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Frustrated quantum spin systems such as the Heisenberg and Kitaev models on various lattices have been
known to exhibit various exotic properties not only at zero temperature but also for finite temperatures. Inspired
by the remarkable development of the quantum frustrated spin systems in recent years, we investigate the finite-
temperature properties of the S = 1/2 Kitaev-Heisenberg models on kagome and triangular lattices by means
of finite-temperature Lanczos methods with improved accuracy. In both lattices, multiple peaks are confirmed
in the specific heat. To find the origin of the multiple peaks, we calculate the static spin structure factor. The
origin of the high-temperature peak of the specific heat is attributed to a crossover from the paramagnetic state
to a short-range ordered state whose static spin structure factor has zigzag or linear intensity distributions in
momentum space. In the triangular Kitaev model, the “order by disorder” due to quantum fluctuation occurs. On
the other hand, in the kagome Kitaev model it does not occur even with both quantum and thermal fluctuations.

DOI: 10.1103/PhysRevResearch.2.013205

I. INTRODUCTION

The S = 1/2 antiferromagnetic Heisenberg models on the
triangular lattice (TL) and kagome lattice (KL), which have
strong geometric frustration arising from triangle units with
antiferromagnetic interaction, have been studied for over sev-
eral decades both experimentally [1–19] and theoretically
[20–52]. The strong frustration prevents collinear-type mag-
netic orders in their ground states. In the TL, the ground
state exhibits 120◦ order [20–22], whereas in the KL it is
predicted to be the quantum spin liquids [30–40] or valence
bond crystals [41–44]. At finite temperature, these models
commonly show multiple-peak structures in the temperature
dependence of specific heat owing to the frustration effect
[25,45–48,50,52].

The S = 1/2 Kitaev model on the honeycomb lattice
(HL) dose not have geometric frustration but has frustration
effects arising from the bond-dependent Ising interactions
[53], called exchange frustration. In this model, the S = 1/2
spins are divided into localized Majorana fermions com-
posing Z2 fluxes and itinerant Majorana fermions [54–56].
Its ground state exhibits an exact quantum spin liquid with
topological order. At finite temperatures, there is a distinct
double peak in the specific heat [57]. The origin of this
double peak is described below: the high-temperature peak is
caused by freezing the itinerant Majorana fermions and the
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low-temperature peak is caused by freezing the localized
Majorana fermions [57]. Because of clear difference of their
energy scales, a 1/2-plateau-like anomaly appears in the
temperature dependence of the entropy. This phenomenon
corresponds to a fractional excitation of the spins. Moreover,
such a phenomenon has been found even in the spin S >

1/2 and mixed spin systems [58,59], even though the spin
degree of freedom cannot be decomposed into Majorana
fermions. Furthermore, finite-temperature properties of the
Kitaev-Heisenberg (KH) model have also been studied on the
HL [60,61].

The S = 1/2 KH models on the KL and TL, having both
the geometric frustration and exchange frustration, have been
studied mainly for the ground state [62–68]. In the KL-KH
system, it has been proposed that there are two quantum spin
liquids, a canted ferromagnetic one and the q = 0, 120◦ or-
dered phases [62], whereas in the TL-KH system, it has been
proposed that there are Z2 vortex crystal, nematic, dual-Z2

vortex crystal, ferromagnetic, and dual-ferromagnetic phases
[64–68]. However, finite-temperature properties in the KH
models on the KL and TL have hardly been investigated.
There is a possibility that multiple peaks in the temperature
dependence of the specific heat and new crossover phenom-
ena exist, because such phenomena have been confirmed in
the HL-Kitaev and KL-Heisenberg models. Therefore, it is
important to investigate the finite-temperature properties of
these models.

