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Anharmonic properties of vibrational excitations in amorphous solids

Hideyuki Mizuno ,* Masanari Shimada , and Atsushi Ikeda
Graduate School of Arts and Sciences, University of Tokyo, Tokyo 153-8902, Japan

(Received 17 November 2019; accepted 23 January 2020; published 26 February 2020)

Understanding the vibrational and thermal properties of amorphous solids is one of the most discussed and
long-standing issues in condensed matter physics. Recent works have made significant steps toward under-
standing harmonic vibrational states. In particular, it has been established that quasilocalized vibrational modes
emerge in addition to phononlike vibrational modes. In this work, we study the anharmonic properties of these
vibrational modes. We find that vibrational modes exhibit anharmonicities that induce particle rearrangements
and cause transitions to different states. These anharmonicities are distinct from those in (perfect) crystals, where
particle rearrangements never occur. Remarkably, for both the phonon modes and quasilocalized modes, the
vibrational modes exhibit strong anharmonicities, and the induced particle rearrangements are always localized
in space and composed of 1 to 1000 particles. Our findings contribute to the understanding of low-temperature
thermal properties, for which anharmonic vibrations are crucial.
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I. INTRODUCTION

Amorphous solids exhibit vibrational and thermal prop-
erties that are markedly different from those of crystals
[1,2]. Recent numerical simulations have led to progress
in the understanding of the harmonic vibrational states in
amorphous solids. In crystals, harmonic vibrational states are
well established as phonons [3,4]. On the other hand, in
amorphous solids, quasilocalized vibrational (QLV) modes
emerge in addition to phononlike vibrational modes [5–10].
In the QLV mode, particles in some regions vibrate greatly,
while other particles vibrate much less. The vibrational den-
sity of states (vDOS) of phonon modes, gphonon(ω) (ω is
frequency), follows the Debye law, gphonon(ω) = ADω2 (AD is
the Debye level), as does that of phonons in crystals, whereas
the vDOS of QLV modes, gQLV(ω), follows the non-Debye
scaling law, gQLV(ω) = αω4 (α is constant).1 The existence of
QLV modes enhances scattering in phonon transport [11–13],
which in particular induces Rayleigh scattering even in the
zero-temperature limit, as observed by simulations [14–16]
and experiments [17–19].

The total vDOS of vibrational modes is therefore described
as g(ω) = gphonon(ω) + gQLV(ω).2 If we suppose that there
are only harmonic vibrations in the system, then we predict

*hideyuki.mizuno@phys.c.u-tokyo.ac.jp
1The exponent 4 of gQLV(ω) may be changed to around 3 to 4

through the preparation protocol of the system [8].
2In the thermodynamic limit of N → ∞, phonon modes and QLV

modes can hybridize [79]. Although effects of the hybridization are
not fully understood, we expect that the total vDOS is still described
by g(ω) = gphonon(ω) + gQLV(ω).
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the specific heat at low temperatures [3,4] to be C(T ) =
Cphonon(T ) + CQLV(T ) = CDT 3 + βT 5 [T is temperature, CD

is the Debye level of specific heat, and β is a constant related
to α in gQLV(ω)]. However, this T dependence of C(T ) cannot
explain the experimental observation that the specific heat
linearly depends on T [1,2,20]. This result certainly demon-
strates that anharmonic vibrations are crucial even at low T .
This situation is totally different from the case of crystals. In
crystals, anharmonicities become small or even negligible at
low T and as a result, the specific heat can be well described
by harmonic vibrations without anharmonicities [3,4].

For amorphous solids, another type of anharmonicity has
been proposed, the so-called two-level system (TLS) [21–24].
In a TLS, the system transits between two different states
with an energy difference, which may be realized through
quantum tunneling effects at low T . Importantly, TLSs in-
duce particle rearrangements, which is never the case for
anharmonicities in (perfect) crystals. If we suppose the ex-
istence of many different TLSs with different energy scales,
then we can indeed explain the linear T dependence of the
specific heat [21–24]. Subsequently, TLS theory has been
extended to the soft potential model [25–31], which attempts
to describe vibrational anomalies, including the QLV, TLS,
and the excess low-frequency vibrational modes (so-called
boson peak) [32–35], in an unified framework. Experiments
(e.g., Refs. [36–39]) as well as numerical simulations (e.g.,
Refs. [40–45]) have attempted to detect the TLSs and clarify
their nature, e.g., the statistics of parameters characterizing the
TLSs (such as the distance and energy difference between two
states), transition paths connecting two states, or the density of
TLSs.

On another front, a recent work [46] demonstrated that
the QLV modes exhibit unstable vibrations in a localized
region. Additionally, Refs. [47–49] disentangled the localized
defects from extended vibrational modes, which can be used
to predict the location of plastic instabilities. These results
might motivate us to expect that the transition between two
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states in TLSs could be induced by unstable vibrations in the
QLV modes or localized defects embedded in the extended
vibrational modes. However, the relationship between TLSs
and QLV modes or localized defects remains to be solved. In
addition to these works, the authors of Ref. [50] conducted a
pioneering study on the anharmonic properties of vibrational
modes and suggested that the low-frequency modes can ex-
hibit strong anharmonicities.

