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Power-Zienau-Woolley representations of nonrelativistic QED for atoms and molecules
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The interaction terms in the general nonrelativistic Hamiltonian for a collection of spin-free charged particles
and the electromagnetic field may be expressed in terms of so-called polarization fields. The general Hamiltonian
is related to the familiar Coulomb gauge theory by a family of formally unitary transformations with a line
integral over the Coulomb gauge vector potential as generator. The particular choice of a straight-line path
starting at an arbitrary origin and ending at a charge defines the Power-Zienau-Woolley transformation; it
is commonly approximated by a truncated multipole expansion of the integral about the arbitrary origin.
The transformation may be analyzed as a certain kind of coherent state displacement. For an overall neutral
many-particle system the paths using the arbitrary origin can be eliminated in favor of paths with end points
at the positions of oppositely charged particles. The paths may be interpreted as lines of force in the sense of
Faraday, while the polarization fields are just the electromagnetic field strengths for the specified line of force.
We develop this line integral representation for the polarization fields and calculate the self-energy of the electric
polarization field P using a straight-line path. For an overall neutral pair of point charges, the energy contributions
are their individual (infinite) self-energies, a contact interaction, and a divergent pair term. which together replace
the familiar Coulomb interaction. Of course one must not forget also the coupling between P and the transverse
electric field; the paradox is resolved by the requirement for gauge invariance. These results mirror findings in
the relatively remote area of high-energy physics where the pairs of oppositely charged particles are typically
quark-antiquark partners, and similar line integrals giving the same singular interaction are used.
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I. INTRODUCTION

The origins of the approach employed in modern atomic
and molecular theory can be found in the model of the
hydrogen atom proposed by Bohr to account for the spectrum
of hydrogen [1,2]. In modern terms the idea is this: Formally,
one fixes the gauge of the vector potential A by the Coulomb
gauge condition

∇ · A = 0 (1)

and it then follows that the longitudinal part of the electric
field strength due to the electrons and nuclei can be expressed
entirely in terms of their coordinates and gives rise to the
familiar static Coulomb potential in the QED Hamiltonian.
Radiation reaction due to the transverse part of their electro-
magnetic fields was simply discarded ad hoc, and the role of
the radiation field was demoted to the status of an external
perturbation inducing transitions between Bohr’s stationary
states. One thus writes the QED Hamiltonian in the Coulomb
gauge as

H = Hatom + Hrad + VCg, (2)
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where Hatom is the usual Coulomb Hamiltonian involving
purely electrostatic potentials and VCg is a definite function
of the particle variables and the field potential A.

However, when it is recognized that H refers to a closed
system of charges and electromagnetic fields, the situation
is complicated by the requirement for gauge invariance of
physical quantities. The clean separation of field and atomic
contributions in (2) is peculiar to the Coulomb gauge. In
general, a decomposition of the QED Hamiltonian analogous
to (2) in an arbitrary gauge with the usual atomic Hamilto-
nian explicit contains arbitrary quantities in the interaction
V, expressed through so-called polarization fields [3]. This
feature of QED is made explicit by a unitary transform of HCg,
an example of which is the Power-Zienau-Woolley (PZW)
transformation. The most important fact about the polarization
fields is that they are not measurable physical quantities; they
occur as useful working variables, like the field potentials.
This is because no specific choice of the polarization fields
corresponds to a definite physical situation; the corollary is
that any calculation of a physical quantity must be indepen-
dent of the choice of the polarization fields used to make the
calculation.

The transformation was first proposed for an investigation
of the interaction energy of two neutral atoms in a cavity using
QED within the dipole approximation [4]. In the Coulomb
gauge the interaction is mediated by a propagator of the trans-
verse vector potential and the Coulomb interaction energy.
The propagator in momentum space has a pole at |k| = 0
which, after Fourier transformation, leads to a static term in
real space even though the retarded boundary condition is
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used. The static term cancels precisely with the interatomic
Coulomb energies to leave an overall retarded result, so
that the interatomic interaction can be described as resulting
from the exchange of purely transverse photons.1 Another
account of the transformation was given shortly afterward
with the resulting Hamiltonian used to investigate line shapes
[5]. Later a more complete treatment of the transformation
for cavity QED was given and used to study atoms near a
conducting wall [6]. The general belief that the contribution to
the Hamiltonian of the term

∫ |P⊥|2d3x amounts to only self-
energies and contact interaction terms, and so may usually be
ignored, originated in these investigations based on the dipole
approximation. Since that early work, PZW ideas have spread
into numerous areas of atomic/molecular/optical physics;
contemporary references can be found in recent surveys [7,8];
PZW ideas have also been of value in QED studies in con-
densed matter physics [9,10].

Since it is concerned with atoms and molecules in terms of
electrons and nuclei, and radiation, the framework for QED
used here is nonrelativistic, and the question arises whether
or how a secure mathematical version can be formulated in
the nonrelativistic framework. There are questions that have
not been answered in the conventional perturbation theory
(S-matrix) formulation of Lorentz invariant QED, for exam-
ple, the stability of matter [11–13], but these concerns apply
also in atomic/molecular spectroscopy. Among the issues
that should be mentioned are the Hilbert space to be used
[14–17], the maintenance of gauge invariance in calculations
of physical observables, the role of the Coulomb interaction
associated uniquely with the Coulomb gauge condition, and
the occurrence of singular contributions to the potential V
in the nonrelativistic QED Hamiltonian. In order to attack
these questions it is essential to have a comprehensive account
of the nonrelativistic theory before any other approximations
are made. The present paper is a contribution to that goal.
It will become apparent that the use of the electric dipole
approximation, often combined with a few atomic states,
apparently essential for many practical calculations, can lead
to theoretical results that are not found in the general theory
presented here.

The use of the conventional Fock space structure requires
the imposition of a cutoff on the magnitude of the photon
momentum in the interaction terms; this is the usual step,
normally restricted to the Coulomb gauge formalism, in the
mathematical physics literature (see, for example, [12,13,18]).
Even so, a moving charge interacting with the quantized field
gives rise to an infrared divergence in a free-field Fock space
description [16,17]. The motivation for the transformation
discussed here is the recognition that physically, charged
particles cannot be separated from electromagnetic fields in
the way that is suggested by the Coulomb gauge theory if an
atomic system as a whole is to be incorporated properly in the
field as a source (the original idea of Power and Zienau [4,5]).