The finite-temperature Lanczos method (FTLM) is a use-
ful technique for calculating finite-temperature properties
[69,70]. However, this method has a problem that the accuracy
becomes worse at low temperatures [70]. Therefore, we need
to overcome this problem. In this paper, we first propose two
methods to improve the FTLM. We name the methods the
replaced finite-temperature Lanczos method (RFTLM) and
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orthogonalized finite-temperature Lanczos method (OFTLM).
Using these improved FTLMs, we next calculate the spe-
cific heat, entropy, and static spin structure factor (SSSF) to
investigate the finite-temperature properties of the S = 1/2
KH model on the KL and TL. In the kagome system, the
specific heat exhibits multiple-peak structures at finite tem-
peratures for 0 � θ � 0.5π , where θ = arctan(K/J ) with J
(K) being the Heisenberg (Kitaev) interaction. To clarify the
origin of the multiple-peak structure of the specific heat, we
analyze the SSSF at finite temperatures for the N = 36 cluster
using the RFTLM. From the analyses, we find that the highest-
temperature peak of the specific heat for 0.1π � θ � 0.4π

originates with a crossover from the paramagnetic state to
a state whose SSSF intensity shows direction distribution in
the momentum space. On the other hand, one of the low-
temperature peaks for 0.1π � θ � 0.4π is expected to be
a signature of the emergence of a q = 0, 120◦ order state.
However, at θ = 0.5π (Kitaev limit), the q = 0, 120◦ order
does not appear. In the triangular system, we find that there is
a double-peak structure in the specific heat for 0.25π � θ �
0.5π . The origin of the double-peak structure is the same as
the kagome system. At θ = 0.5π , the ground state exhibits a
stripe order due to the “order-by-disorder” mechanism unlike
the kagome system.

The arrangement of this paper is as follows. In Sec. II, we
describe our S = 1/2 KH models on KL and TL. In Sec. III,
we first explain the standard FTLM; then we explain the
RFTLM and OFTLM developed by us. In Sec. IV, the results
of the specific heat, entropy, and SSSF for the KL and TL
are shown. In Sec. V, we discuss the difference between the
honeycomb, kagome, and triangular systems for the origin of
the multiple-peak structures in the specific heat and we focus
on characteristic of the Kitaev model on the KL. Finally, a
summary is given in Sec. VI.

II. MODEL

The Hamiltonian of the KH model is given by

H =
∑
〈i, j〉

ST
i Ji, jS j, (1)

where Si is a quantum spin operator with S = 1/2 at site i.
Ji, j represents the nearest-neighbor interactions as shown in
Fig. 1(a) for the KL and Fig. 1(b) for the TL. Ji, j takes one
of the three anisotropic interactions, JX = diag(J + K, J, J )
(yellow bonds), JY = diag(J, J + K, J ) (light green bonds),
and JZ = diag(J, J, J + K ) (blue bonds), where K and J
correspond to the energy of the Kitaev and Heisenberg interac-
tions, respectively. We introduce the parametrization (J, K ) =
(I cos θ, I sin θ ), where I is the energy unit (I = 1). In the
present study, we focus on 0 � θ � 0.5π .

III. METHODS

A. Finite-temperature Lanczos method

In this section, we describe the standard FTLM [69,70].
The FTLM has been used to study the finite-temperature

FIG. 1. Lattice structure of the KL (a) and TL (b) with three
anisotropic exchange interactions, JX , JY , and JZ . The orange,
green, and blue solid lines denote JX , JY , and JZ , respectively. The
orange, purple, and black dashed quadrangles denote the clusters of
N = 24, N = 30, and N = 36, respectively, used in the FTLMs with
periodic boundary conditions.

properties of various lattice models [47,50,71–80]. The par-
tition function Z (T ) of the canonical ensemble at temperature
T is expressed as follows:

Z (T ) =
Nst∑

n=1

〈n|e−βH|n〉 =
Nst∑

n=1

Nd −1∑
i=0

di∑
k=1

e−βEi〈n|�ik〉〈�ik|n〉

(2)

=
Nd −1∑
i=0

die
−βEi , (3)

where Nst is the dimension of H, |n〉 is an arbitrary normalized
vector, β is the inverse temperature 1/T (kB = 1), Ei is an
eigenenergy of H, |�ik〉 is an eigenvector with Ei, di is a de-
gree of degeneracy of the state with Ei, and Nd represents the
number of the eigenenergies, which satisfies Nst = ∑Nd −1

i=0 di.
The FTLM introduces two approximations for (2). The first
one is to replace the summation of n with random sampling r
with R times. The second one is for the summations of i and
k. Both the summations are replaced by the Krylov subspace
with dimension M. In the FTLM, the partition function and
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general operator A are approximated as follows:

