatial
build-up of both BM and RL traveling waves in the apex of
the mouse cochlea. For tones presented at the CF of the mea-
surement site, they found that the amplification of both BM
and RL vibrations is spatially distributed, extending basally
from the best place over a distance of ∼1 mm. However, for
tones below CF, where only the motion of the RL appears
amplified and nonlinear, amplification is spatially restricted
(i.e., local). In a nutshell, the data suggest that although the
OHCs produce significant forces over a large region basal to
the peak of the traveling wave, the effects of these forces vary
systematically with location. Far basal to the peak, the forces
produce local amplification of the RL, but not of the BM;
near the wave peak, however, the amplification “builds-up”
over space, consistent with the idea that the active process
boosts the propagating pressure wave, leading to simultaneous
amplification of RL and BM motion.

The presence in the model of a nonlinear force operating
at low frequencies but not amplifying the vibration of the
BM has been discussed in Sec. IV C. The simplest way
to determine whether the model predicts a spatial build-up
of amplification consistent with the data is to analyze the
complex wave number (κ) of the traveling pressure wave. In
particular, the imaginary part of the wave number describes
how the gain changes over space. Regions with Im κ > 0
provide net power gain to the traveling wave, regions with
Im κ < 0 provide net dissipation, and regions with Im κ = 0
are lossless. The cumulative traveling-wave gain (G) over the
interval [0, x] is given in terms of Im κ by

G(x) ≈ exp

[∫ x

0
Im κ (x′) dx′

]
. (25)

We refer to Im κ as the “gain function” [20]; it represents the
log-gain per unit length.

Figure 7(b) shows the gain function predicted by the model
for both in vivo and post-mortem conditions. In vivo, the
model predicts net amplification (Im κ > 0) at all frequencies
below CF—and, equivalently, at all locations basal to the
peak. When the model transitions from the long- to the short-
wave region, Im κ has a small discontinuity at the seam.
The gain function approaches zero at low frequencies and
becomes negligible at distances more than 2 mm basal to
the peak. The positive gain function corresponds to a net
power amplification of approximately 10 dB.20 The largest
contributions to the power gain occur in a region spanning

20Although the wavelengths and gain functions in the gerbil model
are very similar to those in the mouse model, the net power amplifi-
cation in the gerbil model is smaller than in the mouse (only ∼6 dB).
Note further that net power amplification in the 2D box model is not

about 1 mm just basal to the peak, in excellent agreement with
experiment [31].

Post mortem, the gain function is always negative, as
required for a passive system. In contrast to the gain functions
in other models, which are positive only within a small region
immediately basal to the peak of the BM traveling wave
[18,19,23], the gain function in the present model is positive
everywhere basal to the best place. Well below CF, however,
the gain function is small enough that it has negligible effects
on the model response. Overall, the gain function in the model
corresponds well with conclusions about power amplification
in the gerbil cochlea drawn by Dong and Olson [16]. At the
lowest sound levels, they found a region of negative resistance
extending about one octave below CF; at lower frequencies,
the BM admittance appeared largely stiffness dominated.

The downward zero crossing of the in vivo gain function
determines the location where the transpartition pressure wave
peaks. In the model, the pressure wave peaks slightly basal to
the peak of the wave on the BM, as is evident in Fig. 7(d),
which compares the transfer function gain for pressure and
BM motion. The two peaks need not be coincident because
the tuning of BM velocity reflects the product of the pressure
and the BM admittance. Recall that the model nonlinearity
depends not directly on the BM velocity but on the tuning
of the pressure. This, combined with the observation that the
pressure wave peaks basal to the BM best place, renders the
model consistent with experimental observations showing that
the strongest compression and suppression of BM motion
measured at the CF place is elicited by tones at frequencies
slightly higher than CF (e.g., Refs. [31,81]).

The difference between the in vivo and post-mortem gain
functions determines the dynamic range of the cochlear non-
linearity manifest in the pressure. Figure 7(c) depicts the
pressure gain (i.e., the pressure relative to its value at the
base of the cochlea) for the in vivo and post-mortem models.
The gain difference is less than 2 dB at frequencies more
than 1.5 octave below CF and becomes negligible more than
two octaves below CF. Thus, although the model is, strictly
speaking, active and nonlinear at all frequencies, the effects
of the active term on both the pressure and the BM well below
CF are small enough [Fig. 7(d), see also Figs. 4 and 5] that
their responses appear essentially linear in the low-frequency
tail region of the response.