The outline of the paper is as follows. In Sec. II we summa-
rize the context for the transformation that expresses a formal

1In the language of covariant QED, the transformation has elimi-
nated both scalar and longitudinal photons.

relationship between the familiar Coulomb gauge Hamilto-
nian and the general Hamiltonian; the PZW transformation
is a special case. In Sec. III the expression of the polarization
fields in terms of line integrals for multiparticle systems is
developed without reference to arbitrary multipole origins.
In Sec. IV the self-energy contribution of the polarization
field P to the energy of the total system is investigated and
shown to be highly singular in an unexpected way that was
not recognized in the original literature [19–24]. This cal-
culation shows that the whole Coulomb energy, intra-atomic
and interatomic, is canceled, leaving only singular terms. In
principle, since the transformation is canonical the energy
has simply been rearranged and the equations of motion are
not disturbed. In Sec. V the relationship between the PZW
Hamiltonian (3) and the Coulomb gauge theory is represented
as a coherent state displacement transformation (boson trans-
lation). This approach leads directly to an evaluation of the
overlap between the Fock space vacuum of the Coulomb
gauge theory and the transformed vacuum. In the continuum
limit and for point particles, this overlap is zero, implying that
the transformed Hamiltonian cannot be discussed in the same
Fock space as the Coulomb gauge theory because they are
not unitarily equivalent. Section VI provides an interpretation
of the polarization fields in terms of lines of force, which is
related to recent work in high-energy physics [25,26]. The
paper concludes with a summary in Sec. VII.

II. THE PZW HAMILTONIAN

For a closed system of N � 1 spinless charges in a radia-
tion field (E⊥

, B), the general nonrelativistic Hamiltonian for
electrodynamics may be written

HP =
N∑

n=1

|pn|2
2mn

+ 1

2
ε0

∫
(|E⊥|2 + c2|B|2)d3x

−
∫

P · E⊥d3x −
∫

M · B d3x +
∫∫

X : BB d3x d3x′

+ 1

2ε0

∫
P · P d3x (3)

in the usual notation [7]. The nonzero commutators are[
xi

n, p j
m

] = ih̄δi jδnm, (4)

[E(x)⊥k , B(x′)l ] = ih̄ε−1
0 εklm∇m

x δ3(x − x′), (5)

corresponding to the conventional assumption that the field
and particle variables are independent. The general Hamil-
tonian has this form for both classical electrodynamics and
QED, the difference being only in the interpretation of the
dynamical variables as classical quantities or as operators
on a Hilbert space. In both cases Hamilton’s equations lead
to the Maxwell equations and the Lorentz force law. Its
extension to nonrelativistic electrons and nuclei follows from
implementation of the permutation symmetry for identical
particles in quantum mechanics. Additionally, the Pauli in-
teraction coupling particle spins to the magnetic field with
phenomenological nuclear magnetic moments can properly
be regarded as a nonrelativistic contribution to the QED
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Hamiltonian for electrons and nuclei and may be incorporated
in the magnetization M if required.

In (3) the first term is the total kinetic energy for N free
charges and the second term is the usual Hamiltonian for
free radiation. The next three terms couple the charges to the
radiation, while the last term has no dependence on the field
or on the particle’s motion; it is of a purely kinematic nature.
Further, M is a magnetization density linear in the charge e
that involves the particle position and momentum variables
and X is a generalized diamagnetic susceptibility tensor that
is proportional to e2. Their particular forms depend on the
choice made for the electric polarization field P, which is also
linear in the charge e. No assumption is made as to whether
the charges are localized in one or more bounded regions of
space.

The Hamiltonian (3) and the familiar Coulomb gauge
Hamiltonian HCg (discussed below) are intertwined by the
formally unitary operator

UP = exp(i�P/h̄), (6)

where the generator is a functional scalar product with the
dimensions of action

�P =
∫

P · A d3x. (7)

Here A is specifically the Coulomb gauge vector potential for
the field and P is required to satisfy the relation

∇ · P = −ρ. (8)

Thus the relations

HP = U−1
P HCgUP, (9)

�P = U−1
P �Cg (10)

define a new representation for nonrelativistic QED. Ob-
viously UP commutes with A, so A is unchanged by the
transformation, which is not a gauge transformation.

The PZW Hamiltonian is obtained by expressing the elec-
tric polarization field in terms of line integrals over Dirac δ

functions with a particular choice of path [19–24]. With this
choice the building block of the generator (7) is a line integral
over the vector potential

�PZW ∼ e
∫

C
A(z) · dz, (11)

where C is a straight-line path ending at a charge e; the
generalization to many charges is

�PZW =
N∑

n=1

en

∫
Cn

A(z) · dz (12)

over paths {Cn} terminating at the positions {xn}. Comparison
with (7) shows that the polarization field in the PZW formal-
ism may be written as the distribution

P(x) =
N∑

n=1

en

∫
Cn

δ3(x − z)dz. (13)

The specification of the starting points of the paths will be
discussed in Sec. III, where it is verified that such a form

satisfies (8) with the usual charge density distribution

ρ(x) =
N∑

n=1

enδ
3(x − xn). (14)

Equation (11) may be viewed as an integrated form derived
from the infinitesimal version of the fundamental quantum-
mechanical law of electromagnetism [27] in terms of the 1-
form dω = a · dz (the connection of Abelian gauge theory).
The transformation is carried out explicitly and in closed form
using the power series expansion of the exponential operator
UP [4,5,20,28].

Equation (8) does not fix P uniquely, so we may consider
using a path different from the PZW choice and a modi-
fied generator operator �P′ . The result of transforming the
Coulomb gauge Hamiltonian HCg with the modified operator
UP′ can be put in the form

HP′ = U−1
P′ HCgUP′ = U−1

B HPUB, (15)

where for each charge e,

UB = exp

(
− ie

h̄

∮
A(z) · dz

)
≡ exp

(
− ie

h̄

∫
�

dS · B
)

.

