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Existence of life in 2 4+ 1 dimensions
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There are anthropic reasons to suspect that life in more than three spatial dimensions is not possible, and if
the same could be said of fewer than three, then one would have an anthropic argument for why we experience
precisely three large spatial dimensions. There are two main arguments leveled against the possibility of life

in 2 4+ 1 dimensions: the lack of a local gravitational force and Newtonian limit in three-dimensional general
relativity, and the claim that the restriction to a planar topology means that the possibilities are “too simple” for
life to exist. I will examine these arguments and show how a purely scalar theory of gravity may evade the first
one, before considering certain families of planar graphs which share properties which are observed in real-life
biological neural networks and are argued to be important for their functioning.
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I. INTRODUCTION

The question of why we experience the number of dimen-
sions we do is one with a long history, which I do not attempt
to cover here, instead simply referring the reader to [1-5]
and references therein. Tegmark [5] convincingly argues for
the existence of precisely one temporal dimension by requir-
ing hyperbolic equations of motion, and hence predictability
(which certainly does seem a requirement if scientists are to
emerge), which leaves us with the question of why there are
three (large) spatial dimensions. Various arguments for this
have been proposed, including that it might be entropically
or thermodynamically favored [6,7], or that it might have
a dynamical reason, such as string gas cosmology [8,9], or
evaporation of D-branes [10], or even that it might be due to
properties of the Weyl equation [11].

In the absence of a truly convincing argument, however,
we may rely instead on anthropic reasoning. The anthropic
argument against there being more than three large spatial
dimensions is well known: in Newtonian gravity in more than
three dimensions, orbits are unstable against small perturba-
tions and hence anything like a solar system is impossible.

The arguments against there being fewer than three seem,
however, not so robust. A commonly cited one is the absence
of propagating degrees of freedom in general relativity (GR)
in 2+ 1 dimensions. Were one forced to use purely GR,
then this indeed would be a problem for the existence of
solar systems and thus life that is in any way similar to us;
however, nothing forces the gravitational theory to be simply
GR and, in particular, one could include a scalar field and thus
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reintroduce propagating, “gravitational” degrees of freedom,
and hence dynamics that seem more amenable to the existence
of complex life. In Sec. II, I will present a purely scalar theory
of gravity which admits stable orbits and a possibly reasonable
cosmology, as a proof of principle.

The other objection that often arises is that complex
life would face topological obstructions in two dimensions;
certainly one-way digestive systems would not be possible,
though presumably life that evolved in such a world would
not possess our squeamishness about this. On the other hand,
neurons in the brain would not be able to cross, and hence the
neural network of a brain would have to be planar, which, in
some sense, limits its complexity. Thus, Refs. [2,5] conclude
that a two-dimensional world is too simple to allow complex
life to appear. In the second half of the paper (Sec. III), I
will analyze this question quantitatively by examining various
classes of planar networks in order to determine whether it
is possible for them to emulate some of the behavior that
has been observed in biological neural networks in the real
world.

Finally, in Sec. IV, I will briefly discuss the nature of
electromagnetism and the existence and structure of atoms
and molecules, both of which have a bearing on life.

One further objection that has been raised [1,3] is that a
solution of the wave equation (for a massless field) in an even
number of spatial dimensions in general has support on the
interior of the past lightcone, not just on its surface. That is,
massless fields transmit disturbances not just along the light-
cone, which would seem to make the faithful transmission
of information more difficult, and hence is an impediment to
life’s functioning. However, as the saying goes, “life finds a
way,” and it is not inconceivable that beings which evolved
under such circumstances would find a way to nonetheless
communicate effectively. That being said, it is not clear to me
how to test this supposition, and so for now I simply note it
and move on.

Finally, it behoves me also to mention the pioneering work
of Dewdney who has thought extensively about the possibility
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of life in two spatial dimensions and the form that it might
take [12—14].!

II. RELATIVISTIC GRAVITY IN THREE DIMENSIONS

As is well known, general relativity in 2 + 1 dimensions
does not have any local degrees of freedom; as a result of this,
the spacetime outside of, e.g., a star, is locally flat and the
presence of the object is only discernible globally, through the
presence of a deficit angle. Clearly, solar systems could not
exist in such a world and so this is commonly used as an argu-
ment against the possibility of life in two spatial dimensions.
The absence of local degrees of freedom in 2 + 1 dimensions
is, however, a peculiarity of the fact that GR comprises just a
massless spin-2 degree of freedom,” and since we are already
considering altering the number of spacetime dimensions, it
seems not unreasonable to also modify the theory of gravity
so as to include local degrees of freedom. The simplest way
to do this is to include a gravitational scalar field and, for
completeness and concreteness, I will give an example of such
a theory.

Consider the action

S—=p / &/ — det (@200 ]

1
x [—5k<¢>)f<¢>)—2n““a,t¢av¢ - V(¢)]
+ Sl f (@) 100, (W1, (1

where w is a mass parameter and {W} denotes the collection
of matter fields. Note that this describes matter and a scalar
field ¢ (possibly with a nonminimal kinetic term) minimally
coupled to a conformally flat metric g,, = f(¢)*n,.,. For cal-
culational ease and before specifying the conformal coupling
£, I will perform the field redefinition dgp = /fkd¢ to get

1
S = u/d3x[—5n’“8uw8vw - U(w)} + Smlf (@), {W}1.

@
When f(¢) = ¢, this theory is essentially one possible gen-
eralization to three dimensions of Nordstrom’s theory of
gravity.? The field equation resulting from this action is

—uw AT, 3)

where the traces are taken using the Minkowski metric, and
the matter stress-energy tensor is defined with respect to the

Op —U' =

'A more light-hearted presentation of these ideas may be found
in [15].