Z (T )FTL = Nst

R

R∑
r=1

M−1∑
j=0

e−βε
(r)
j
∣∣〈Vr

∣∣ψ r
j

〉∣∣2
, (4)

〈A〉(T )FTL = Nst

RZ (T )FTL

R∑
r=1

M−1∑
j=0

e−βε
(r)
j
〈
Vr

∣∣ψ r
j

〉〈
ψ r

j

∣∣A|Vr〉, (5)

where |Vr〉 is a normalized random initial vector and |ψ r
j 〉

(ε (r)
j ) are an eigenvector (eigenvalue) in the Mth Krylov

subspace for H. We note that |Vr〉 is formally given by |Vr〉 =∑Nd −1
i=0

∑di
k=1 ηrik|�ik〉 using the exact eigenstate |�ik〉, where

ηrik is a random value that satisfies
∑Nd −1

i=0

∑di
k=1 |ηrik|2 = 1

for the normalization.
For the energy E (T ), specific heat C(T ), and entropy

S (T ), the following general expressions are useful: E (T ) =
− ∂

∂β
ln Z (T ), C(T ) = ∂

∂T E (T ), and S (T ) = E (T )
T + ln Z (T ).

From these equations, E (T ) and C(T ) calculated by the
FTLM are given by

E (T )FTL = Nst

RZ (T )FTL

R∑
r=1

M−1∑
j=0

ε
(r)
j e−βε

(r)
j
∣∣〈Vr

∣∣ψ r
j

〉∣∣2
, (6)

C(T )FTL = Nst

T 2RZ (T )FTL

R∑
r=1

M−1∑
j=0

∣∣ε (r)
j

∣∣2
e−βε

(r)
j
∣∣〈Vr

∣∣ψ r
j

〉∣∣2

−|E (T )FTL|2
T 2

. (7)

At high temperatures, R of a few samplings is enough for ob-
taining high accuracy since the error of all physical quantities
is proportional to O(1/

√
RNst ) [70] with a large number of

Nst . On the other hand, for T → 0, C(T → 0)FTL and E (T →
0)FTL reach an exact value if |ψ r

0〉 becomes a ground state |�r
0〉

[70], where |�r
0〉 = ∑d0

k=1 ηr0k|�0k〉/
√∑d0

k=1 |ηr0k|2 . S (T →
0)FTL and 〈A〉(T → 0)FTL read

S (T → 0)FTL = ln
Nst

R

R∑
r=1

∣∣〈Vr

∣∣�r
0

〉∣∣2
, (8)

〈A〉(T → 0)FTL =
∑R

r=1

〈
Vr

∣∣�r
0

〉〈
�r

0

∣∣A|Vr〉∑R
r=1

∣∣〈Vr

∣∣�r
0

〉∣∣2 . (9)

Equation (8) does not give an exact value, and if A is noncom-
mutative with the Hamiltonian such as the SSSF, Eq. (9) also
does not give an exact value. These errors are expected to be
O(1/

√
R) [70]. Therefore, a very large number of samplings

is required to obtain good accuracy at low temperatures. The
low-temperature Lanczos method [81] is known as one of
the solutions to this problem. However, this method has a
difficulty for large-scale calculations because it requires huge
random access memory to keep all vectors in the Krylov
subspace with M. Therefore, we try to improve the accuracy
of the FTLM at low temperature in two ways: the RFTLM and
OFTLM.

B. Replaced finite-temperature Lanczos method

In the standard Lanczos method, we can obtain several
low-lying eigenstates with NE levels whose energy is given

by ε
(r)
i (i = 0, 1, . . . , NE − 1), but we cannot judge the de-

generacy of each level. Therefore, ε
(r)
0 < ε

(r)
1 < · · · < ε

(r)
NE −1

and each eigenvector should be written generally |�r
i 〉 =∑di

k=1 ηrik|�ik〉/
√∑di

k=1 |ηrik|2 using di-fold-degenerate exact
eigenvector |�ik〉. Here, we assume that the obtained energy
ε