Considering the current status described above, the present
work studies the anharmonic properties of vibrational excita-
tions based on the recently advanced understanding of vibra-
tional modes. Since systems at finite T are excited along the
vibrational modes by thermal energy, it could be of primary
importance to understand the anharmonic properties of vibra-
tional modes. We focus on each vibrational mode and forcibly
excite it to measure its anharmonic properties. We attempt to
address the following questions. (i) Can the vibrational modes
exhibit anharmonicities that induce particle rearrangements
and cause transitions to different states? (ii) If so, what are
properties of the particle rearrangements and the transitions?
(iii) What are the differences in the anharmonicities between
phonon modes and QLV modes? We also discuss TLSs in
relation to what we find regarding the anharmonicities of
vibrational modes.

II. METHOD

A. System description

In the present work, we perform molecular dynamics (MD)
simulations. Our numerical system is composed of monodis-
persed N point particles of mass m in a three-dimensional
cubic box of length L and volume V ≡ L3. We implement
periodic boundary conditions in all the directions. We employ
two types of pairwise, interparticle potentials, a harmonic
potential and the Lennard-Jones (LJ) potential, as described
below.

1. Harmonic potential system

Particles interact via the following harmonic, pairwise
potential:

φHA(r) = ε

2

(
1 − r

σ

)2

H (σ − r), (1)

where r is the distance between two particles and H (x) is the
Heaviside step function: H (x) = 1 for x � 0 and H (x) = 0 for
x < 0. σ is the particle diameter, and ε is the energy scale. We
measure physical quantities in units of mass m, length σ , and
energy ε. The frequency, ω, and temperature, T , are measured
via

√
ε/(mσ 2) and ε/kB (kB is the Boltzmann constant),

respectively. This harmonic potential was originally proposed
for modeling granular materials, emulsions, foams, etc. [51].
However, here, we employ this system as the simplest model
of glass [52–54].

Throughout this work, the packing fraction is fixed as
ϕ ≡ (πσ 3/6)(N/V ) ≈ 0.73 [6]. We start with a random con-
figuration at infinite temperature, T = ∞, and instantaneously
quench the system to zero temperature, T = 0, where the
pressure is p = 5 × 10−2. Here, we use the fast inertial
relaxation engine (FIRE) algorithm [55] for quenching the

system (minimizing the potential energy). To access the low-
frequency vibrational modes, several different system sizes,
from N = 16 000 to 512 000, are simulated.

2. Lennard-Jones potential system

Particles interact via the LJ pairwise potential:

φLJ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6
]
, (2)

where r is the distance between two particles, σ is the particle
diameter, and ε is the energy scale. We truncate the potential
at a cutoff distance r = rc ≡ 2.5σ . The potential and the force
(the first derivative of the potential) are then shifted to zero at
r = rc, as in Ref. [7]. As in the case of the harmonic potential,
we use units of mass m, length σ , and energy ε.

Throughout this work, the number density is fixed as ρ̂ ≡
N/V ≈ 0.997 [7]. We first equilibrate the system in the normal
liquid state at T = 2 and then quench the system to zero
temperature, T = 0, where the pressure is around zero, p = 0.
We employ several different system sizes, from N = 4000 to
128 000.

B. Vibrational mode

We now obtain the T = 0 configuration of particles, i.e.,
the inherent structure, for two types of amorphous systems.
In our previous works on the harmonic potential system [6]
and the LJ potential system [7], we studied the harmonic
vibrational states in a wide range of frequency. Specifically,
we diagonalized the Hessian matrix (second derivative of the
potential) and obtained the 3N − 3 vibrational modes, where
we discarded three zero-frequency, translational modes. Each
vibrational mode k (k = 1, 2, ..., 3N − 3) is characterized by
the eigenfrequency, ωk , and the eigenvector, ek

i , of each par-
ticle i (i = 1, 2, ..., N). Here, the eigenvector is orthonormal-
ized as

∑N
i=1 ek

i · el
i = δkl (δkl is the Kronecker δ).

As explained in the introduction, there exist two types
of vibrational modes in the low-frequency regime: phonon
modes and QLV modes [6,7]. The vDOS, which is defined
as g(ω) = [1/(3N − 3)]

∑3N−3
k=1 δ(ω − ωk ) [δ(x) is the Dirac

δ function], is described as the sum of those of phonon modes
and QLV modes: g(ω) = gphonon(ω) + gQLV(ω) = ADω2 +
αω4. We note that such vibrational properties (phonon modes
and QLV modes) appear in the low-ω regime, below the boson
peak frequency ωBP [6,7]. ωBP is defined as the frequency
at which the reduced vDOS, g(ω)/ω2, takes a maximum
[32–35]. To distinguish these two types of modes, we have
measured two order parameters: the phonon order parameter
Ok and participation ratio Pk . Below, we briefly explain how to
calculate these two order parameters. For more details, please
see our previous works [6,7].

1. Phonon order parameter Ok

The phonon order parameter, Ok , evaluates the extent to
which eigenvector ek

i (i = 1, 2, ..., N) of mode k is similar to
phonon vibrations. We first define the displacement vectors of
phonon modes as uq,α

i = sα (q̂) exp (iq · r0i )/
√

N , where r0i is
the position of particle i in the inherent structure, q is the wave
vector, and q̂ = q/|q|. α denotes one longitudinal (α = L)
and two transverse (α = T1, T2) phonon modes. sα (q̂) is a unit
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vector that represents the direction of polarization: sL(q̂) = q̂
(longitudinal) and sT1 (q̂) · q̂ = sT2 (q̂) · q̂ = 0 (transverse).