’In D spacetime dimensions, this comprises %D(D — 3) degrees of
freedom.

3In four dimensions, one has (d¢)> ~ /— det(¢2n)R(¢*n) and so
the action is the same as in GR, but with the restriction to conformally
flat metrics. In three dimensions, one has /— det(¢2n)R(¢’n) ~
¢~ '(d¢)?, from which one would get a different possible generaliza-
tion of Nordstrom’s theory (of course, the kinetic term can be made
canonical via a field redefinition, but doing so would change the form
of the coupling to matter).

effective metric to which matter couples.* I will take the scalar
potential to be U(p) = %mz(w + 1)?, which is done in order
to force the vacuum expectation value (VEV) of ¢ to be
@ = —1 and, hence, in empty space, g,, = 1, when f = ¢.

A. Spherically symmetric, static source

First let us consider the case relevant for planetary or-
bits: spherical symmetry, staticity, and 7}, = M$ (X)5238,6 for
which the field equation becomes

M 8(r)
W mr

1d / 2
—-—(rg)—m (¢ + 1) =|f] “
rdr

The solution to the homogeneous equation is ¢ = —1 +
clHO(I)(imr)—i-czHéz)(imr), where H(gl’z) are Hankel func-
tions of the first and second kind. Requiring ¢ — —1 as
r — oo sets c; =0, and ¢; is fixed by integrating over the
singularity at r = 0 to get 4ic; = %|f|’|,_>0. In order for this
to be finite, /" must be finite, and the simplest solution is to
choose f = ¢, leading to

M
o=—1+ Eng”(imr), 5)
with matter feeling the metric,

M 2
ds* = [1 - 4—iH(§1)(imr)i| (—dt* +dr* +r*d6*). (6)
0

Let us define a new radial coordinate via R =
[1-— %iHél)(imr)]r, with which the above metric can be
written as

M 2
ds* = _[1 — —ng”(imr)] dr?
4

1—4%1'H(§”(imr)

+
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The conserved energy of test particles moving in this
metric is given by

[1— Y iH D imr)]*

E? = Al R+ V(R),
{1 = 2" imr) + mrH " (imr)]}?
(®)
where the effective potential is given by
VR) = |1 - —iH; (imr)| + —, ©)]
du r?

where J is the conserved angular momentum. The first of the
terms in the effective potential increases monotonically from

4 8Sm _ Sm g
Note that one has o = ag awff
[fP&T.

*It should be noted that if f = ¢ and k = 1, then ¢ = {¢? and,
hence, V (¢) = 2m¢p0(¢> + 4.

®Note that T,, = M§%") (x)u,u,, where §¢(x) = f725(x) and

u, =f82.
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0 to 1, while the second decreases monotonically from J 2 / rg
[where R(ry) = 0] to 0. Hence, for a small enough J, their
sum will possess a minimum at a finite value of R, and thus
the metric (7) supports stable circular orbits.’

It behoves me to mention one undesirable aspect of this so-
lution, which is that the metric (7) exhibits a naked singularity
at R = 0, as can be seen by calculating the Ricci scalar.

B. Homogeneous, isotropic universe

Other solutions which are important for life are cosmo-
logical ones (see [16] for a study of cosmological solutions
in three-dimensional general relativity). To that end, let us
consider a homogeneous and isotropic universe filled with a
perfect fluid,

T = *[(0 + P)8LSY + priyw - (10)

The field equation (3) gives

2p—p
. 2 . 2

¢ +m (¢ + 1) = sign(p)p”——. )
We must supplement this with the equation for energy-
momentum conservation, 3*(7,\¢ + T,(7™) = 0, where T,¢’
is the energy-momentum tensor coming from the ¢ kinetic
term, while TM(Z*m) is the energy-momentum tensor for the
matter sector defined with respect to the Minkowski met-
ric which satisfies Tu(]’j’m) = |¢|T,,. Hence energy-momentum
conservation yields

dft, 1, 2, P03
—| = = 1 —lgl” | =0. 12
dt[z tomile+1D) +MI</J| (12)

By combining this with (11), one obtains the expected
AP
p+25(p+p)=0, (13)

and hence a fluid with barotropic equation of state p = wp
behaves as p o< || ~2(H®),

The dynamics of the universe can be easily ascertained
from the “Friedmann equation” (12), which tells us that the
scale factor just behaves as a particle rolling in an effective po-
tential, V(p) = Im*(p + 1)* + §|<p|3. Since the point-source
solution described in the previous section has ¢ < 0, here I
will only focus on ¢ < 0.

First note that radiation (w = %) only changes the zero
point of the effective potential and hence has no effect on
the dynamics. For universes which also contain nonrelativistic
matter (of co-moving density p > 0) and vacuum energy (of
density p,), the qualitative behavior is as follows:

(@) py, > 0 and p > um?: the universe expands and recol-
lapses.