(r)
i is independent of sampling r, i.e., ε

(r)
i = Ei, although

the corresponding eigenvector may depend on the sampling
|ψ r

i 〉 = |�r
i 〉 due to possible degeneracy. Then we can rewrite

expression (4) as follows:

Z (T )FTL = Nst

R

R∑
r=1

NE −1∑
i=0

e−βEi
∣∣〈Vr

∣∣�r
i

〉∣∣2

+ Nst

R

R∑
r=1

M−1∑
j=NE

e−βε
(r)
j
∣∣〈Vr

∣∣ψ r
j

〉∣∣2
. (10)

Comparing the first term on the right-hand side of Eq. (10)
with Eq. (3), we come up with replacing

〈
Vr

∣∣�r
i

〉 ⇒
√

di

Nst
. (11)

The replacement (11) leads to the partition function of the
RFTLM

Z (T )RFTL =
NE −1∑
i=0

die
−βEi + Nst

R

R∑
r=1

M−1∑
j=NE

e−βε
(r)
j
∣∣〈Vr

∣∣ψ r
j

〉∣∣2
.

(12)

The first term in Eq. (12) is the same as the exact partition
function Z (T ) (3), for i < NE . This indicates that Z (T )RFTL

(12) is more accurate than Z (T )FTL (4). In a similar way,
〈A〉(T )FTL can be improved in accuracy by replacing

〈
�r

i

∣∣A|Vr〉 ⇒ 1√
diNst

di∑
k=1

〈�ik|A|�ik〉 (13)

for i < NE . 〈A〉(T ) using RFTLM reads

〈A〉(T )RFTL = 1

Z (T )RFTL

NE −1∑
i=0

e−βEi

di∑
k=1

〈�ik|A|�ik〉

+ Nst

RZ (T )RFTL

R∑
r=1

M−1∑
j=NE

e−βε
(r)
j
〈
Vr

∣∣ψ r
j

〉〈
ψ r

j

∣∣A|Vr〉.

(14)

We can obtain the exact eigenstates |�ik〉 with Ei by the
several kinds of exact diagonalization (ED) methods such as
the thick-restart Lanczos method [82], band Lanczos method
[83], locally optimal block preconditioned conjugate gradient
method [84], and root-shifting method [85].

By performing the RFTLM, S (T → 0)RFTL and
〈A〉(T → 0)RFTL become an exact value ln(d0) and∑d0

k=1〈�0k|A|�0k〉/d0, respectively. Therefore, accuracy
at low temperatures using the RFTLM would be extremely
improved as compared with the standard FTLM. The efficacy
of the RFTLM is confirmed in Sec. III D.

However, in the RFTLM, it is necessary to know the degen-
eracy di in order to perform the summation of i in Eqs. (12)
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and (14). We also should be careful about pseudo-eigenvalues,
so-called “ghost” eigenvalues caused by the presence of the
machine epsilon. If there are ghost eigenvalues, it is necessary
to change NE in the second term of Eqs. (12) and (14) to
NE + Ng, where Ng is the number of the ghost eigenvalues
less than ENE . We develop a method in the next section to
overcome these problems.

C. Orthogonalized finite-temperature Lanczos method

In this subsection, for simplicity, we include the index k
for degeneracy into the index i hereafter, rewriting ηrik ⇒ ηri

and |�ik〉 ⇒ |�i〉. Thus the random vector |Vr〉 reads |Vr〉 =∑Nst −1
i=0 ηri|�i〉. In the OFTLM, we first calculate several

low-lying exact eigenvectors |�i〉 with NV levels (E0 � E1 �
· · · � ENV −1) before performing the FTLM. We next use the
following modulated random vector:

|V ′
r 〉 =

Nst −1∑
i=NV

ηri|�i〉 =
[

I −
NV −1∑
i=0

|�i〉〈�i|
]
|Vr〉 (15)

with normalization

|V ′
r 〉 ⇒ |V ′

r 〉√〈V ′
r |V ′

r 〉
. (16)

Here, |V ′
r 〉 is orthogonal to the states |�i〉 for i < NV . There-

fore, the FTLM using |V ′
r 〉 as the initial vector is equivalent to

applying the method to a Hilbert space excluding |�i〉 through∑NV −1
i=0 |�i〉〈�i|, which has Nst − NV dimensions. Z (T ) and