We then define the phonon order parameter, Ok , as

Ok =
∑

q,α; Oq,α

k �Nm/(3N−3)

Oq,α

k ,

Oq,α

k =
∣∣∣∣∣

N∑
i=1

uq,α
i · ek

i

∣∣∣∣∣
2

, (3)

where Nm = 100 is employed; however, we confirm that our
results and conclusions do not depend on the choice of the
value of Nm [6,7]. As extreme cases, Ok = 1 for an ideal
phonon mode and Ok = 0 for a mode considerably different
from phonon modes.

2. Participation ratio Pk

The participation ratio, Pk , quantitatively measures the
extent of localization, which has often been employed in early
works [56–58]. Given the eigenvector ek

i (i = 1, 2, ..., N) of
mode k, its participation ratio, Pk , is calculated as

Pk ≡ 1

N

[
N∑

i=1

(
ek

i · ek
i

)2

]−1

. (4)

Pk quantifies the fraction of particles that participate in the
vibrations, and thus, NPk indicates the number of participating
particles. As extreme cases, Pk = 1 (NPk = N) for an ideal
mode in which all the constituent particles vibrate equally,
Pk = 1/N � 1 (NPk = 1) for an ideal mode involving only
one particle, and Pk = 2/3 for an ideal plane wave.

C. Anharmonicity of the vibrational mode

In the present work, we study the anharmonic properties
of the vibrational modes. To measure the anharmonicities, we
follow a procedure performed in previous work [50]. First, we
focus on vibrational mode k and forcibly excite it: We start
with the particles in the inherent structure and pull them along
the direction of mode k by changing the position of particle i
(i = 1, 2, ..., N) as

ri = r0i + A
√

Nek
i , (5)

where r0i and ri are the initial position of particle i be-
fore pulling (i.e., position in the inherent structure) and the
present position of particle i after pulling, respectively (see
Fig. 1). A measures the extent of particle pulling, as A =√

(1/N )
∑N

i=1(ri − r0i )2, i.e., the average value of the dis-

placements of particles. We note that the factor
√

N in Eq. (5)
is necessary for A to be independent of the system size N [59],
even for analysis of the QLV modes. If the target mode k is
truly localized in space where only some portion of particles
vibrate and the other particles exhibit exactly zero vibrations,
then the factor

√
N should be dropped for A to be independent

of the system size. However, the QLV modes are not strictly
localized in space. They show the extended, power-law tails
in their displacement fields [5]. Also at a fixed frequency,
the participation ratio of QLV modes is not scaled by the

FIG. 1. Measurement of the anharmonicity of the vibrational
mode. In the figure, we illustrate the potential energy landscape,
�({ri}). We first pull the particles along the direction of mode k (ek

i )
by A and next minimize the potential energy. Then, we will obtain
one of two consequences: (a) the system returns to the initial state
(initial inherent structure) or (b) the system transitions to a different
state (different inherent structure). In panel (b), the distance |r| and
the potential energy difference |�| between the initial state and the
state after transition characterize the properties of the transition.

system size [6], which means they are not truly localized. We
therefore have to keep the factor

√
N for the QLV modes.

After pulling the particles, we next minimize the potential
energy of the system, �({ri}) ≡ ∑

i< j φ(ri j ). Then, we will
obtain one of two consequences, as shown in Fig. 1: (a) The
system returns to the initial state (initial inherent structure)
or (b) the system transitions to a different state (different
inherent structure). To see whether the system (a) returns or
(b) transitions, we monitor the distance between the initial
state and the state after potential minimization, defined as

|r| =
√√√√ N∑

i=1

(r1i − r0i )2, (6)

where r1i is the position of particle i in the state after potential
minimization. We also monitor the potential energy differ-
ence:

|�| = |�({r1i}) − �({r0i})|. (7)

Figure 2 shows the distance, |r|, and the potential energy
difference, |�|, as functions of A, for both the harmonic
potential and LJ potential systems. When A is small, |r|
and |�| both stay at zero, which means that (a) the system
returns to the initial state. As we increase the value of A, we
see discontinuous jumps in |r| and |�| at some values of
A = Ac (as indicated by closed symbols in Fig. 2), at which
(b) the system transitions to a different state. Note that |r|
and |�| exhibit jumps at exactly the same value of A = Ac.
This result means that when the vibrational mode k is excited
by Ac, anharmonicity can emerge via induction of particle
rearrangement, causing the transition to a different state. Ac
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FIG. 2. Example of measurement of the anharmonicity of the
vibrational mode. Plot of the distance, |r|, and the potential energy
difference, |�|, as functions of the extent of particle pulling, A.
(a) Harmonic potential system and (b) LJ potential system. As we
increase A, we see clear jumps in |r| and � at some value
of A = Ac (as indicated by closed symbols), at which the system
transitions to a different state.

therefore measures the extent of anharmonicity of mode k: a
smaller Ac indicates a stronger anharmonicity.