7Since the conformal factor is f2, choosing the VEV of ¢ to be
+1 would also be consistent with flat space at infinity. However, in
this case, the matching condition for the coefficient of Hél) would
have been unaffected and so the metric would have been ds* =
[1+ %I'Hél)(imr)]z(—dt2 + dr? + r*d6?). The corresponding sign
is flipped in the first term of V (R) and hence both terms are mono-
tonically decreasing, disallowing the existence of orbits in this case.

(b) p, > 0 and p < um?: the universe either expands and
recollapses, or it may oscillate around a finite size.

(c) py < 0 and p > pm?: the universe either expands and
recollapses, or it may transition from matter to vacuum energy
domination, ending in a big-rip.

(d) py < 0 and p < um?: the universe either expands and
recollapses, or it may oscillate around a finite size, or it may
transition from matter to vacuum energy domination, ending
in a big-rip.

1. Linear perturbations

It is important to check the behavior of linear perturbations
in these universes. Perturbing the gravitational scalar and the
nonrelativistic matter, one arrives at the following equations
for the perturbations:

. 1

8¢ + (k> +m*)sp = ——8p, (14)
"

98D + ¢8p = —k*pdg, (15)

Su; = ikidg, (16)

where p = pg? is the (constant) co-moving matter density. A
universe dominated by nonrelativistic matter has

|§0(t)| = %[(Qomax + Qomin) + (‘pmax - (Pmin) cos(mt)], (17)

where @max = 2(1 — #) — @min- Unfortunately, we cannot

solve these exactly, but if one can drop the 8¢ term in the
first equation (a quasistatic approximation), then the second
equation becomes

= K p LYo, 18
()= kz_i_—mzm(!’(f) (1), (18)

~/

5p

where the new time coordinate is

2 i t
dt = pdt = 1= ———tan™! [ /mtan <m—>i|
A/ PminPmax ®max 2

19)

Equation (18) clearly possesses a growing solution, and
so we need only compare the growth rate with other relevant
timescales.

If ¢min > 0, then classically the universe lasts forever, and
one simply needs to wait long enough for the perturbations
to grown large enough to form stars, etc. If there is negative
vacuum energy, then there exists a quantum instability to the
nucleation of vacuum energy-dominated bubbles, which puts
a lower bound on the vacuum energy.

Alternatively, if @pi, < 0, then the universe exists only
for a finite time ¢, and so one needs to ensure that the
perturbations have grown sufficiently by the time the universe
attains its maximum size. This ends up putting a lower bound
on the co-moving matter density and an upper bound on |y |-

C. Other solutions to the gravity problem

In the previous sections, I have presented a purely scalar
theory of gravity which may allow life in 2 4 1 dimensions.
This is not intended as a complete theory, but more as a
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proof of principle, and now I will briefly discuss a few other
alternatives.

One could make the whole metric dynamical (rather than
just the conformal factor) to end up with a scalar-tensor
theory. See [17] for work studying certain aspects of three-
dimensional scalar-tensor theory. By making the Planck mass
for the tensor fluctuations large enough, one would expect
to retain the desirable features of the point-source solution
(namely, stable orbits) while forcing any changes to occur
very close to the source (and one might even hope to achieve
the introduction of event horizons to clothe the singularity).
The changes to the cosmological solution are harder to pre-
dict.

Note also that vacuum polarization may give rise to an
inverse square law (in the weak-field limit) for a point source
in (2 + 1)-dimensional general relativity [18].

On the other hand, one could imagine a braneworld, in
which matter is confined to a 2-brane, while gravity may prop-
agate in the four-dimensional bulk. Usually in a braneworld
scenario, one must work to hide the higher-dimensional nature
of gravity by warping the bulk [19], making it finite [20], or
giving a mass to the graviton [21], yet in this case the fact
that gravity would behave in a higher-dimensional manner
(namely, four dimensionally) is actually a desirable feature.

It is worth noting that where comparable observations can
be made, all of these theories may depart from what it ob-
served in our universe. However, for the question of whether
life can exist, it does not seem necessary to fully reproduce
gravity as in our universe (but merely certain features, such as
the existence of stable orbits).

III. BIOLOGICAL NEURAL NETWORKS

Driven by the study of complex networks in general
(see [22,23] for reviews), the study of biological neural
networks is a flourishing field (see [24] for a review) and
represents the analysis of both structural and functional net-
works, in creatures ranging from the nematode C. elegans,
whose entire network of neurons has been mapped [25], to
mammals such as cats [26] and macaques [27], to humans
themselves [28], though in the latter cases the data are not
close to the resolution of individual neurons.

One key property that neural networks seem to have (along
with many other real-world networks) is that they are small
world [29,30], which means that they simultaneously exhibit
both the high clustering of regular lattices and the small
average path length of random graphs. It has been conjectured
that the small-world property may be evolutionarily selected
due to providing both robustness and efficiency [31]; see [32]
for a recent review on small-world neural networks.