In summary, the model represents the cochlear amplifier as
an active nonlinear force operating along the entire cochlea.
Nevertheless, the active force produces significant nonlinear-
ities in the motion of the BM only in a narrow spatial region
basal to the peak of the traveling wave. The model thus meshes
nicely with the picture of cochlear mechanics emerging from
recent measurements [26–29,31].

F. Physical interpretation of the active force

When interpreted as a local force generated by the OHCs,
the active force term in the model appears in qualitative
agreement with recent experimental findings. However, the

very meaningful, as in that model the BM spans the entire width of
the scala, reducing the “geometric” gain.
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biophysical mechanisms producing this phenomenological
force—a force proportional to the time derivative of the driv-
ing pressure—remain obscure. Here, we examine the force
term from several different angles in hopes of providing a
possible physical interpretation of its peculiar form.

First, we note that the model requires only that the force
transfer function relating transpartition pressure (P) and active
force Fact be

Fact

P
∼ s, (26)

where the symbol ∼ here stands for “approximately propor-
tional to.” Equation (26) need not hold in the cut-off region
beyond the peak, where P → 0 for |s| 
 1. Roughly, but
conservatively, we therefore assume that the proportionality
applies for |s| � 1. With this limitation, Eq. (26) states that
the active force is approximately a first-order high-pass filtered
version of pressure.

Under the assumption that OHC somatic motility is the
main source of cochlear amplification, it is theoretically pos-
sible to decompose the force transfer function into its main
physiological components. For example, the transfer function
[Eq. (26)] can be regarded as the result of the mechanical
displacement of the OHC stereocilia, which controls the
mechanoelectrical transduction (MET) current, which drives
the OHC receptor potential, which in turn controls the force
produced by the OHCs. Unfortunately, there is currently little
consensus about the precise functioning of any of these mech-
anisms. So, although one could design a detailed physical
model that implements the necessary phenomenology, we
take to heart an admonition attributed to John von Neumann:
“There’s no sense in being precise when you don’t even
know what you’re talking about.” Without reviewing the
many controversial details surrounding the mechanisms that
regulate somatic motility, we conclude more or less where
we began—a physical interpretation of the model active force
in terms of OHC forces requires that the combination of all
processes results in a force approximately proportional to
a high-pass filtered version of the driving pressure, whose
approximate tuning is depicted in Fig. 6(a). How, or whether,
this approximate proportionality is achieved in the cochlea
remains to be seen.

We note, however, that although the model active force
provides only an approximate phenomenological description
of the biophysical processes operating in the real cochlea, the
close correspondence between model predictions and recent
experimental observations is possible only because the model
active force is regulated fairly independently of the vibra-
tion of the BM. Feedback between the motion of the BM
and the strength of the active force occurs only indirectly,
via the effect of organ-of-Corti transverse vibrations on the
transpartition pressure field. Figure 8 compares and contrasts
illustrative diagrams depicting causal relationships in classic
models and in the present model. Whereas classic models
employ, in effect, two feedback loops—one from BM motion
to transpartition pressure and one from the cochlear amplifier
to BM motion—the present model employs only one: from
BM motion to transpartition pressure. Hence, the classic
vibration� amplification feedback loop has been “cut” in the
present model.

FIG. 8. Schematic diagrams depicting causal relationships in
classic active models of cochlear mechanics (e.g., Refs. [18,23,24])
and in the present model. In classic models, the transpartition
pressure drives the motion of the BM, which drives the cochlear
amplifier. The cochlear amplifier drives the vibrations of the BM,
whose motion affects the transpartition pressure. Classic models
thus employ one “passive” feedback loop to relate BM motion and
pressure, and one active feedback loop to represent the action of the
cochlear amplifier. Although details of the feedback system relating
the cochlear amplifier and BM motion vary from model to model, the
causal relationships depicted in the figure are the same in most active
models. In the present model, the transpartition pressure drives the
BM and the cochlear amplifier at the same time. Thus, in contrast
to classic models, the present model includes only a single feedback
loop, which relates pressure and BM motion.