We may extract information on the energy barrier by
calculating difference between the potential energy at A = Ac

and that at A = 0 (the inherent structure):

�barrier ≡ �
({

r0i + Ac

√
Nek

i

}) − �({r0i}). (8)

Note that the value of �barrier is approximately equal to
ω2

k A2
cN/2, although they are not exactly identical due to non-

linearities of the potential. However, we have to be careful that
the state at A = Ac is not saddle point along the transition path.
If we want to measure the “correct” value of energy barrier,
we need to identify the transition path, which is beyond the
present work.

Here, we make a note on the LJ potential system. For
several vibrational modes, we can pull the particles by a large
amount A along the mode without transition. In this case,
some pairs of particles largely overlap, and the potential tends
to diverge. We disregarded these cases.

FIG. 3. Extent of anharmonicity of vibrational modes. Plot of the
extent of anharmonicity, Ac, as a function of the eigenfrequency of
the excited vibrational mode, ωk . (a) Harmonic potential system and
(b) LJ potential system. We plot data from different system sizes
using different color symbols. Additionally, we indicate the boson
peak frequency, ωBP, by an arrow.

We also emphasize that anharmonicities in (perfect) crys-
tals do not induce particle rearrangement, causing changes
in the inherent structure (periodic lattice structure) [3,4]. On
the other hand, amorphous solids exhibit anharmonicities
that do induce particle rearrangements and changes in the
inherent structure. These anharmonicities can emerge due to
the amorphous structure.

III. RESULTS

We analyzed the anharmonic properties of vibrational
modes by using different system sizes, from N = 16 000 to
512 000 for the harmonic potential system and from N =
4000 to 128 000 for the LJ potential system. Below, we show
data for these different system sizes all together, which verifies
the absence of system-size effects.

A. Extent of anharmonicity of vibrational modes

Figure 3 plots the extent of anharmonicity, Ac, as a function
of the eigenfrequency of the excited vibrational mode, ωk , for
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FIG. 4. Correlation between anharmonicities and nature of ex-
cited vibrational modes in the harmonic potential system. Plot of
the extent of anharmonicity, Ac, as a function of the phonon order
parameter, Ok , in panel (a) and the participation ratio, Pk , in panel (b).
We plot data for vibrational modes below the boson peak frequency,
ωBP.

the harmonic potential system [Fig. 3(a)] and LJ potential
system [Fig. 3(b)]. In the figure, we indicate the boson peak
frequency, ωBP, by an arrow. We see that Ac becomes small
as ωk decreases; i.e., the lower frequency mode shows a
stronger anharmonicity. This has already been observed for
the harmonic potential system in previous work [50]; here,
we confirmed the same result for the LJ potential system.
Remarkably, Ac takes quite small values, particularly below
ωBP: Ac ∼ 10−6 to 10−2 (of the particle size) for the harmonic
potential system and Ac ∼ 10−4 to 10−1 for the LJ potential
system. Possibly, Ac goes to zero in the zero-frequency limit
of ωk → 0.

In addition, Figure 4 plots Ac as a function of the phonon
order parameter, Ok [Fig. 4(a)], and the participation ratio,
Pk [Fig. 4(b)], for the modes below ωBP in the harmonic
potential system (we also obtain similar results for the LJ
potential system). We observe no apparent correlations be-
tween the values of Ac and Ok or Pk , i.e., between the ex-
tent of anharmonicity and nature of the excited vibrational
modes. Particularly, there are no differences in the extent of

TABLE I. Onset temperature of the anharmonicities, Tc. The
value of Tc is reported for both the harmonic potential and LJ
potential systems and for different system sizes N .

Harmonic N 32 000 128 000 512 000
Tc 1.3 × 10−6 2.9 × 10−7 3.7 × 10−9

LJ N 8000 32 000 128 000
Tc 1.1 × 10−1 2.3 × 10−2 6.3 × 10−3

anharmonicity between the phonon modes with large Ok and
Pk and the QLV modes with small Ok and Pk . We therefore
conclude that irrespective of phonon modes or QLV modes,
the low-frequency vibrational modes exhibit similar extents
of anharmonicity that induce particle rearrangement and cause
transitions to different states.

In Appendix, we analyze the anharmonicities of the eigen-
modes by expanding the potential energy, �({ri}), around the
inherent structure {r0i} in terms of A

√
N up to the third-order

term. We obtain an analytical expression for Ac in Eq. (A3) as
the saddle point in the expanded potential energy. The value
of Ac in Eq. (A3) can be estimated using the eigenvalues ω2

k
(the second-order derivative of the potential) and the third-
order derivative of the potential at {ri} = {r0i}. For both the
harmonic potential and LJ potential systems, the value of Ac

measured by Eq. (A3) is orders of magnitude larger than that
in Fig. 3 at fixed ωk (see Fig. 14). We can also see that the
Ac value from Eq. (A3) is strongly correlated with the values
of Ok and Pk , which is in contrast to the observation in Fig. 4
(see Fig. 15). These results clearly demonstrate that simply
expanding the potential energy landscape around the inherent
structure cannot correctly estimate the anharmonicities, which
are due to the rather complex shape of the energy landscape
[40–45,60].