〈A〉(T ) of the OFTLM are obtained by adding exact values
coming from |�i〉 to the FTLM result obtained by using |V ′

r 〉
as an initial vector:

Z (T )OFTL = Nst − NV

R

R∑
r=1

M−1∑
j=0

e−βε
(r)
j
∣∣〈V ′

r

∣∣ψ r
j

〉∣∣2 +
NV −1∑
i=0

e−βEi ,

(17)

〈A〉(T )OFTL = Nst − NV

RZ (T )OFTL

R∑
r=1

M−1∑
j=0

e−βε
(r)
j
〈
V ′

r

∣∣ψ r
j

〉〈
ψ r

j

∣∣A|V ′
r 〉

+ 1

Z (T )OFTL

NV −1∑
i=0

e−βEi〈�i|A|�i〉. (18)

Since |�i〉 obtained by the ED methods would be slightly dif-
ferent from the exact vectors because of the machine epsilon,
some of the ε

(r)
j in the FTLM using |V ′

r 〉 may become, for
example, E0, which should not appear. In practical use, this is
no problem since |〈V ′

r |ψ r
j 〉| for such an E0 becomes extremely

small (∼ machine epsilon). We can see that Z (T )OFTL and
〈A〉(T )OFTL are close to the exact values at low temperatures.
We emphasize that in the OFTLM we do not need to know
the degeneracy di in |�i〉 and can make M smaller compared
to the FTLM and RFTLM. The efficacy of the OFTLM is
confirmed in Sec. III D.

We note that an approach similar to the OFTLM has been
discussed in terms of the kernel polynomial method [86].
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Standard FTLM
Full ED
R=50, M=90

RFTLM (NE=3)
Full ED
R=50, M=90

OFTLM (NV=10)
Full ED
R=50, M=90

S/
N

C/
N

T T T

S qz

FIG. 2. The accuracy of the FTLMs for the kagome system of N = 12 at θ = 0.2π . The upper row, middle row, and lower row panels
show Sz

q(T ) at q = (2π, 2π/
√

3), S (T )/N , and C(T )/N , respectively. The left, middle, and right panels show the results using the standard
FTLM and RFTLM with NE = 3 and OFTLM with NV = 10, respectively. All the red dotted lines indicate the exact values using full ED. The
blue shaded regions indicate the standard errors of the FTLMs using the jackknife technique.
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10-4 0.001 0.01 0.1 1 10 100
0.0
0.1
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0.6
0.7
0.8
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T
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R=50,M=30

T
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R=50,M=5000

S qz

(a) (b) (c)

FIG. 3. The accuracy of Sz
q(T ) at q = (2π, 2π/

√
3) using the FTLMs with respect to M for the N = 12 kagome system at θ = 0.2π . All

the red dashed lines indicate the exact values using full ED. The blue shaded regions indicate the standard errors of the FTLMs using the
jackknife technique.

D. Confirming the efficacy of the RFTLM and OFTLM

We perform benchmark calculations for the standard
FTLM, RFTLM, and OFTLM. We calculate S (T ), C(T ),
and the z component of SSSF, Sz

q(T ) = 〈Sz
q〉(T ), for an N =

12 (2 × 2 × 3) kagome system with θ = 0.2π , where Sz
q =

1
N

∑
j

∑
k eiq·(r j−rk )Sz

r j
Sz

rk
with the position vector r j and rk .

All FTLMs are performed with M = 90 and R = 50. Here,
we note that M = 90 is large enough to obtain the ground
state of the N = 12 kagome system. The calculated results are
shown in Fig. 2. The standard errors of the FTLMs using the
jackknife technique [87] are represented by the blue shaded
regions in Fig. 2. We can see that the accuracies of the RFTLM
and OFTLM are clearly better than that of the standard
FTLM for all physical quantities. Therefore, we succeed in
improving the FTLM.