V. CONCLUSIONS

Cutting direct feedback between BM motion and active
force allows the present model to incorporate active forces
that are nonlinear at all frequencies but that render BM
vibrations nonlinear only in the peak region of the traveling
wave. In classic models, the cochlear amplifier acts, in effect,
to boost local mechanical resonances in the partition. As a
consequence, classic models are often extremely sensitive
to small variations in their parameters, or rely on oscillators
that hover on the verge of instability. By contrast, the
amplifier in the present model acts by enhancing the near-CF
hydrodynamics, and is therefore locally stable and robust; in
that sense, the model is perhaps more biologically realistic.
Reducing the feedback also provides a simple and compelling
interpretation of the zero-crossing invariance of BM click re-
sponses (see Appendix A). For these reasons, we suggest that
the dominant view of cochlear amplification as a tight, sharply
tuned closed-loop feedback system (see e.g., Refs. [82–84])
appears incompatible with the experimental data. To remain
qualitatively consistent with recent experiments, it appears
necessary to eliminate—or at least seriously relax—any
direct feedback between BM motion and the production of
active forces. Removing vibration� amplification feedback
from the axioms of cochlear mechanics calls into question
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representations of the organ of Corti by means of coupled non-
linear oscillators operating near a critical point of instability
(or bifurcation, e.g., Refs. [68,70,85]).

From a mechanical perspective, cutting vibration�
amplification feedback requires mechanisms in the cochlea
that effectively decouple the transverse motion of the BM
from the vibrations of the hair bundle that drive OHC somatic
motility. These mechanisms could take several nonexclusive
forms. For example, compliant supporting cells may decouple
the vibration of the BM from that of the top of organ of Corti,
via mechanisms analogous to those of passive suspension
systems in automobiles. In this regard, we note that Nobili
and Mammano [86] proposed that the OHCs are coupled to
the BM via compliant supporting cells, so that the cochlear
amplifier operates primarily through viscous rather than elas-
tic forces. This theory—which has been confirmed ex vivo by
Scherer and Gummer [87,88]—can be readily probed in vivo,
for example by comparing the tonic (DC) contraction of the
OHCs with the baseline position shift of the BM [89].

Another obvious possibility is that radial shearing motions
between the RL and the tectorial membrane (TM), into which
the tips of OHC hair bundles are inserted, are the principal
drivers of somatic motility, rendering activation of the active
process only indirectly dependent on the transverse motion
of the organ of Corti. In this regard, we note that previous
modeling studies suggest that motions of the TM and those of
the BM can indeed be fairly independent [67,90].

Because a variety of linearized models can reproduce the
main features of measured BM transfer functions in the low-
level linear regime (e.g., Refs. [18,23,24,65,91]), evaluating
models based on their linear responses is a necessary but
insufficient measure of “quality.” As Zweig pointed out [32],
different linear models, even those with different numbers of
spatial dimensions, can be considered functionally equivalent
if they predict similar wave numbers for the traveling wave.
However, when linearly equivalent models are made nonlin-
ear, they may well behave differently, allowing them to be
distinguished and tested against experiment. This work orig-
inated in simple considerations about cochlear nonlinearity
and model dimensionality and their possible implications for
BM phase invariance (see Appendices A and B). Unexpect-
edly, the arguments lead to a depiction of the active cochlea
that differs substantially from the common view (see Fig. 8).

Whether and how the detailed biophysical mechanisms
operating in the cochlea combine to yield an effective, collec-
tive action well captured by the phenomenological description
underlying our model remains an important empirical and
theoretical question. No matter how that story may ultimately
play out, the model reproduces key linear and nonlinear
responses of the cochlea and it can therefore be employed
to the benefit of engineering and other applications requiring
in silico models of the cochlea (e.g., Refs. [92–96]).
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APPENDIX A: ALTERNATE DERIVATION
OF ZWEIG’S OSCILLATOR EQUATION

This Appendix presents a simplified and rather heuristic
derivation of the BM oscillator equation [Eqs. (3) and (4)]
first suggested by Zweig [32]. Unlike Zweig, who obtained
the result by fitting a BM admittance to measured transfer
functions in the linear regime, we approach the problem by
invoking the approximate intensity invariance of the phase
of BM frequency responses measured in the mammalian
cochlea. Whereas the magnitude of the BM frequency re-
sponse undergoes large changes with level, the phase changes
comparatively little (see, e.g., Figs. 4 and 5). The same
approximate invariance is evident between transfer functions
measured in vivo and post mortem.

A particular manifestation of phase-invariance is the ap-
proximate invariance of the zero crossings of BM responses to
clicks [2]. Zero-crossing invariance requires that both (i) the
characteristic damped (or ringing) frequency of the cochlear
oscillator [2] and (ii) the wave-front delay of the traveling
wave be independent of stimulus level—or, more precisely,
independent of local BM motion and the strength of the
internal force [Eq. (3)].