Figure 5 plots data of the energy barrier �barrier defined
in Eq. (8). We have confirmed that �barrier is approximately
equal to ω2

k A2
cN/2, although these two values are not ex-

actly identical due to nonlinearities of the potential. From
the energy barrier, we can discuss the onset temperature of
the present anharmonicities when the system is equilibrated
in the classical manner without any quantum effect. When
the system is equilibrated at temperature T , the thermal
energy of T/2 is distributed to each vibrational mode ac-
cording to the equipartition law of energy. If no anharmonic-
ities are induced, then T < 2�barrier(ωk ) 	 [ωkAc(ωk )]2N
should be satisfied for all the modes k (where we explicitly
denote �barrier and Ac as functions of ωk). Thus, when
T exceeds Tc ≡ 2[�barrier(ωk )]min 	 {[ωkAc(ωk )]min}2N , the
anharmonicities are induced by the mode that takes the
minimum value of �barrier(ωk ) or ωkAc(ωk ), denoted as
[�barrier(ωk )]min or [ωkAc(ωk )]min, and particle rearrange-
ments occur.

Table I reports the values of Tc for different system sizes N .
Tc decreases with increasing N , i.e., anharmonicities are more
easily induced in larger systems. For large systems, Tc takes
quite small values of Tc ∼ 10−9 for the harmonic potential
system (N = 512 000) and Tc ∼ 10−3 for the LJ potential sys-
tem (N = 128 000). Therefore, tiny thermal fluctuations can
cause the anharmonicities to induce particle rearrangements.
We note that for the harmonic potential system, the present
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FIG. 5. Energy barriers along vibrational modes. Plot of the
energy barrier, �barrier, as a function of the eigenfrequency of
the excited vibrational mode, ωk . (a) Harmonic potential system
and (b) LJ potential system. We plot data from different system
sizes using different color symbols. Additionally, we indicate the
boson peak frequency, ωBP, by an arrow. We have confirmed that
�barrier 	 ω2

k A2
cN/2.

value of Tc is much lower than the onset temperature, reported
in Ref. [61], where the effects of anharmonicities start to be
visible in the macroscopic quantities (moment of vDOS). We
also note that our value of onset temperature Tc possibly goes
to zero in the thermodynamic limit, N → ∞. Although the
method to measure anharmonicities is different, this result
is consistent with the argument in Ref. [59] that amorphous
systems can be inherently anharmonic.

B. Distance and potential energy difference between the initial
state and state after transition

We next study distributions of the distance, |r| in Eq. (6),
and the potential energy difference, |�| in Eq. (7), between
the initial state and the state after transition. We illustrate
the values of |r| and |�| in Fig. 1(b). Figure 6 plots
|r| as a function of ωk for the harmonic potential system
[Fig. 6(a)] and the LJ potential system [Fig. 6(b)]. We see that
|r| does not apparently depend on ωk , which takes values

FIG. 6. Distance between the initial state and the state after
transition. Plot of |r| in Eq. (6) as a function of the eigenfrequency
of the excited vibrational mode, ωk . (a) Harmonic potential system
and (b) LJ potential system. We plot data from different system sizes
using different color symbols.

of |r| ∼ 10−3 to 100 for the harmonic potential system and
|r| ∼ 10−1 to 101 for the LJ potential system. Importantly,
we clearly observe that many different modes exhibit the
same |r|. We have also confirmed that the same particles
undergo the same rearrangements for the transitions with the
same |r|, and thus we conclude that many different modes
cause the identical transition. This indicates that there are
some particular transitions that are frequently caused by many
different vibrational excitations, and the number of states after
the transition is fewer than that of vibrational modes (i.e.,
3N − 3). In the energy landscape, there are many different
transition paths that link to the same state and lead to the same
transition (particle rearrangement).

Here, we make a note on finite system size effects. From
Fig. 6, we confirm no apparent size effects on the values of
|r| (we also confirm no size effects on |�|). As we will
discuss in the next section, Sec. III C, the induced particle
rearrangements are always localized in space. This localized
nature in transitions leads to the fact that |r| and |�| are
independent of the system size N .

We also study correlations between the transitions and
nature of excited vibrational modes. Figure 7 plots |r|
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FIG. 7. Correlation between transitions and nature of excited
vibrational modes in the harmonic potential system. Plot of |r|
as a function of the phonon order parameter, Ok , in panel (a) and
the participation ratio, Pk , in panel (b). We plot data for vibrational
modes below the boson peak frequency, ωBP.

as a function of Ok [Fig. 7(a)] and Pk [Fig. 7(b)] for the
modes below ωBP in the harmonic potential system. The figure
does not show any correlation of |r| with Ok or Pk : The
induced transitions are not related to the nature of the excited
vibrational modes. In particular, the induced transitions are
not correlated with whether the phonon modes or the QLV
modes are excited. This result implies that vibrational modes
are just a trigger to induce the transitions, whereas the nature
of the induced transitions is determined by rather complex
shape of the energy landscape [40–45,60] that emerges due to
complex structural properties of amorphous systems [62–64].

Furthermore, we plot |r| versus |�| for all the studied
transitions in Fig. 8. We see a clear relation between |r|
and |�|, which is roughly estimated as |�| ∝ |r|3: The
large rearrangements, |r|, induce a large energy difference,
|�|.3|�| takes values of |�| ∼ 10−9 to 10−2 for the

3We do not get any physical meaning of the exponent 3 in |�| ∝
|r|3, which could be addressed in future.