However, it has recently been realized that this on its own
may not be enough to characterise real-world neural networks,
and that in fact departures from pure small-world behavior
may be necessary [33]. It would seem that another hallmark of
brain networks is that they are critical, being poised between
active and quiescent phases in which the neurons are either all
firing or all dormant [34,35] (although the issue of criticality is
not entirely settled [36]). It is conjectured that this is required
for effective processing of stimuli [37], since otherwise the
firing of a neuron due to an external stimulus would either

be swamped in noise (due to previous firings) or not lead to
a response in the brain. Criticality generally requires tuning;
however, this can be ameliorated by a Griffiths phase [38],
a “stretching” of the critical point into a region (see [39]
and references therein). One property which seems important
for the existence of a Griffiths phase is hierarchical modu-
larity [40,41], i.e., the network is constructed from smaller
subnetworks within which the connectivity is much higher
than with the other modules.

The question I wish to ask, then, is the following: Do
there exist families of planar graphs that exhibit the properties
which have so far been deemed important in real-world brain
networks, namely, small worldness, hierarchical modularity,
and the existence of Griffiths phases?

A. Classes of random planar graphs
1. (Uniform) random planar graphs

Defining a random planar graph (RPG) to be one drawn
uniformly at random from the set of all planar graphs of a
given number of (labeled) vertices, there is a simple Markov
chain algorithm to generate one [42]. This, however, is rather
slow, but faster algorithms have been developed and presented
in Refs. [43,44].8 An implementation of this last one can be
found in Ref. [46], which will generate random planar graphs
with approximately 10%, 10*, and 103 vertices, and in what
follows I will use a set of 20 graphs generated for each of
these sizes. See [47] for more information on the properties of
random planar graphs.

These random planar graphs have no structure (beyond
being planar), and so I will now describe two classes of planar
graphs whose construction inherently introduces a certain
amount of hierarchical structure and modularity (which seems
to be important for the existence of a Griffiths phase).

2. Self-similar (planar) graphs

Start with an RPG and, for each of its vertices, with
probability p identify that vertex with the vertex of another
RPG, then repeat this procedure for all of the new subgraphs
that are introduced. In this way, one generates a planar graph
with a self-similar structure. If the graphs at each level have
N vertices, then, after performing this procedure n times, the
expected number of vertices of the resulting graph is

Vo= (1= pN[1 +---+ (pN)""'1+ (pN)'N

N
=N [N = 1= pl(pNY' =11}, (20)

and if the expected number of edges in an RPG is yyN (yy ~
2.2 for large N), then the expected average degree of our self-
similar graph is
&—Zy L+---+ (pN)"
Vi = TN A=+ Ny T+ (N
(pN)n+l -1
= ZVN n+1 n :
(pN)"+ =1 = pl(pN)" — 1]

21

8See [45] for a comparison of different generators’ random planar
graphs.
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FIG. 1. The procedural generation of cycle-based random planar graphs. Dashed lines indicate edges which may or may not exist,

depending on the edges of G; and Gj.

In what follows, I will use a set of graphs generated with
N =10, p=1, and n = 3,4, 5 (so their sizes are 103, 10,
10°—the same as the RPGs).

3. Cycle-based (planar) graphs

Inspired by [48,49], I will now define a class of random
planar graphs whose generation is based on cycles. The
starting point is a cycle graph of order three or four, and
the process of generation follows thus (and is depicted in
Fig. 1): given a specific set of three nodes, a planar graph G3
is placed inside, and with probability p; three vertices of G3
adjacent to the outside face are each connected to two of the
vertices of the original set, creating six new graphs of order
three, called active three-graphs, which can then go on to
spawn Gj3’s of their own. Alternatively, with complementary
probability 1 — ps, the three outerplanar vertices of G3 may be
each connected to just one vertex, which creates three active
four-graphs. Given a four-graph, a planar graph G is placed
inside, and with probability ps four outerplanar vertices are
each connected to one of the vertices of the original graph, cre-
ating four active four-graphs; with complementary probability
1 — p4 these vertices are each connected to two vertices of
the original graph, creating eight active three-graphs. Thus, at
each stage, active three-graphs and four-graphs generate new
active three-graphs and four-graphs, and in this way the whole
graph is procedurally generated. The only requirements on Gz
(G4) (which may of course be drawn from some random graph
distribution) are that they are planar and have at least three
(four) vertices which may be drawn adjacent to the outside
face.

Given the above rules, the expected number of active three-
four-graphs at stage n is

N@3)y = 6psNQB)p-1 +8(1 = pA)N@A)u—r,  (22)

N@#)y =31 = p3)NB)n—1 +4psN @A), (23)

where [N(3)o, N(4)9]=(1, 0) or (0, 1) depending on whether
a three or four cycle is taken as the initial seed. It is simple
to check that if one requires the expected number of active
three-graphs to be in some fixed ratio r to the expected
number of active four-graphs, then one must pick p3 =

2
and P4 = e

A
24r

The expected number of new vertices and edges added at
stage n is

AVy = NB)n-1V(G3) + N(4),1V (Ga), (24)

AE, = N(3)n-1{p3[6 + E(G3)] + (1 — p3)[3 + E(G3)]}
+ N@n-1{pal4 + E(G)] + (1 — pa)[8 + E(Gy)]}.
(25)

Hence if the expected number of active three-graphs is in
some fixed ratio r to the expected number of active four-
graphs, then the average degree of the whole graph is approx-
imately given by

(k) ~ 2AE”
AV,
_ 22(1 + )4+ 3r) + (2 + r[E(Gs) + rE(G3)]
2+ nIV(Gy) + rV(Gy)]
< 2[2+2r E(G4)+rE(Gs)} 26)
24r 4+ 3r

where the inequality arises from the fact that V(G3) > 3 and
V(Gy) = 4.