The characteristic frequency of the cochlear oscillators is
the periodic component of the solution of the homogeneous
equation associated with Eq. (3). The wave-front delay τwf

for the model is given in Eq. (13). Applying the WKB
approximation to the pressure wave in the long-wave re-
gion of a generic linear model with BM admittance Y (s)
yields

τwf ∝ lim
s→0

√
Y (s)/s. (A1)

The simple assumption that the organ of Corti seen from
the fluid consists, effectively, of a mass, dashpot, and spring
leads immediately to Eq. (3) with fact = 0. It is by now
a classic result that this simple passive model cannot fit
BM transfer functions measured at low sound levels in vivo
[18,97]. However, as shown in Figs. 3–5, the passive model
does reasonably approximate the transfer function measured
post mortem. To find a function describing fact, we therefore
proceed by assuming that the harmonic-oscillator model pro-
vides a good description of passive cochlear mechanics.

Without additional assumptions, in the low-level linear
regime fact can be expressed as the sum of a force fBM,
depending on local BM motion (and its time derivatives),
and a force fp, depending on pressure (and its derivatives).
This decomposition applies whether the forces originate from
complex local or nonlocal mechanisms.21 Hence Eq. (3)

21In a scaling-symmetric linear model, spatial functions can be
expressed as functions of frequency. For example,

df (x)

dx
= s

l

df (s)

ds
.
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becomes

m

(
v̇BM + 2ζωcvBM + ω2

c

∫
vBMdt

)

= fext + fBM

( ∫
vBM, vBM, v̇BM, . . .

)
+ fp(p, ṗ, p̈, . . .),

(A2)

where fext = bp is the force (per unit length) due to external
pressure. The two functions representing the active force can
be expanded as

fBM

(∫
vBM, vBM, v̇BM, . . .

)

= α0

∫
vBMdt + α1vBM + α2v̇BM + · · · (A3)

and

fp(p, ṗ, p̈, . . .) = β0 p + β1 ṗ + β2 p̈ + · · · . (A4)

Constraint (i) above requires that the imaginary part of the
eigenvalues of

m

(
v̇BM + 2ζωcvBM + ω2

c

∫
vBMdt

)

= fBM

( ∫
vBM, vBM, v̇BM, . . .

)
(A5)

be the same as those of

m

(
v̇BM + 2ζωcvBM + ω2

c

∫
vBMdt

)
= 0. (A6)

Constraint (ii) requires that

mω2
c − α0

b + β0
= m

b
ω2

c . (A7)

The simplest solution that respects the constraints imposed by
phase invariance is therefore given by the conditions

fBM

( ∫
vBM, vBM, ˙vBM, . . .

)
= 0 (A8)

and

β0 = 0. (A9)

The conclusion therefore is that the external force must be a
function of the time derivatives of the pressure:

fact ( ṗ, p̈, . . .) = β1 ṗ + β2 p̈ + · · · . (A10)

Hence, the simplest strategy (mathematically speaking) for
finding an internal force term consistent with zero-crossing
invariance is to assume it is a function of time derivatives
of the local driving pressure. Empirically, the first term of
the expansion [Eq. (A10)] proves sufficient to fit the data
reasonably well.

APPENDIX B: ADMITTANCES IN 1D AND 3D

Models that assume one-dimensional (1D) longitudinal
fluid flow in the scalae are analogous to transmission
lines [12,18,23,25,98]. Although the underlying long-wave
assumption has long been known to break down near the
peak of the traveling wave [11,38,39], satisfying 1D models
can be derived from (or fit to) existing BM response data
and the simplification is still commonly (and often implicitly)
assumed to have little impact on model predictions [36,37].
However, as recent studies have pointed out [32,49], the
mathematical form of the BM admittance obtained in 1D is
radically different from that found in two or three dimensions.
Without reiterating these arguments, we present a simple
comparison between the nature of 1D and 3D models in
Fig. 9. The results demonstrate that explaining measured BM
velocity responses by modeling the cochlea in 1D requires that
the active process appear as a narrowly tuned force.

The figure compares and contrasts the magnitude of the
driving pressure and the BM admittance of the 1D active
model of Ref. [18], with those of a 2D or 3D model with
the identical BM-velocity frequency response. The models
were obtained using the methods outlined in Ref. [49]. Recall
that BM velocity is the product of the driving pressure and
the BM admittance. The 1D model produces only a small
peak in the driving pressure, and it therefore must include
a rather sharply tuned BM admittance in order to yield the
measured BM response. By contrast, in 2D or 3D models the
driving pressure is more narrowly tuned, implying that the BM
frequency response can be obtained with a more broadly tuned
admittance.

FIG. 9. Comparison between the frequency response magnitudes
of Zweig’s 1D time-delay model [18] and those of equivalent 2D or
3D models that produce the same BM frequency response.
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