Furthermore, we compare the standard FTLM and OFTLM
in detail using Sz

q(T ) in Fig. 3. In the standard FTLM, the
accuracy for M = 30 is very poor at low temperatures as
shown in Fig. 3(a) because of small M that is not enough to
make a convergence to the ground state. On the other hand,
high-precision results can be achieved in the OFTLM even for
the same M [see Fig. 3(b)], since the contributions from low-
energy sectors are added separately as shown in Eqs. (17) and
(18). For this reason, the OFTLM gives a good convergence
quicker then other FTLMs. In the OFTLM with larger M, the
eigenvalues less than ENV and the ghost eigenvalues appearing
in the first terms of Eqs. (17) and (18) may affect Sz

q(T ). In
order to investigate these effects, we also perform the OFTLM
with very large M = 5000 (> Nst ). We can see that there is
no effect on Sz

q(T ) as shown in Fig. 3(c). This means that
the OFTLM is not only a highly accurate method but also
a user-friendly method because one can choose M without
checking the convergence of eigenvalues in each Lanczos
sampling.

IV. RESULTS

A. Conditions of numerical calculation

In the present study, we calculate C(T ), S (T ), and Sz
q(T )

using the RFTLM for N = 36 and the OFTLM for N =
24 and N = 30. The N = 24, N = 30, and N = 36 clusters
are shown in Fig. 1 for the KL and TL. Finite-size effects
can be reduced by using a large size and highly symmetric
clusters such as N = 36. We emphasize that the improved

FTLMs with high accuracy make finite-size effects at low
temperatures very clear.

To calculate the excited states required for using the im-
proved FTLMs, we use the restarted Lanczos method with
the root-shifting method. Table I shows detailed conditions
for improved FTLM calculations.

For large clusters such as N = 36, it is time-consuming to
prepare several eigenvectors with NE > 1 or NV > 1. Further-
more, one has to be careful regarding the appearance of the
ghost eigenvalues in such a huge calculation. To avoid these
difficulties, we decide to use the RFTLM with NE = 1, where
we need to calculate the ground state only. The accuracy of
the NE = 1 result will be confirmed in the next section.

B. Kagome lattice

We first discuss the efficiency of the RFTLM for the N =
36 kagome system at θ = 0.2π . Figure 4 shows Sz

q(T ) at

q = (2π, 2π/
√

3) using the standard FTLM and RFTLM. In
the standard FTLM, there is large error at low temperatures
and an average value at T = 0 deviates from the exact one. On
the other hand, in the RFTLM, the error bars become less than
the width of the line for all temperatures and an average value
converges to the exact one at T = 0. This clearly demonstrates
that our improved FTLMs work well even for the N = 36
system. We emphasize that the error of the FTLMs becomes
almost less than the linewidth in all the results shown below.

Figure 5 shows the calculated results of C(T ) (left panels)
and S (T ) (right panels) for 0 � θ � 0.5π at N = 24, 30, and
36. C(T ) exhibits the multiple-peak structures in all θ and
N . For T > 0.2 and all θ , C(T ) is almost size independent.
Therefore, it is expected that a highest-temperature peak at
T ∼ 0.5 shown in Fig. 5 hardly changes even in the thermo-
dynamic limit.

At θ = 0 and θ = 0.1π , we obtain two or three peaks
for T < 0.2 in all sizes. This is consistent with the previous

TABLE I. Conditions for the improved FTLMs in our calculations.

N Method R M NE or NV

24 OFTLM 100 100–160 10
30 OFTLM 100 100–300 4
36 RFTLM 50–75 150–400 1
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0.8
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1.2

1.4

T

Standard FTLM
RFTLM (NE=1)

R=70,M=180

S qz

FIG. 4. Comparison between the standard FTLM and RFTLM
for the accuracy of Sz

q(T ) on the N = 36 kagome system at θ = 0.2π .
The blue shaded region indicates the standard errors of the FTLMs
using the jackknife technique. A black dot denotes the exact value at
T = 0.

studies for θ = 0 [45–48,50]. These low-temperature peaks
are strongly size-dependent, and thus C(T ) in the thermody-
namic limit is still unresolved.

At θ = 0.2π , C(T ) exhibits a clear double peak, which has
hardly any difference between N = 30 and N = 36. There-
fore, the existence of this double peak is strongly expected
even in the thermodynamic limit at θ = 0.2π . In addition, the
entropy shows a tendency toward a plateau around S (T )/N ∼
0.3 ∼ ln(2)/2 shown in Fig. 5. The plateau with S (T )/N =
ln(2)/2 has been obtained in the Kitaev model on a honey-
comb lattice [57,58] and in RuCl3 known as the Kitaev-like
model compound [88]. However, the origin of the plateau is
different, which will be discussed in Sec. V.