(16)
Here � is a surface with the closed loop as its boundary,
which has the PZW path as a segment, and HP is the PZW
Hamiltonian; Eqs. (11) and (16) will be recognized as a
Wilson line and a Wilson loop, respectively [29].

Although (16) is gauge invariant, UB still has an implicit
dependence on the paths chosen through their definition of the
surface �; it is independent of the particle variables, although
it depends on the charge parameter e, so that the PZW forms
for the polarization fields P and M and the susceptibility X
can be left unchanged. However, the transformed Hamiltonian
HP′ for the altered path differs from HP because of the
noncommutation of UB with E⊥, and additional terms arise
from the second and third terms in (3). This aspect will
not be pursued here; in the following we confine attention
to the PZW choice of path and simply emphasize that any
calculation of a physical quantity must not depend on the
choice of path.

Choosing P = P‖ and P⊥ = 0 in (7) makes �P‖ = 0 since
A is purely transverse. Then UP = I, the identity, and (3)
is simply the usual Coulomb gauge Hamiltonian; the third
term vanishes, the fourth and fifth terms become the familiar
p · A and |A|2 interactions, and the last term reduces to the
Coulomb energies of pairs of charges and their infinite self-
energies. Thus we have

HCg =
N∑

n=1

|pn|2
2mn

+ 1

2ε0

∫
P‖ · P‖d3x

+ 1

2
ε0

∫
(|E⊥|2 + c2|B|2)d3x

−
N∑

n=1

en

mn
pn · A(xn) +

N∑
n=1

e2
n

2mn
A(xn) · A(xn). (17)
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The identification with (2) is immediate if we use the relation
[20]

1

2ε0

∫
P‖ · P‖d3x ≡ 1

8πε0

N∑
n,m=1

enem

|xn − xm| . (18)

The nonzero commutators are[
xr

n, ps
m

] = ih̄δnmδrs, (19)

[A(x, t )r, E(x′, t )⊥s] = −ih̄ε−1
0 δ⊥

rs(x − x′), (20)

It will be seen in Sec. IV that in (3), unlike (17), there are
in general no explicit static Coulomb interaction energies
between the charges which must arise from the charge-field
interaction terms and the last term in (3).

III. LINE INTEGRAL FORMS FOR THE
POLARIZATION FIELDS

The traditional idea of the polarization field is to replace the
charge-current density 4-vector jμ = (cρ, j) with a second-
rank tensor density pμν through the relation

jμ = ∂ν pμν (21)

so as to construct the classical displacement fields for dielec-
tric theory with the combination

dμν = c f μν + (cε0)−1 pμν, (22)

where f μν is the usual Faraday tensor for the electromagnetic
field. The inner product ε0dμνdμν is an energy density. Pro-
vided pμν is antisymmetric and single valued, the equation of
continuity is satisfied automatically,

∂μ jμ = ∂μ∂ν pμν = 0. (23)

An antisymmetric second-rank tensor has six independent
components in d = 4 dimensions which can be identified as
the components of a pair of vectors. The tensor pμν in (4 × 4)
matrix form is

pμν =

⎛
⎜⎝

0 −cPx −cPy −cPz

cPx 0 Mz −My

cPy −Mz 0 Mx

cPz My −Mx 0

⎞
⎟⎠, (24)

where {Pr} = P is the electric polarization field and {Mr} = M
is the magnetization (magnetic polarization) field [19]. Now
(21) is of the same form as the Maxwell equations

∂ν f μν = μ0 jμ (25)

for a specified charge-current density. Thus pμν is an elec-
tromagnetic field associated specifically with the current jμ;
however, pμν is not required to satisfy the other Maxwell
equations,

∂α fβγ + ∂β fγα + ∂γ fαβ = 0, (26)

and so it is not necessarily the Maxwell field, and no particular
form can be associated with a given physical situation.

The Green’s function g(x, x′) for the divergence operator
satisfies

∇x · g(x, x′) = −δ3(x − x′). (27)

The longitudinal component of g is well defined; it can be
written as

g(x, x′)‖ = ∇x
1

4π |x − x′| . (28)

A more general choice for g is based on direct integration of
(27). This is the path-dependent representation

g(x, x′; O,C) = g(x, O)‖ +
∫ x′

C
δ3(z − x)dz, (29)

which has a transverse component as well as the longitudinal
component (28). Here C is any suitable curve starting from a
fixed point O and ending at the space point x′ such that the
integral exists; g(x, O)‖ is an integration constant which may
be dropped if O is chosen as spatial infinity. Equation (29)
is to be understood [25] as a distribution in the variable x. A
physical interpretation of g(x, x′) is given in Sec. VI. Using
g, we may construct a formal integral representation of the
electric polarization field

P(x) =
∫

g(x, x′)ρ(x′)d3x′. (30)

Consider first the polarization field for a single charge at
X for which the natural origin O is a point at infinity. Using
(14) with the path z(σ ) = X + σ n̂, −∞ � σ � 0, i.e., along
a straight path from infinity to the point X, the polarization
field is

P(x) = en̂
∫ 0

−∞
δ3(z(σ ) − x)dσ. (31)

The mean value of this polarization field is an unweighted av-
erage over all the lines of force. Proceeding to the continuum
limit, this is

〈P(x)〉n̂ = 1

4π

∫
P(x)d�. (32)

The paths within the infinitesimal solid angle d� will fill up a
cone at the position X with volume elements d3z = r2drd�,
where r = |z − X|. Equation (32) is easily evaluated using an
argument given by Belinfante [30], with the result that

〈P(x)〉n̂ = P(x)‖. (33)

From (28) and (30) one sees that the mean electric polarization
field is just the usual static Coulombic potential of the charge.

This result generalizes directly to the many-charge case for
which the electric polarization field is

P(x) = qg(x, O)‖ +
N∑

n=1

ei

∫ xn

Cn

δ3(z − x)dz, q =
N∑

n=1

en.