FIG. 8. Distance vs potential energy difference between the ini-
tial state and the state after transition. Plot of |r| vs |�| for all
of the studied transitions. (a) Harmonic potential system and (b) LJ
potential system. The solid line indicates |�| ∝ |r|3.

harmonic potential system and |�| ∼ 10−4 to 102 for the
LJ potential system.

We note that the harmonic potential system shows the
larger anharmonicities (smaller Ac) than the LJ system does
(see Fig. 3), whereas the particle rearrangements induced by
anharmonicities, |r|, are smaller in the harmonic potential
system (see Fig. 6). This behavior of harmonic potential
system can be related to the fact that the harmonic potential
is finite and short-ranged. We can understand that the system
with short-ranged potential is rather fragile and shows the
lower energy barriers (larger anharmonicities) [50]. However,
we have no clear explanation for the smaller values of |r| in
the harmonic potential system, which could be addressed in
the future.

C. Profile of induced particle rearrangement

In the previous sections, we have revealed that the low-
frequency mode exhibits quite strong anharmonicities that
induce particle rearrangements and cause transitions to differ-
ent states. We next study the profile of the induced particle
rearrangement. Let us denote the vector field of particle
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FIG. 9. Induced particle rearrangement in the harmonic potential
system. The system size is N = 512 000. (a) Visualization of the
particle rearrangement field, ri ≡ r1i − r0i, as a function of r0i

in three-dimensional space for a representative transition. We plot
ri × 200 for the largest 2000 particles, where red arrows indicate
the largest 100 values. (b) Plot of the normalized displacement of
particle i, |ri|/|r1|, as a function of the distance r from particle 1
with the largest displacement, |r1|. The tail at large distances r be-
haves as a power law of |ri| ∝ r−a, with a = 3 for the present case.
We confirm that the exponent, a, can take values of approximately
2.5 to 3.

rearrangement as ri ≡ r1i − r0i, where we recall that r0i

and r1i are the initial position of particle i and the position
after the transition, respectively. Figure 9(a) visualizes the
vector field, ri, as a function of r0i in three-dimensional
space for a representative transition in a harmonic potential
system with N = 512 000. We immediately recognize that the
rearrangement is highly localized in space. In the figure, we
observe a single localized region, but we also observe multiple
localization regions in some cases. We confirm the localiza-
tion of particle rearrangement for all the studied transitions
and for both the harmonic potential and LJ potential systems.

Figure 9(b) plots the normalized displacement of particle
i, |ri|/|r1|, as a function of the distance r from particle 1
with the largest displacement, |r1|. We see that the tail at
large distances r behaves as a power law of |ri| ∝ r−a, with
a = 3 for the case shown in the figure. We confirm that a takes

values of approximately 2.5 to 3. This result indicates that the
localized region is surrounded by some particle displacement
field characterized by |ri| ∝ r−a, with a ≈ 2.5 to 3. We note
that the elastic deformation produces the field of |ri| ∝ r−2,
i.e., a = 2, whereas the present far fields exhibit steeper decay
(with a ≈ 2.5 to 3). We speculate that this steeper decay may
be attributed to the nonlinear nature [65] or plastic nature
[66,67] of rearrangement of particles, which could be a future
subject. We also note that a similar profile of particle dis-
placements is observed in the elastic response to local forcing
[68–70] and the QLV modes [5], which, however, show an
elastic-deformation field with exponent a = 2.

Furthermore, we measure the number of particles that
participate in the rearrangement, Nrearr, as

Nrearr ≡
[

N∑
i=1

(ri · ri )

]2[ N∑
i=1

(ri · ri )
2

]−1

. (9)

We note that the participation ratio of rearrangement can be
defined as Pr ≡ Nrearr/N , in the same manner as the Pk of
the vibrational mode in Eq. (4), except for the normalization

factor [
∑N

i=1 (ri · ri )]
2 �= 1. Figure 10 plots Nrearr as a

function of ωk . We observe that the value of Nrearr does
not apparently depend on the system size, N , i.e., Nrearr ∝
N0 or Pr ∝ N−1. This observation means that the particle
rearrangements are localized in space. From the figure, we can
estimate that the number of participating particles is 1 to 1000
for the harmonic potential system and roughly the same or
slightly more for the LJ potential system.

Additionally, Fig. 11 plots Nrearr versus the square dis-
placement, r2 [see Eq. (6) for the formulation of r].
We observe that data points exist roughly between the two
lines of r2 = 5 × 10−6Nrearr and r2 = 10−2Nrearr for the
harmonic potential system and r2 = 5 × 10−3Nrearr and
r2 = 10−1Nrearr for the LJ potential system. From this result,
we can estimate the value of

√
r2/Nrearr, which measures

the average displacement of each participating particle, as√
r2/Nrearr = 2 × 10−3 to 10−1 (of the particle size) for

the harmonic potential system and
√

r2/Nrearr = 7 × 10−2

to 3 × 10−1 for the LJ potential system. To summarize the
results in this subsection, the induced particle rearrangement
is spatially localized, where 1 to 1000 particles are displaced
by roughly 10−3 to 10−1 of the particle size for each.