At θ = 0.5π (Kitaev limit), S (T ) for N = 30 and N = 36
becomes finite at the lowest temperature (T = 0.0001), being
consistent with twofold (fourfold) degeneracy in the ground
state for N = 30 (36). This degeneracy is partially consistent
with a previous result using the cluster mean-field method
[62], predicting 23L-fold degeneracy in the thermodynamic
limit (L → ∞), where L is the linear system size giving the
total lattice sites N = 3 × L2.

To explore the origin of the multiple-peak structure in
C(T ), we calculate Sz

q(T ) for N = 36 by using the RFTLM,
and the results are shown in Fig. 6. When Sz

q(T ) has the
largest intensity at the corner (the edge center) of the extended
first Brillouin zone, a

√
3 × √

3 state (a q = 0 state) appears
with short-range order (SRO). At θ = 0 (Heisenberg limit),
we obtain a crossover from the paramagnetic state to the√

3 × √
3 SRO, and to the q = 0 SRO state, from high to low

temperatures. This is the same result obtained by Shimokawa
and Kawamura by using the Hams–de Raedt method [48].
At θ > 0 and T = 0.5 where the high-temperature peak in
C(T ) appears, we can see that Sz

q(T ) has zigzag or linear
distribution in intensity along the qy direction on qx/π = ±2.
This result indicates that the origin of the high-temperature

FIG. 5. Temperature dependence of the specific heat C (left
panels) and entropy S (right panels) per site for the kagome system,
obtained by using the RFTLM for N = 36 and OFTLM for N = 24
and N = 30. Note that standard errors of the FTLMs are almost less
than the linewidth.

peak is attributed to a crossover from the paramagnetic state to
the SRO state with a zigzag or linear intensity distribution on
the SSSF. At 0.1π � θ < 0.5π and T � 0.05, Sz

q(T ) has the
strongest intensity at the edge centers. Therefore, we expect
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Sqz
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qx/π qx/πqx/πqx/π

q y
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FIG. 6. Color plots of the finite-temperature static spin structure factor Sz
q(T ) for the N = 36 kagome system, obtained by using the

RFTLM. The black dotted hexagons denote the extended first Brillouin zone. The unit of length is the length of a side in the unit cell.

that one of the lower-temperature peaks in C(T ) is a signature
of the q = 0, 120◦ order. At θ = 0.5π (the Kitaev limit), the
intensity distribution of Sz

q(T ) has a perfect linear structure.
This structure has been obtained in the classical spin system
using the Monte Carlo method [62]. This comes from the fact
that there is a 120◦ structure in every triangle of the KL but
no clear correlation between neighboring triangles. The same
can be expected for the quantum system.

Therefore, we can conclude that the order-by-disorder
phenomenon does not occur even in the existence of both the
quantum and thermal fluctuations.

C. Triangular lattice

The classical ground states in the TL are predicted to be the
Z2 vortex crystal state and the nematic state in 0 � θ � 0.5π
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FIG. 7. Temperature dependence of the specific heat C (left
panels) and entropy S (right panels) per site for the triangular system,
obtained using the RFTLM for N = 36 and OFTLM for N = 24 and
N = 30. Note that standard errors of the FTLMs are almost less than
the linewidth.

[64–68]. We perform finite-temperature calculations for the
quantum triangular system. In a recent study, it has been
predicted that C(T ) at θ = 0 (Heisenberg limit) has two
anomalies at T ∼ 0.2 and T ∼ 0.55 [25]. In our calculated
C(T ) at θ = 0, a clear peak is obtained at T ∼ 0.2, and a
shoulder-like anomaly is obtained at T ∼ 0.6, shown in Fig. 7.
A good agreement with the previous work corroborates the va-
lidity of our method. In addition, we obtain a gradual change
from the shoulder-like anomaly to a peak as θ is increased
keeping the temperature unchanged. On the other hand, at
T ∼ 0.2 and θ = 0.5π for N = 36, the low-temperature peak

structure is suppressed. Since this peak exhibits a large-size
effect, C(T ) at low temperatures in the thermodynamic limit
still remains an unresolved problem.