(34)
If the atom/molecule is overall neutral, q = 0 and the arbi-
trary integration constant plays no role. The arbitrary origin
however still appears as an end point in the line integrals.
In the case of an overall electrically neutral collection of
electrons and nuclei it may be removed by rearranging the
charge density to be used in (30) in the following way.

Suppose there are altogether M nuclei with positive
charges {eZa : a = 1, . . . , M}; then there must be K = MZa

electrons with charge −e to give electroneutrality. Let the
nuclei have coordinates {xN

m : m = 1, . . . , M}; similarly, the
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electrons have coordinates {xe
k : k = 1, . . . , K}. Now write

the charge density as a sum of contributions from individual
electrons and nuclei

ρ =
∑

n

enδ
3(x − xn) = ρ(x)N + ρ(x)e

= eZ1δ
3
(
x − xN

1

) + eZ2δ
3
(
x − xN

2

) + · · ·
+ eZMδ3

(
x − xN

M

) − eδ3
(
x − xe

1

)
− eδ3

(
x − xe

2

) − · · · − eδ3
(
x − xe

K

)
. (35)

Next take the terms for the nuclei and rewrite them as

ρ(x)N = e

[
δ3

(
x − xN

1

) + · · · δ3
(
x − xN

1

)︸ ︷︷ ︸
Z1 terms

]

+ · · · + e

[
δ3(x − xN

M

) + · · · + δ3(x − xN
M

)︸ ︷︷ ︸
ZM terms

]
.

(36)

There are now altogether K terms with coefficient +e which
can be paired off with the K terms with coefficient −e, so the
charge density can be rearranged to the form

ρ(x) = e
[
δ3

(
x − xN

1

) − δ3(x − xe
1)

]
+ e

[
δ3

(
x − xN

1

) − δ3
(
x − xe

2

)] + · · ·
+ e

[
δ3

(
x − xN

M

) − δ3
(
x − xe

K

)]
= e

M∑
m=1

Zm∑
k=1

[
δ3

(
x − xN

m

) − δ3
(
x − xe

mk

)]
. (37)

Combining the charge density (37) with (30) yields the
polarization field for an overall neutral multiparticle system
as

P(x) = e
M∑

m=1

Zm∑
k=1

G
(
x; xN

m, xe
mk

)
, (38)

where

G
(
x; xN

m, xe
mk

) =
∫ xN

m

xe
mk

δ3(z − x)dz (39)

is independent of the arbitrary origin O and the integral is
taken over any path C from the point xe

mk to the position xN
m .

Thus the general polarization field may be written formally as
a sum of atomic contributions

P(x) =
M∑

m=1

Pm(x), Pm(x) = e
Zm∑

k=1

∫ xN
m

xe
mk

δ3(z − x)dz. (40)

A typical term in (40) is

P(x,C) = e
∫ x2

x1

δ3(x − z)dz (41)

along some path C; this is the main case we discuss. The
Fourier transform of this electric polarization field is

P(k,C) = e
∫ x2

x1

eik·zdz. (42)

The straight line starting at x1 and ending at x2 may be given
the parametric form

z(σ ) = x1 + σ (x2 − x1), 0 � σ � 1. (43)

The explicit evaluation of the Fourier transform (42) for this
path then yields

P(k,C) = eeik·x1
eik·r − 1

ik · r
r, (44)

where r = x2 − x1; for k → 0 and finite |r| this leads to the
dipole approximation for the electric polarization field

lim
k→0

P(k,C) = e(x2 − x1) ≡ d. (45)

For infinite paths the limit does not exist in general and there
is no dipole approximation. So far nothing has been said about
time dependence. If the charges are allowed to move there is
also a current density and one requires the magnetization M.
The companion to (41) is

M(x, t ) = e
∫ x2

x1

δ3(z − x)dz ∧ ż, (46)

which generalizes directly to the many-charge case.
The forms (41) and (46) for the polarization fields can be

obtained directly from recent results in relativistic electrody-
namics by reduction to the nonrelativistic limit without any
analogies to the classical dielectric theory. A path2 between
two charges can be described in parametrized form such that
the boundary values of the parameter, say, σ , give the posi-
tions of the two particles. If the particles move, so does this
path, which sweeps out a two-dimensional surface describable
by functions X μ(τ, σ ), μ = 0–3. The tensor

pμν (Y ) = −e
∫

dτ dσ

(
∂X μ

∂σ

∂X ν

∂τ
− ∂X ν

∂σ

∂X μ

∂τ

)
δ4(X − Y )

(47)

satisfies Eq. (21) with the current density for an overall neutral
pair of particles [25]

jμ = e
∫ +∞

−∞
Ẋ1δ

4(X − X1)dt − e
∫ +∞

−∞
Ẋ2δ

4(X − X2)dt .

(48)
Following the discussion above, the tensor pμν with com-
ponents defined by (47) describes the electromagnetic field
associated with the path connecting the particle positions.

For the reduction to nonrelativistic form we choose the
static gauge with τ = t , where t is physical time [31]. Then,
since (

∂X μ

∂σ

)
=

(
∂X 0

∂σ
,
∂X
∂σ

)
≡

(
0,

∂X
∂σ

)
, (49)(

∂X μ

∂τ

)
=

(
∂X 0

∂t
,
∂X
∂t

)
≡

(
c,

∂X
∂t

)
, (50)

the corresponding polarization fields that represent the non-
relativistic forms of the current density (48) are just (41) and
(46) with X identified with z.

2The path between two charges must not be confused with the
world line of an individual charge.
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IV. ENERGY OF THE ELECTRIC POLARIZATION FIELD

The general Hamiltonian (3) contains terms that are ei-
ther linear or quadratic in the polarization fields; the linear
terms represent formally the interactions of individual atoms
or groups with the radiation field, and using (40), the last,
quadratic, term may be decomposed into a sum of atomic
terms, associated with a single nucleus and a sum over the
pairwise cross terms, involving two distinct nuclei

EP = 1

2ε0

∫
P(x) · P(x)d3x = 1

2ε0

∫ M∑
m

|Pm(x)|2d3x

+ 1

2ε0

∫ M∑
m �=m′

Pm(x) · Pm′ (x)d3x. (51)

These sums must be further differentiated as there are three
kinds of terms to evaluate as follows: type 1 terms that refer
to one nucleus and one electron as described in Sec. III, type
2 terms that refer to one nucleus and two electrons, and type
3 terms that refer to two different nuclei and two electrons.