In what follows, I will use a set of graphs generated with
p3 = % and py = % (so that the ratio of three- to four-cycles
is one), with equal probabilities for starting with a three- or
a four-cycle, with three different classes of G3 and Gy, as
described below.

(a) G3 and Gy are the empty graphs on three and four ver-
tices (i.e., isolated vertices with no edges connecting them);
this leads to (k) = 3 ~2.67.

(b) G3 and G4 are chosen randomly from the sets of
labeled outerplanar’ graphs on three and four vertices; this
leads to (k) = 2 ~ 3.86.

(c) Gj and Gy are each randomly chosen from the labeled
outerplanar graphs (on three and four vertices) with the largest
number of edges; this leads to (k) = % ~ 4.95.

9 An outerplanar graph is a planar graph with the additional property
that it can be drawn so that all of the vertices are adjacent to the
outside face; this is done to ensure that the resulting cycle-based
graph is planar.
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This leads to the expected number of vertices in the
whole graph being approximately V, ~ %( 13—4)", and graphs
are generated forn = 5, ..., 9, whichis N & 2x10%, 10%, 5x
10%,2x 10%, 10°.

B. Topological and other properties of these classes of graphs

In this section, I will consider various topological proper-
ties of the previously described classes of graphs and compare
them to one another as well as to (Erdds-Rényi) random
graphs (which are not necessarily planar).

1. Small worldness

The average path length of a graph, /, is the shortest
distance between two vertices, averaged over all pairs of
vertices. For a random graph, with fixed average degree, this
increases logarithmically with the number of vertices, and one
has [22]

InN
In(k)

ER 27)

Whereas for a regular lattice, this would increase as a power
law in N.

The local clustering coefficient of a vertex in a graph is the
number of neighbors of the vertex which are themselves con-
nected, divided by the total number of possible connections
between the neighbors [%k(k — 1) if the vertex has degree k].
This is then averaged over all the vertices to get the clustering
coefficient of the graph. For a random graph, this is just the
probability that any given possible edge is present and hence

(k)
Cer = N (28)
i.e., for fixed average degree, it decreases as the graph size
increases, whereas other graphs may exhibit much larger
clustering.

A small-world graph [29] is one which exhibits the short
average path length of random graphs, but also has a much
higher clustering coefficient. This can be recorded in the
small-world coefficient

o= Gx (29)

and if o > 1, the graph is said to be small world.

The average path length is found to increase logarithmi-
cally for the cycle-based and self-similar graphs, whereas for
the random planar graph, it increases as a power law with
exponent ~0.29.

Meanwhile, the clustering coefficient is approximately
constant for all the families of graphs as the size changes.
If one imagines a planar graph growing via some process,
then as new vertices and edges are added, the planarity con-
straint forces the new connections to more likely be between
“nearby” vertices (in the sense that they share a neighbor) than
between vertices separated by a larger distance.

These facts combine to mean that all the families of random
planar graphs are small world, with the small-world coeffi-
cient increasing with the size of the graph, as shown in Fig. 2.

= !
8 10%E E 8
= { . * Cycle—Based Graphs, (k) = 5
£ ycle—Based Graphs, (k) = 3
S . Cycle—Based Graphs, (k) = 2
2 10°L —+= 4
§ Cycle—Based Graphs, (k) = %
:; + . * Random Planar Graphs
& 102} 4 - Self-Similar Graphs

i I I

10 104 10°

No. Vertices

FIG. 2. The small-world coefficient, 0 = %ZE;{R , for different
families of random planar graphs. The cycle based graphs show the
largest small-world coefficient (but also the largest scatter), whereas
the RPGs show the smallest (though it is still significantly larger than

one).

2. Topological dimension

The topological dimension of a graph is defined by the
behavior of N(r), i.e., the number of vertices within a distance
of r a given node, averaged over the whole graph.'® If N(r) ~
rP, then the graph is said to have topological dimension D,
whereas if it increases more quickly (exponentially), the graph
has infinite topological dimension. It has been argued that
biological neural networks possess finite topological dimen-
sion [33].

Plots of N(r) can be found in Fig. 3. Both random graphs
and the self-similar planar graphs have infinite topological
dimension [N(r) ~ exp(r)], whereas random planar graphs
seem to have finite topological dimension, D = 3. The cycle-
based planar graphs have larger, but still finite, topological
dimension. However, it increases logarithmically with the
number of vertices from D~ 4 at N ~ 2 x 10° to D ~ 6.5
when N ~ 10°, which leads one to suspect that in the infinite-
size limit, these graphs would actually have infinite topolog-
ical dimension. This is independent of the average degree of
the graph.

3. Global reaching centrality

Another feature of neural networks which goes beyond
small worldness is that they possess a hierarchical and modu-
lar construction [33].

A proposed measure of hierarchy in complex networks is
the global reaching centrality [50]. For undirected graphs, this
is the average of the deviation of the harmonic centrality of
each vertex from the maximum. The harmonic centrality of a
vertex is the average of the reciprocals of the distances to all
other vertices and thus is large if the vertex is close to many
other vertices, and thus the global reaching centrality is large
for graphs which have a few “hub” vertices.