D. Correlation in directions between particle rearrangements
and vibrational modes

We next study the correlation in directions between particle
rearrangements and excited vibrational modes, which can
be measured by the normalized inner product between the
displacement field, ri, and the eigenvector field of excited
mode k, ek

i :

I ≡
∣∣∣∣∣

N∑
i=1

ri · ek
i

∣∣∣∣∣
[

N∑
i=1

r2
i

]−1/2

. (10)

Note that I takes values from 0 to 1. I = 1 means that ri

and ek
i are in the same direction: the particle rearrangements

occur perfectly along the direction of mode k. In contrast,
I = 0 means that ri and ek

i are orthogonal to each other: The
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FIG. 10. Number of particles that participate in the particle rear-
rangement. Plot of Nrearr in Eq. (9) as a function of the eigenfrequency
of the excited vibrational mode, ωk . (a) Harmonic potential system
and (b) LJ potential system. We plot data from different system sizes
using different color symbols. Additionally, we indicate the boson
peak frequency, ωBP, by the arrow.

particle rearrangements occur in a totally different direction
from that of mode k.

Figure 12 plots I versus Ok [Fig. 12(a)] and Pk [Fig. 12(b)].
We see some correlations (relatively large values of I) for
some QLV modes with small values of Ok and Pk . However,
the correlations are generally weak; even the QLV modes
exhibit rather weak correlations with the particle rearrange-
ments. We therefore conclude that although some particle
rearrangements occur along the QLV modes, they do not occur
along the vibrational modes in general.

E. Sample dependence

Finally, we study the sample dependence of the transitions.
Figure 13 plots |r| [Fig. 13(a)] and |�| [Fig. 13(b)] versus
ωk for four different samples of harmonic potential systems,
A to D, which are all composed of N = 16 000 particles. We
observe that the datasets of |r| and |�| fluctuate from sam-
ple to sample, and these fluctuations are rather random. We
therefore expect that in the thermodynamic limit of N → ∞,

10-5

10-4

10-3

10-2

10-1

100

101

100 101 102 103

(a)

Nrearr

|Δ
r|2

y = 10−2x

y = 5 × 10−6x

10-2

10-1

100

101

102

103

100 101 102 103 104

(b)

Nrearr

|Δ
r|2

y = 10−1x

y = 5 × 10−3x

FIG. 11. Number of particles that participate in the particle rear-
rangement vs displacement of particles. Plot of number of particles,
Nrearr, vs the square displacement, r2, for all the studied transitions
(particle rearrangements). (a) Harmonic potential system and (b) LJ
potential system. The two solid lines roughly indicate the lower and
upper bounds described by the lines of r2 ∝ Nrearr.

|r| and |�| exhibit continuous distributions. It is then
important to study the functional forms of the probability
distributions of |r| and |�|. In two-level system theory
[21–24], we assume a uniform distribution function for |�|
in order to explain the linear temperature dependence of the
specific heat. This is beyond the present work but definitely
an important future subject.

IV. CONCLUSION

In this work, we have studied the anharmonic properties
of the vibrational modes in two model amorphous solids,
the harmonic potential system and LJ potential system. Our
results are summarized as follows. (i) The vibrational modes
in amorphous solids exhibit strong anharmonicities that in-
duce particle rearrangements and cause transitions to different
states. The onset temperature of anharmonicities is estimated
as quite small values of Tc ∼ 10−9 for the harmonic potential
system (N = 512 000) and Tc ∼ 10−3 for the LJ potential
system (N = 128 000). In the thermodynamic limit, N →
∞, Tc possibly goes to zero. (ii) Many different vibrational
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FIG. 12. Correlation in directions between particle rearrange-
ments and vibrational modes in the harmonic potential system. We
plot the value of the normalized inner product I between ri and
ek

i , defined in Eq. (10), as a function of the phonon order parameter,
Ok , in panel (a) and the participation ratio, Pk , in panel (b). Data
are plotted for the low-frequency modes below the boson peak
frequency, ωBP.

modes cause the identical transition, and the number of states
after the transition is much fewer than that of vibrational
modes. In the energy landscape, there are many different
transition paths that link to the same state and lead to the same
transition (particle rearrangement). (iii) The induced particle
rearrangements are always localized in space and include 1
to 1000 particles, with each particle’s displacement being
roughly 10−3 to 10−1 times the particle size. This localized
region is surrounded by some particle displacement field
characterized by |ri| ∝ r−a (with a ≈ 2.5 to 3). (iv) The
correlations between the anharmonic properties and nature of
excited vibrational modes are rather weak. Particularly, there
are no apparent differences in the anharmonicities between
the phonon modes and the QLV modes: Both exhibit strong
anharmonicities that cause the transitions. (v) In the thermo-
dynamic limit of N → ∞, we expect that the values of |r|
and |�|, which characterize the transitions, are continuously
distributed.

FIG. 13. Sample dependence of the transitions in the harmonic
potential system. Plots of (a) |r| and (b) |�| as functions of the
eigenfrequency of the excited vibrational mode, ωk . The system size
is N = 16 000. We plot data from different samples A to D using
different color symbols.