Using the Fourier transform of P, we may write

EP = 1

2ε0

1

(2π )3

∫
P(k) · P(−k)d3k, (52)

which will be used for calculation. That (51) gave a singular
contribution to the Hamiltonian was noted in early discussions
of the electrodynamics of atoms and molecules [5,28,32],
although its properties were characterized poorly when re-
course was taken to the conventional multipole expansions of
the electric polarization field. The main difficulty is that for
point charges the electric polarization field is the distribution
(34) and the product of distributions is not well defined.
The regularization of the singular expressions that arise in
nonrelativistic electrodynamics can be interpreted in terms
of a smoothing of the δ functions in (14). It may then be
possible to isolate finite contributions (if any) that survive
when the regulator is removed; however, the coefficients of
terms that become singular when the δ function limit is taken
generally depend on the chosen regulator function and are not
trustworthy.

We imagine that the charge density of a particle is centered
on the position X and write

ρ(x) = eξa(x − X), ξa(x) � 0, (53)

with ξa a spherically symmetric function, normalized such that∫
ξad3x = 1. (54)

Let χa(k) be the Fourier transform of ξa(x); it depends on only
k = |k|, and the properties

|χa(k)| � 1, χa(0) = χ0(k) = 1,

∫ ∞

0
χ2

a (k)dk = π

2a

(55)

ensure that the usual classical point-particle results are recov-
ered in the limit a → 0.

As a prototypical example, consider the longitudinal com-
ponent of the polarization field for a single distributed charge

e located at X, which is

Pa(x)‖ = e
∫

g(x, x′)ξa(x′)d3x′, (56)

as follows from (28) and (53). The Fourier transform of (56)
is

Pa(k)‖ = −iekeik·X χa(k)

k2
, (57)

so that

E‖
P,a = e2

2ε0

1

(2π )3

∫
χ2

a (k)

k2
d3k = e2

8πε0a
. (58)

In the limiting case of the point particle (a → 0), this is the
familiar classical infinite Coulombic self-energy.

For the neutral two-particle system discussed earlier
(Sec. III) there is only the type 1 contribution

EP = e

2ε0

∫ x2

x1

P(z) · dz, (59)

with P given by (41); EP in general is path dependent. In the
following we calculate it for the straight-line path between x1

and x2 using the Fourier transform (44). The longitudinal and
transverse contributions to EP can be identified by introducing
a resolution of the identity into (52) to separate the scalar
product with

I = k̂k̂ + (I − k̂k̂). (60)

The regulated longitudinal contribution from (59) is then

E‖
P,a =

(
e2

4πε0

)(
1

2π2

) ∫
χ2

a (k)
1 − cos(k · r)

k2
d3k. (61)

Integrating over the angles results in

E‖
P = e2

2π2ε0
lim
a→0

∫ ∞

0
χ2

a (k)

(
1 − sin(kr)

kr

)
dk

= e2

4πε0

(
1

a

∣∣∣∣
a→0

− 1

r

)
, (62)

where the limit a → 0 has already been taken in the second
term as it does not need the regulator. Here the first term is
the infinite self-energy of two charges in the limit a → 0 [cf.
(58)] and the second term is the Coulomb energy of the two
charges a distance r apart.

Similarly, the regulated transverse part is

E⊥
P,a =

(
e2

8π3ε0

)
rt rs

∫
χ2

a (k)(1 − k̂k̂)ts
1 − cos(k · r)

(k · r)2
d3k.

(63)

The angular integrations are again straightforward, with the
result that

E⊥
P = e2

2π2ε0
lim
a→0

∫ ∞

0
χ2

a (k)

×
(

(kr)Si(kr) + sin(kr)

kr
+ cos(kr) − 2

)
dk, (64)

where

Si(t ) =
∫ t

0

sin(s)

s
ds (65)
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is the usual sine integral. It is convenient to define a quantity
Y, which will be discussed further below,

Ya(r) =
∫ ∞

0
χ2

a (k)(kr)Si(kr)dk. (66)

The remaining integrals are

lim
a→0

∫ ∞

0
χ2

a (k)
sin(kr)

kr
dk = π

2r
,

lim
a→0

∫ ∞

0
χ2

a (k) cos(kr)dk = πδ(r),

−2 lim
a→0

∫ ∞

0
χ2

a (k)dk = − π

a

∣∣∣
a→0

,

(67)

and so in the point-particle limit a → 0,

E⊥
P = e2

4πε0

(
2πYa(r)|a→0 + 1

r
+ 2δ(r) − 2

a

∣∣∣∣
a→0

)
. (68)

The second term in (68) is a Coulomb energy; notice it
is precisely equal, and of opposite sign, to the second term
in (62). The third term is a contact interaction, while the last
term is a self-interaction energy, again infinite in the limit.
Adding (62) and (68), we finally obtain the full energy for the
primitive type 1 case (41) as

EP = e2

4πε0

(
2πYa(r)|a→0 + 2δ(r) − 1

a

∣∣∣∣
a→0

)
, (69)

which is notable because (a) the static Coulomb interaction
energy of the particles has canceled completely and (b) it is
(69) rather than (62) that occurs in the PZW Hamiltonian [(3)
with the straight-line path].