Numerical investigations show that for random graphs,
GRC ~ N~!/4 with a weak dependence on the average degree
of the graph (which is smaller than the intrinsic scatter).
Figure 4 shows the ratio of the global reaching centrality for
each of the families of graphs to that of equivalent random

0Given the size of the graphs under consideration, I will not
actually average over every vertex, instead taking a random sample
of 100 vertices.
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FIG. 3. The number of vertices within a given distance, averaged over 100 starting vertices, for (a) random graphs, (b) cycle-based graphs,
(c) random planar graphs, and (d) self-similar graphs, for various sizes of graph. The light-colored bands indicate the uncertainty. The cycle-
based and random planar graphs exhibit finite topological dimension, N ~ r” (though in the former case, D increases with graph size), whereas
the random graphs and self-similar planar graphs exhibit infinite topological dimension, N ~ exp(r).

graphs. One can see that the GRC of random planar graphs is
similar to that of random graphs, whereas the self-similar and
cycle-based graphs possess a GRC which is larger than ran-
dom graphs by a factor which grows with size. This is unsur-
prising given that their construction is explicitly hierarchical.

4. Degree distribution

An important property of a graph is the distribution of the
degrees of its vertices. At this point, it is worth mentioning
that the average degree is one way in which planar graphs can
never resemble biological neural networks, for these typically
have very large average degree—for the human connectome,
itis (k) ~ 10, while even C. elegans has (k) ~ 23—whereas
planar graphs have (k) < 6 (when embedded in a space of
genus zero).

T T T 7
£ 8 e
I

8 e 8
E . * Cycle—Based Graphs, (k) = §
S 4+ 4
5 ._.{_, ! Cycle—Based Graphs, (k) = %
8 3 104
2 Cycle—Based Graphs, (k) = 1
Z2 4
K K * Random Planar Graphs
9 i + Self—Similar Graphs
g, !

0 1 1 .

10 10 10

No. Vertices

FIG. 4. The ratio of the global reaching centrality (GRC), a
measure of a graph’s hierarchical structure, of different families of
random planar graphs to that of random graphs. The cycle based
graphs show the largest GRC, whilst the RPGs show the smallest.

In similarity with random graphs, the degree distribution
of RPGs and the self-similar graphs has an exponential tail
at large degree, and for these graphs the expected maximum
degree thus increases logarithmically with graph size.

On the other hand, the cycle-based graphs show a quasi-
scale-free degree distribution, with an approximately power-
law tail (due to the nature of their construction, there are some
weak oscillatory features in it) with P(k) ~ k3. As a result,
the expected maximum degree of these graphs is much larger
and increases as a power law in the graph size. Therefore,
although the average degree is much smaller than that found
in real-life neural networks, a fraction of the vertices in fact
do have comparably large degrees.

5. Inverse participation ratio

The inverse participation ratio, defined by

N
PR =Y ()",
i=0

where v(1 is the principal eigenvector of the adjacency matrix
of a graph, measures how localized this eigenvector is. If it is
delocalized, then v; ~ N~!/2 and hence IPR ~ N~!, whereas
if vV takes nonzero values only on a subset of the vertices,
i.e., it is localized, then the inverse participation ratio may be
much larger. Thus it is a diagnostic of localization, and hence
the “rare regions” which are important for the existence of a
Griffiths phase.

Its behavior is plotted in Fig. 5. One indeed sees delocal-
ized (IPR ~ N~!) behavior for random graphs; however, all of

(30)
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FIG. 5. The inverse participation ratio (IPR) for different fami-
lies of graphs (for the cycle-based and random graphs, the average
degree is (k) = g). The random graphs exhibit no localization,
IPR ~ N~!, whereas all the other families of graphs exhibit some
degree of localization, though it is weakest for the self-similar

graphs.

the other families of graphs show some degree of localization.
(Yet as we will see later, this on its own is not sufficient for
the existence of a Griffiths phase.)

C. Dynamics

Let us now turn to considering stochastic processes on the
graphs described above, in order to investigate the existence
of Griffiths phases. In particular, we will be considering
processes in which the vertices of the graph can be either
active or inactive, and study how the total activation density
behaves in time, starting from an initial state which is fully
active. Before presenting the results, let us first briefly show
how the presence of disorder can lead to a Griffiths phase; this
example follows Ref. [51].

Consider a process which exhibits a phase transition as the
“spreading rate” A is varied. When A is below some critical
value A., the system is in the inactive phase and the activation
density p will decay exponentially; alternatively, when A> X,
the density will approach some finite (A-dependent) value at
late times. These two phases are separated by a critical point
for which the density decays as a power law.

Now, rather than a uniform spreading rate, consider one
which is site dependent, with the spreading rate at a particular
site taking value A; with probability p, and A, > A; with
probability 1 — p. Clearly, if A, < X, then the system will be
in the inactive phase, and vice versa for A; > A., but when
A1 < Ac < A, the situation is more complicated. Regions in
which the spreading rate is mostly A; will quickly become
inactive, whereas the rare regions in which the spreading rate
is mostly A, will stay active for much longer, dominating the
late-time activation density.