The present results support the existence of TLS transi-
tions in amorphous solids, which can correspond to localized
rearrangements such as we observe in this work. Interest-
ingly, experimental studies [71–73] observed fast dynamics of
atoms in the deeply glass state, which are distinct from aging
dynamics. Numerical simulations [74,75] also revealed the
presence of localized excitations in randomly pinned glasses.
The present work detected a rather broad range of particle
rearrangements composed of 1 to 1000 particles, with each
particle’s displacement being 10−3 to 10−1 times the particle
size. Further studies are needed to clarify which sizes of
particle arrangements are related to the TLS transitions, which
is determined by the energy barrier through the transition path
connecting the two-level states [40,44,76]. Since the barrier of
TLS transitions relevant at low T is rather small, they could be
related to only the small size of localized rearrangements [77].
We note that the TLS transitions at low T might be realized
through quantum tunneling effects, which is another issue to
be solved [78].

We demonstrated that the extended phonon modes in-
duce particle rearrangements and that even their extent of
anharmonicity is similar to that of the QLV modes. This
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FIG. 14. Extent of anharmonicity of vibrational modes measured
using Eq. (A3). Plot of the extent of anharmonicity, Ac, measured
using Eq. (A3), as a function of the eigenfrequency of the excited
vibrational mode, ωk . (a) Harmonic potential system and (b) LJ
potential system. We plot data for different system sizes (up to N =
4 096 000 for the harmonic potential system and up to N = 1 024 000
for the LJ potential system) together. For comparison, we plot the
values of Ac presented in Fig. 3. Additionally, we indicate the boson
peak frequency, ωBP, by the arrow.

implies that some defect-like vibrations are embedded in the
phonon modes. Indeed, Ref. [49] disentangled the localized
defects from extended vibrational modes by implementing an
artificial potential that acts as a high-pass filter. Additionally,
Refs. [47,48] generated plastic modes (or nonlinear glassy
modes, which are spatially localized) from extended modes
by minimizing the energy-barrier function. Importantly, these
localized defects and plastic modes can be used to predict
the location of plastic instabilities when the system is me-
chanically deformed; i.e., they play a role as “defects” in the
system. We might expect that they also play a role in the
transitions induced by thermal fluctuations.

However (at variance with the above expectation), we also
found that the transitions (particle rearrangements) do not
occur along the QLV modes. In our recent work [46], we
reported that the QLV modes exhibit unstable vibrations with

FIG. 15. Correlation between anharmonicities measured using
Eq. (A3) and the nature of excited vibrational modes in the harmonic
potential system. Plot of the extent of anharmonicity, Ac, measured
using Eq. (A3), as a function of the phonon order parameter, Ok ,
in panel (a) and the participation ratio, Pk , in panel (b). We plot
data for vibrational modes below the boson peak frequency, ωBP. For
comparison, we plot the values of Ac presented in Fig. 4.

negative vibrational energy in a localized region. We might
expect that these unstable vibrations in the QLV modes play
a role as “defects” in the rearrangements. However, although
some rearrangements occur along the QLV modes, they gen-
erally do not. We even found that the anharmonic properties
are not relevant to the nature of excited vibrational modes.
From these observations, we would also argue that vibrational
modes are just a trigger to induce TLS transitions, whereas
the nature of the TLSs is determined by complex shape of
the energy landscape [40–45,60] that emerges due to complex
structural properties of amorphous systems [62–64].

Finally, the present work shows that many different vibra-
tional modes cause the same transition (particle rearrange-
ment). This implies that there are a couple of local regions that
are highly susceptible to the rearrangements (or TLS transi-
tions), which can be related to the defects as discussed above.
We have attempted to characterize these local regions, but
unfortunately we failed to obtain useful results. For example,
we have studied correlations of these regions with localized
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regions in the QLV modes, but we recognized no apparent
correlations. The issue regarding defects in amorphous solids
is definitely important, which should be addressed in the
future.
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APPENDIX: EXPANSION OF THE POTENTIAL ENERGY
LANDSCAPE AROUND THE INHERENT STRUCTURE

Here, we analyze the anharmonicities of the eigenmodes by
expanding the potential energy, �({ri}), around the inherent
structure {r0i} and along the direction of mode k (ek

i ), as in
Refs. [47,48]. We use {ri} in Eq. (5) and expand � around
the value of the inherent structure, �0 ≡ �({r0i}), in terms of
A
√

N up to the third-order term:

� = � − �0 ≈ 1
2κ (A

√
N )2 + 1

6τ (A
√

N )3, (A1)

where

κ =
N∑

i, j=1

∂2�

∂ri∂r j
: ek

i ek
j = ω2

k ,

τ =
N∑

i, j,k=1

∂3�

∂ri∂r j∂rk

... ek
i ek

j e
k
k . (A2)

We then estimate the value of Ac as the saddle point in the
potential energy landscape of �({ri}):

Ac

√
N = −2

κ

τ
= −2

ω2
k

τ
. (A3)

Note that τ should be negative. We also emphasize that the
value of Ac in Eq. (A3) can be estimated using only the
eigenvalues ω2

k (second-order derivative of the potential) and
the third-order derivative of the potential at {ri} = {r0i}. We
measure the values of Ac in Eq. (A3) by employing larger
system sizes, up to N = 4 096 000 for the harmonic potential
system and up to N = 1 024 000 for the LJ potential system,
and present them as a function of ωk in Fig. 14 and as a
function of Ok and Pk in Fig. 15. These results are discussed
in Sec. III A of the main text.
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