For the infinitely thin straight-line integration path (a = 0)
the function Y0 has the form

Y0 ∼ ZC
r

, ZC =
∫ ∞

0
x Si(x)dx, (70)

where ZC is a divergent coefficient. It is possible to analyze Y
further using a regulator, for example,

χa(k) = e−ak/π . (71)

With an obvious change of variable, we then have

Ya(r) = 1

r

∫ ∞

0
x Si(x)e−sx, s = 2a

πr

= 1

r

[
arctan

(
1
s

)
s2

+ 1

s(1 + s2)

]
. (72)

For s near 0 this is

Ya(r) ≈ 1

r

[
π

2s2
+ O

(
1

s

)
+ · · ·

]

= π3r

8a2
+ O

( a

r2

)
+ · · · , (73)

which shows that for fixed a > 0 this is an energy that
increases with increasing r. This is essentially the result [33]
given for a contribution to the electric field energy of two
static quarks with equal and opposite charges fixed at x1 and

x2 for a state involving the Wilson line

exp

(
ie

h̄

∫ x2

x1

dz · a
)

(74)

as a phase factor, with a in an arbitrary gauge [cf. (11)]; an
energy rising linearly with separation is taken as the cause
of quark confinement. The evaluation of the energy EP is
discussed further in Sec. VI, where it is shown to be con-
sistent with other results in the high-energy physics literature
obtained from quite different considerations. For now we note
here that there is no confinement in electrodynamics and (73)
can be understood as the result of the unitary transformation
rearranging the distribution of the energy between the charges
and the field

Type 2 and type 3 contributions to the energy EP arise from
multiparticle polarization fields; the simplest examples are the
cross terms required for the evaluation of EP with

P(x) = e
∫ xN

xe
1

δ3(z − x)dz + e
∫ xN

xe
2

δ3(z − x)dz (type 2),

P(x) = e
∫ xN

xe
1

δ3(z − x)dz + e
∫ xM

xe
2

δ3(z − x)dz (type 3),

(75)

with N �= M. For the general multicharge system all three
types of term will arise. For point charges these are contact
interaction contributions to the energy since each term in the
polarization field has support on its own line of force, and
thus the integrand in EP is nonzero only at the points where
the lines touch (type 2) at xN or intersect (type 3). So, for
example, the cross terms from (75) yield

EP ∼
(

e2

4πε0

)
r̂1 · r̂2

|xN − x1|2|xN − x2|2 δ3(0), (76)

where the vectors rn, n = 1, 2, are xN − xn, n = 1, 2. This
again must be regulated as the δ3(0) is ill-defined.

V. THE PZW TRANSFORMATION AND COHERENT
STATES IN FOCK SPACE

In their seminal paper Power and Zienau remarked that the
transformation (9) could be viewed as a redefinition of the
modes of the field that incorporated the atom as a whole as
a source [5] but did not analyze the idea further. This can be
done by expressing the PZW transformation in terms of gen-
eralized coherent states [34]. Since �P [Eq. (7)] is a product
of charged particle and field variables and is proportional to
the charge e, the resulting coherent state parameters involve
mixtures of particle and field variables and e and only make
sense for the interacting system. Using the mode expansion
of the Coulomb gauge vector potential and proceeding to the
continuum limit in the usual way [28], the transformation
operator (6) may be cast in the form of a coherent state
displacement operator as

UP = exp

[∑
λ

∫
[α(k : P)λc(k)†

λ − α(k : P)∗λc(k)λ]d3k

]
,

(77)
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where for each mode k and λ the coherent state parameter is

α(k : P)λ = −i

√
1

2(2π )3h̄ckε0
P(k) · ε̂(k)λ. (78)

Here P(k) is the Fourier transform of the electric polarization
field evaluated at the wave vector k. Since UP is formally
unitary, the resulting coherent state �0(P),

|�0(P)〉 = UP|�0〉, (79)

is normalized if the Coulomb gauge Fock space vacuum �0 is
normalized.

The transformed annihilation and creation operators for the
mode k and λ are, respectively,

C(k : P)λ = c(k)λ + α(k : P)λ,

C(k : P)†
λ = c(k)†

λ + α(k : P)∗λ
(80)

and one still has

[C(k : P)λ, C(k′ : P)†
λ′] = δλ,λ′δ3(k − k′). (81)

We can define a new vacuum state �0(P) by setting

C(k : P)λ|�0(P)〉 = 0 ∀ k (82)

to give a new representation of the Fock space for the system.
Every state can then be considered to be constructed from the
action of some polynomial involving the (new) annihilation
and creation operators on the (new) vacuum state �0(P).

A straightforward generalization from the single-mode
case to the continuum limit shows that |�0(P)〉 is related to
the free-field vacuum |�0〉 by

|�0(P)〉 = exp

(
−1

2

∫ ∑
λ=1,2

|α(k : P)λ|2d3k

)

× exp

(∫ ∑
λ=1,2

α(k : P)λC(k : P)†
λ

)
|�0〉. (83)

For a given electric polarization field P(k), the number of
photons with wave vector k and polarization λ in the coherent
state (83) is

n[P(k)] = 〈�0(P)|c(k)†
λc(k)λ|�0(P)〉 = |α(k : P)λ|2 (84)

and the total number of photons in the state is

N =
∫ ∑

λ=1,2

|α(k : P)λ|2d3k. (85)

The overlap between the old and new vacuum states is

〈�0|�0(P)〉 = exp

(
−1

2

∫ ∑
λ=1,2

|α(k : P)λ|2d3k

)

= exp

(
−1

2
N

)
. (86)

An explicit evaluation of the integral in (86) requires the
specification of a polarization field. As a first example con-
sider restricting the polarization field for an atomic/molecular
system to the leading terms of its multipole expansion [28],

P(x) ≈ (d + Q · ∇ + · · · )δ3(x − O), (87)

where O is the center about which the expansion is made.
Taking just the dipole term, Eq. (78) becomes

α(k : P)λ = −i

√
1

2(2π )3h̄ckε0
d · ε̂(k)λeik·O. (88)

The evaluation of (85) is immediate; the sum over the product
of two photon polarization vectors is given by [28]∑

λ=1,2

ε̂(k)λiε̂(k)λ j = δi j − kik j

k2
(89)

and all that is left is a divergent integral

N = 2α

3π
|μ|2

∫ ∞

0
k dk, (90)

where α is the fine-structure constant3 and d = eμ. Introduc-
ing a regulator into (90) means including a factor χ2

a (k) in the
integrand (see Sec. IV), and choosing χa(k) = exp(−ak/π )
as before yields

Na = α
π

6

|μ|2
a2

. (91)

This result is partly attributable to an inappropriate use of the
customary multipole expansion (87), which is only valid for
small |k| [see (45)], while the integral is dominated by large
|k| values.