Their finite size and the presence of regions in the inactive
phase means that they cannot sustain infinitely long-lived
activation. However, it does require a coordinated fluctuation
to deactivate them, and thus they are exponentially long lived,
T ~ exp(aN), for aregion of size N, where a is some constant
which depends on A, (and which goes to zero when A, goes
to A.). On the other hand, such regions are exponentially rare.
The late-time activation density is thus

p(t) ~ / dNN(1 = p)" exp [—ﬁ}

= /dN exp[—texp(—aN)+ NIn(1 — p)+1InN]. (31)

Solving this in the saddle-point approximation, one finds
p(t) ~ tlﬂ(l—P)/lI()»z). (32)

That is, the activation density decreases as a power law, with
an index which varies continuously as the spreading rate X, is
varied.

In the case being considered here, the spreading rate itself
is actually uniform; however, the structure of the graph (poten-
tially) generates the required disorder (e.g., through disorder
in vertex degree).!!

Results

Let us first consider the stochastic process whose evolution
equation is

i = —upi + Al — p;) ZAiij’ (33)
J

where p; € {0, 1} is the state of neuron i, and A;; is the
adjacency matrix of the graph. This equation describes a sce-
nario in which active neurons deactivate with density w, and
quiescent neurons are switched on by their active neighbours
with rate A. The dynamics is just controlled by the ratio of A
to 1 and so, without loss of generality, one may set u to unity.

The results of running this on the previously described
families of random graphs are shown in Fig. 6. Edros-Rényi
(nonplanar) random graphs (top left) exhibit a relatively sharp
transition from a quiescent phase to an active phase; random
planar graphs (bottom left) also exhibit a sharp transition.
The self-similar graphs (bottom right) show slightly unusual
behavior over a range of spreading rates, with the density
almost settling down to a constant value (as in the active
phase) before decaying exponentially (as in the quiescent
phase), but there is no period of power-law decay. Finally, the
cycle-based graphs (top right) do seem to show evidence of
a Griffiths phase, exhibiting power-law decay over a range of
spreading rates. The results shown here are for (k) = %, and
a Griffiths phase is also observed for larger average degrees,
albeit over a slightly reduced range in A.

The long-time dynamics is governed by the principal
eigenvector of the adjacency matrix and hence is directly re-
lated to the inverse participation ratio discussed in Sec. III B 5.
And indeed one sees that the random graphs have both a
delocalized principal eigenvector and a sharp phase tran-
sition, and the cycle-based graphs show the opposite (on
both counts). On the other hand, both the random pla-
nar graphs and the self-similar graphs exhibit some de-
gree of localization, but present no evidence of a Griffiths
phase.

Finally, it should be noted that while for the random graphs
and RPGs the observed behavior is size independent, for the
self-similar and cycle-based graphs, the characteristic value of
the spreading rate decreases as the graph size increases. This
is because the behavior in those cases is driven by the highly

"Of course, the analysis in the given example tacitly assumed
that the disorder is spatially uncorrelated, whereas disorder due to
vertex degrees may be correlated if, for example, the graph exhibits
preferential attachment of high degree nodes to another.
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FIG. 6. The results of running the stochastic process described by (33) (with the deactivation rate p set to unity) on (a) random graphs,
(b) cycle-based graphs, (c) random planar graphs, and (d) self-similar graphs (with 20 graphs in each family, with the process run 50 times on
each graph), starting from a fully active state, for various values of the spreading rate A (with spacing AA = 0.01). The random graphs and
cycle-based graphs have (N) & 2.2x10° and (k) & 2.7, while the random planar graphs and self-similar graphs have (N) & 10° and (k) ~ 4.4

and (k) = 3.9, respectively.

inhomogeneous degree distribution, which, due to the way in
which these graphs are constructed, changes as the graph size
increases (in particular, the maximum degree increases more
quickly).
This last fact can be avoided by normalizing the spreading
rate by vertex degree, so that the evolution equation is
; Ajj
i =—pi+ Al —p =0/ 34
pi = —pi+ A( pl);ZkAjkp, (34)
where again the deactivation rate has been set to unity. The
results for this can be found in Fig. 7, and one sees that
the behavior is qualitatively similar: the random graphs and
random planar graphs show a sharp transition, the self-similar
graphs do not show a period of power decay, and the cycle-
based graphs show some evidence of power-law decays for a
range of spreading rates, although this is not as pronounced as
in the previous case.

IV. SOME OTHER CONSIDERATIONS CONCERNING
PHYSICS IN THREE DIMENSIONS

Finally, it behoves me also to briefly consider some other
aspects of physics in three dimensions which may have a bear-
ing on life; in particular, electromagnetism and the existence
and structure of atoms and molecules.

A. Maxwell’s equations

As in four dimensions, the electromagnetic field strength
tensor is F,, = 20;,A,;, the electric field is E; = Fy;, and the

magnetic field B = —%eo,wF v The first thing to note is that
while the electric field is still a vector, the magnetic field is
now a (pseudo-)scalar. As in four dimensions, we can take the

divergence of the field strength,
A F™ = poJ”, (35)

where J* = (p, j) is the current three-vector, to get the two
inhomogeneous equations,

v.E=2,
€0

V x B—E = pj, (36)
where (V x); = €;;V ;. The first equation is identical in form
to its four-dimensional counterpart, while the second is iden-
tical to Ampere’s law in four dimensions, if the magnetic field
is constrained to lie only in one direction and the electric field
is constrained to be perpendicular to it. The Bianchi identity,
9, F,v) = 0, in three dimensions gives just one equation,

B—V xE =0, (37

which is identical (apart from a sign due to the curl definition)
to Faraday’s law in four dimensions with the same restrictions
as mentioned above. There is no analog of the magnetic
version of Gauss’ law.