Now consider the full line integral form for the electric
polarization field; without any real loss of generality we
can restrict attention to a two-particle system that is overall
electrically neutral. The required Fourier transform is given in
(44), and choosing r as the polar axis, we obtain, after carrying
out the polarization sum,

1

2
|α(k)|2 = α

2π

(
1 − cos2(θ )

cos2(θ )

)
sin2[kr cos(θ )/2]

k3
χ2

a (k),

(92)

where we have included the same regulator as for the
dipole approximation. The angular integration over d�(k) is
straightforward and there remains the dimensionless quantity
(with s = 2a

πr )

α

π

∫ ∞

0

e−st

t

[
t Si(t ) + sin(t )

t
+ cos(t ) − 2

]
dt = α

π
R(s)

(93)
for the exponent in (86). It is readily verified that

R(s) =
(

1

s
− s

)
arctan

(
1

s

)
+ 1 + ln(−s2) − ln(−1 − s2);

(94)

for small s, R(s) is dominated by the first term, and so

R(s)|s→0 ∼ O

(
1

s

)
. (95)

Now s is determined by the ratio a/r and so may become small
if a → 0, for fixed r, or r → ∞, for fixed a. So again the mean

3The coefficient α on the right-hand side is the fine-structure
constant (in conventional notation), not to be confused with (78).
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photon number is divergent in the point particle limit

lim
a→0

R(2a/πr) = ∞, 0 < r < ∞. (96)

Retaining the full line integral form for the polarization
field weakens the singularity in Na as compared to the electric
dipole approximation form, but does not remove it. Thus, in
the limit of an infinitely thin line (a → 0) Eq. (86) vanishes,
that is, the two vacuum states are orthogonal. This implies
that the Hilbert spaces H[c] and H[C(α)] are orthogonal.
One has realizations of the canonical commutation relations
for the annihilation/creation operators ({ck,λ, c†

k,λ}; {C(k :

P)λ, C(k : P)†
λ}) which are not related by unitary transfor-

mation; they are said to be unitary inequivalent [14,17]. The
practical consequence is that in this limit there is no longer a
guarantee that a Coulomb gauge theory based on the free-field
Fock space and the general Hamiltonian with P⊥ �= 0 will lead
to identical expectation values.

The exponential operator UP is defined by its power series
expansion; the expansion is used in the explicit evaluation of
(9) and is required for the demonstration that the perturbation
theory expansion of the S matrix is independent of the choice
of P [35]. In the point charge limit the expansion is ill-defined
as an operator on the free-field Fock space since

〈�0|I + i

h̄
�P + 1

2!

(
i

h̄

)2

�2
P + · · · + |�0〉= 1 + 0 + ∞ + · · · .

(97)

The operator �P may be regulated by insisting that the length
parameter a satisfies a > 0. Physically one might expect λC,
the Compton wavelength of the charge, to be involved since
this is the natural quantum-mechanical parameter to ensure
nonrelativistic energies. However, one cannot assume a = λC

since λC is a constant and the limit a → 0 should describe
a quantum-mechanical point charge such as an electron (a
structureless entity) [16].

VI. LINES OF FORCE

The electric polarization field P(x) is a contribution to
the electric field E(x) due to the charges other than the
transverse electric field associated with radiation. As we have
seen (Sec. III), the line integral form implies that the electric
field is concentrated purely on the path C ending at the charge.
However, as noted earlier, P is not the solution of the Maxwell
equation for the electric field of the charges since ∇ ∧ P �= 0
in general. A possible way of visualizing the situation is to
regard the paths as lines of force; this is essentially the view
of Faraday [36], who used them to describe the properties
of the electromagnetic field. The lines were endowed with
physical characteristics, for example, tension and mass, and
could move with both transverse and longitudinal oscillations.
In this way he aimed to account for the effects of the field
on charged bodies and for the propagation of electromagnetic
radiation without recourse to an ether. Open lines have equal
and opposite charges at their end points, while closed lines
describe some state of the field.

The vector g [Eq. (27)] occurs in a manifestly gauge-
invariant formulation of quantum electrodynamics [37];4

Dirac considered the example of a single electron located at
a point X and examined the electric field around it. At a point
x in space this turns out to exceed the electric field of the
vacuum state by an amount eε−1

0 g(x : X). The choice of g
specified in (28) leads to the result that the excess field is
precisely the Coulomb field of the charge, whereas a more
general choice such as (29) leads to the Coulomb field plus a
field of pure electromagnetic radiation as the excess.

Dirac interpreted the electric field associated with the path
C as a single Faraday line of force between the charge and
the reference point O, which he took to be spatial infinity.
He also noted that a closed path would describe a state
of the electromagnetic field that is in some way connected
with the particles because the elementary charge e occurs in
the coefficient of the integral. He further conjectured that a
novel quantum electrodynamics might be constructed using
the lines of force (the paths C) as the basic dynamical variables
from which our conventional notions of charged particles and
electromagnetic fields would be derived. However, as here,
Dirac regarded the paths as fixed classical objects and got no
further than associating a phase factor eiφ ,

φ ∼ 1

h̄

∫
d3x P(x) · a(x) = e

h̄

∫ X

C
a(z) · dz, (98)

with the particle annihilation/creation operators (the obvious
generalization to a relativistic theory uses the 4-potential aμ

and paths in space-time). That approach was subsequently
developed in detail (see, for example, [38,39]). The PZW
representation described here can be seen as a nonrelativistic
implementation of the above ideas.

Looking to the future, this suggests a novel interpretation
of the polarization fields appearing in the PZW representa-
tion in which the paths themselves could be considered as
dynamical variables. Since we must include the time, the path
variable z = z(σ, t ) must be thought of as a field with one
space dimension (the path parameter σ ) and the time t . There
is a caveat however; because there is no unique assignment of
a path to a physical situation the paths have to be regarded
as unphysical working variables, very much like the role
played by the field potentials. Thus one has to ensure that
physical observables are independent of any specific choice
of path in the same way as one insists on gauge invariance in
the conventional exposition of Maxwell’s theory. The natural
way to do that is to consider all possible paths in a suitably
weighted average.

The idea of superposition of paths leads naturally to an
approach that uses path integral techniques. Instead of having
to choose a specific classical path, physical quantities could be
expressed as functional integrals over the path variable with
an appropriately defined measure, i.e., as an average over all
possible paths with a suitable weighting. Thus the expectation
value in a specified state of any functional � of the paths {C}

4The quantity cr (x, x′) in Dirac’s equations (18), (19), and (40) is
essentially g.
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would be given by the functional integral

〈�〉 = 1

Z

∫
Dz �ρ(z), (99)

where Z is a normalization constant such that 〈I〉 = 1, and
ρ(z) is the density matrix for the state (not to be confused
with the charge density). A QED formalism based on line
integrals and the resulting contact interactions that maintains
Lorentz invariance as in the usual theory has been constructed
[26,40,41]. It is not known what implications that might have
for the PZW formulation of nonrelativistic QED discussed
here. This is an avenue for future work; one interesting
approach is based on a return to its Lagrangian formulation.

The classical Lagrangian that leads to the Hamiltonian (3)
can be built out of the quantities in (22); first the standard
Lagrangian for an electromagnetic field is given by

Lrad = −1

4
ε0c2

∫
fμν f μνd3x = 1

2
ε0

∫
(E · E − c2B · B)d3x.

(100)
Similarly, the interaction term is simply [24]

Lint = −1

2

∫
pμν f μνd3x =

∫
P · E d3x +

∫
M · B d3x.

(101)
The Lagrangian is completed by the addition of the nonrel-
ativistic formula for the kinetic energy of the charges; it is
related to the usual nonrelativistic Schwarzschild Lagrangian
in an arbitrary gauge by a total time derivative and so yields
the same equations of motion. From this point of view, the
Coulomb gauge formalism has no distinguished place in
relation to (3).

Now one can make the same construction as (100) using
the displacement field dμν [Eq. (22)] in place of the free-field
field tensor fμν so we might consider another Lagrangian

Ldis = −1

4
ε0

∫
dμνdμνd3x. (102)

This Lagrangian, when simplified using (22), yields (100)
and (101), and an additional term arising purely from the
polarization tensor

Lpol = −μ0

4

∫
pμν pμνd3x

= 1

2ε0

∫
P · P d3x − μ0

2

∫
M · M d3x. (103)

The first term in (103) is precisely the last term in (3),
while the second term is novel and has not previously been
considered. This additional term (103) is not a total time
derivative and so will yield altered Lagrangian equations of
motion and a modified Hamiltonian. Terms in the Lagrangian
that depend on only particle positions contribute unchanged to
the Hamiltonian with a simple change of sign, so one sees that
the first term in (103) will cancel precisely with the last term
in (3). The square of the magnetization however involves ve-
locities and so will contribute to the definition of the canonical
momenta. This approach confirms the calculation in Sec. IV
as may be seen as follows.

The action integral associated with (103),

Spol =
∫

Lpold
3x dt, (104)

has recently been studied using the relativistic form (47) for
pμν and shown to be highly singular; we omit the details of

the calculation and simply quote the result that (104) can be
transformed to the form [26,40]

Spol = − e2

2ε0
δ2(0)SNG + a contact interaction term + · · · ,

(105)

where SNG is the Nambu-Goto action for a relativistic string
[31] and δ2(0) is the singular spatial delta function in two
dimensions evaluated at the origin. The leading term of the
nonrelativistic limit of (105) is just [42]

SNR
pol ∼= e2

2ε0
δ2(0)

∫
dl dt, (106)

where l is the arc length along the line of force; for the
straight-line path between the two charges this is simply r.
Here δ2(0) is an inverse area, so (105) and (106) lead to the
same conclusion as the discussion in Sec. IV about the energy
EP since the nonrelativistic limit of (104) is obtained directly
from (103).

VII. CONCLUSION

The general Hamiltonian for the nonrelativistic QED of
atoms and molecules is formulated in terms of polarization
fields and the field strengths. The polarization fields can be
expressed in terms of line integrals over paths joining the
positions of pairs of charges; a given path however does
not correspond to any specified physical situation, and the
arbitrariness in the paths replaces the freedom to make gauge
transformations in the formulation based on the field po-
tentials. The paths may be interpreted as lines of force; in
essentially all applications a fixed classical path, the straight
line joining the pair of charges, is implied. A natural general-
ization in a quantum theory is to consider paths that fluctuate
(quantum paths), which is an idea still to be explored; however
that may be, the calculation of physical observables must not
depend on the paths since they do not correspond to a definite
physical situation.

The use of an electric polarization field with a nonzero
transverse component implies that energy is shared between
the field and the lines of force in a way that is different from
the sharp separation seen in the usual Coulomb gauge Hamil-
tonian. For point charges the polarization fields are distribu-
tions that give rise to singular interactions which need to be
regularized. Comparison of (62) and (64) shows that the can-
cellation of the Coulomb terms is independent of the choice
of the regulator function χa(k). We remark that these calcu-
lations are based on a straight-line path C in the integrations;
the longitudinal contribution is obviously path independent. It
is hard to see how this cancellation of the static Coulombic
energy between the longitudinal and transverse contributions
to the energy could be avoided by a choice of some other
path. This can be seen in the PZW transformation viewed as
a coherent state displacement and in the energy calculations
in Sec. IV. Clearly, an energy like (73) has no physical
significance in electrodynamics;5 it must be remembered that
the physical quantity is the full Hamiltonian, which gives the

5Formulas (69) and (70) together are a correction to the earlier
result [Eq. (33)] given in [32] (see also [43]).

013206-10



POWER-ZIENAU-WOOLLEY REPRESENTATIONS OF … PHYSICAL REVIEW RESEARCH 2, 013206 (2020)

expected equations of motion whatever electric polarization
field is assumed. This requires that the charge-field interaction
terms in (3) must be involved in removing the singular terms
revealed by these evaluations of EP. So far this has only been
achieved partially in the framework of perturbation theory.
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