These equations can of course also be derived simply by
setting £, = B, = B, = 0 in the four-dimensional Maxwell
equations.

It is easy to see that these equations still imply electro-
magnetic waves, with the vector electric field exciting the
pseudoscalar magnetic field, and vice versa.
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FIG. 7. The results of running the stochastic process described by (34) on (a) random graphs, (b) cycle-based graphs, (c) random planar
graphs, and (d) self-similar graphs (with 20 graphs in each family, with the process run 50 times on each graph), starting from a fully active
state, for various values of the spreading rate A (with spacing AA = 0.005). The random graphs and cycle-based graphs have (N) ~ 2.2x10°
and (k) = 2.7, while the random planar graphs and self-similar graphs have (N) &~ 10° and (k) ~ 4.4 and (k) ~ 3.9, respectively.

A point electric charge will support an electric field which
decays inversely with the distance from the charge, and hence
the potential increases logarithmically, which means that an
infinite amount of energy would be required to separate two
charges. However, this undesirable result can be avoided
by giving a small mass to the photon, which will then
lead to a Yukawa-like suppression of the electric field [E o
Hl(l)(imr) ~ e /. /mr for large r], rendering the required
energy finite. Since the gauge symmetry is broken by the mass
term, there will also be an extra degree of freedom; however,
it will not couple to conserved currents—as can be easily seen
using the Stiikelberg trick—and hence will not mediate an
extra force.

B. Atoms and molecules

In his book What is Life? [52], Schrodinger notes that
quantum mechanics may be required for life. This is because
hereditary information must be carried by something which is
both small and stable. Molecules (and, in particular, complex
DNA molecules, though Schrodinger did not know of them
at the time) are a possible solution; however, classical physics
cannot explain their stability—quantum mechanics is required
for this. Therefore, the question is as follows: Are there any
impediments in two spatial dimensions to the existence of
stable (complex) molecules?

First of all, we should note that although more general
statistics are possible (viz., anyons), in two spatial dimensions
we can still have particles which satisfy Fermi-Dirac statistics
and hence the Pauli exclusion principle. This means that atoms

can form and we can build a periodic table of elements in the
usual way, and in fact this was done by Dewdney and Lapidus
in Refs. [13,14]. Note that the resulting array of elements is
somewhat simpler than in three dimensions since the electron
shells fill up more quickly.'> However, it is not completely
devoid of structure.

When constructing molecules, the main difference intro-
duced by the restriction to two dimensions is that molecules
must be planar since the interatomic bonds cannot cross.
Again this means that the possibilities are somewhat fewer (al-
though the prevalence of chiral molecules is greater), though
again not disastrously so, and, in fact, a plausible biochem-
istry formed of two-dimensional molecules was developed in
Ref. [14].

V. CONCLUSIONS

In this paper, I have considered the two main arguments
which are commonly presented against the possibility of
complex life in 24 1 dimensions: the absence of a local
gravitational force in three-dimensional general relativity, and
that the topological restrictions placed by requiring planarity
are too severe to allow complex life.

The first can be avoided by changing the gravitational
theory. As a proof of principle, I have presented a purely

>Whereas in three dimensions a shell with principle and orbital
angular momentum quantum numbers n and / can fit 2/ 4 1 electrons
of a given spin, in two dimensions each shell can only fit two, or one
forl =0.
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scalar theory of gravity which allows stable orbits around
point sources, and has a not-obviously-fatal (though unusual)
cosmology; it could potentially be improved by making the
whole metric dynamical. One could also imagine a brane-
world scenario in which the massless graviton is not localized
to the brane, thus allowing two-dimensional life to enjoy fully
four-dimensional gravity.

To deal with the second objection, I have turned to research
that has been conducted on the properties of biological neural
networks, and created a family of planar graphs (the “cycle-
based” ones from Sec. III A 3) which seem to exhibit many of
the properties which have been conjectured to be important for
complex brains. In particular, they are approximately “small
world,” they have a hierarchical and modular construction,
and they show evidence of the stretching (in parameter space)
of a critical point into a finite critical region for certain
stochastic processes. It should be noted that while this is
certainly suggestive of the possibility of complex brains in
two dimensions, it is not conclusive, as it is likely that the
properties described above are not sufficient on their own.
Therefore, more work is needed to compare the graphs pre-
sented here with real-life neural networks (and also to include
edge weights and directions, which have been neglected here),
as well as to consider further families of planar graphs, in

order to arrive at a more complete understanding of the
possibility of complex brains in two dimensions.

Opverall it would seem that if one wishes to use anthropic
reasoning to explain the observed dimensionality of space-
time, then the possibility of life in 2 + 1 dimensions requires
further investigation. In particular, it would be interesting to
determine if there might be other impediments to life which
have so far been overlooked,'® as well as to continue to
search for nonanthropic explanations for the dimensionality
of spacetime.
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BFor example, it has been suggested that the fact that random
walks almost surely return to their starting point in two spatial
dimensions, whereas they do so with only finite probability in three
spatial dimensions, might have relevance for decoherence and the
emergence of a classical world [53].
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