The entropy of the triangular system is different from
that of the kagome system, because there is no plateau-like
anomaly in any θ and all N . When θ � 0.375π and N = 36,
the ground state has twofold degeneracy. For this reason,
the S (T )/N converges to a value of ln(2)/36 at the lowest
temperature T = 0.001 as shown in Fig. 7.

We calculate Sz
q(T ) of the triangular system for the N =

36 cluster (Fig. 8), which has a good rotational symmetry as
shown in Fig. 1(b). Similarly to the kagome system, for θ �
0.25π the intensity distribution of Sz

q(T ) exhibits a zigzag or
linear structure along the qy axis on qx/π = ±1 at T = 0.5
where the high-temperature peak in C(T ) appears. The linear
intensity distribution at θ = 0.5π corresponds to a nematic
state without long-range dipole order [65]. For this reason, the
high-temperature peak in C(T ) is expected to be the signature
of a crossover from the paramagnetic state to a nematic-like
SRO state having a zigzag or linear structure as in the kagome
system.

Next we focus on Sz
q(T ) at T = 0. At θ = 0, Sz

q(0) has
maximum intensity at the corners of the Brillouin zone, which
corresponds to the 120◦ order as shown in Fig. 9(a). The
existence of the 120◦ order is consistent with other studies.
At θ = 0.5π , Sz

q(0) has maximum intensity at q = (π, π/
√

3)

and q = (π,−π/
√

3), meaning the x-stripy order and y-stripy
order, respectively, as shown in Fig. 9(b). In the classical
system, the ground state has a linear intensity distribution in
the SSSF, which is nematic [65]. Therefore, we believe that
the order-by-disorder phenomenon occurs in the S = 1/2 TL
Kitaev model due to the quantum fluctuation. This order has
been predicted in the analysis by the linked-cluster expansion
and spin-wave theory [89].

For 0 < θ < 0.5π , we cannot find evidence of the Z2

vortex crystal state that has a multiple-q structure in the SSSF,
probably because of the limited system size. Nevertheless,
we believe that there is long-range order (LRO) or SRO
related to the Z2 vortex crystal state at low temperature in the
thermodynamic limit, as in the classical system.

V. DISCUSSION

We compare the results of the kagome and triangular KH
model with the honeycomb Kitaev model. In the honeycomb
Kitaev model, it has been elucidated that C(T ) has a double-
peak structure. In the kagome and triangular KH model,
we have found the multiple-peak structures in this work.
However, the origins of the double-peak and multiple-peak
structures are different. In the honeycomb Kitaev model, the
double peak is caused by the itinerant Majorana fermions
and Z2 fluxes freezing at different temperatures [57]. In the
kagome system at 0 < θ < 0.5π , the high-temperature peak
is a consequence of a crossover from the paramagnetic state
to a SRO state whose SSSF has a zigzag or linear intensity
distribution, and one of the low-temperature peaks has been
expected to be a signature of the q = 0, 120◦ order. At θ =
0.5π , there is only crossover from the paramagnetic state to
a SRO state whose SSSF has a linear intensity distribution.
This linear intensity distribution comes from the fact that
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FIG. 8. Color plots of the finite-temperature static spin structure factor Sz
q(T ) for the N = 36 triangular system, obtained by using the

RFTLM. The black dotted hexagons denote the first Brillouin zone. The unit of length is the distance between nearest neighbors.

there is a 120◦ structure in every triangle of the KL but no
clear correlation between neighboring triangles. Therefore,
we believe that at 0 < θ < 0.5π there are two or more peaks

FIG. 9. Schematic view of the ground states of the triangular
system. (a) A 120◦ order state. (b) Stripy order states.

in C(T ) in the thermodynamic limit, whereas at θ = 0.5π

there is only one peak.
In the triangular system, the high-temperature peak at

θ > 0.25π has the same origin as the kagome system. At
0 < θ < 0.5π , we can expect that there is a low-temperature
peak in C(T ) because of the LRO or SRO related to the Z2

vortex crystal state in the thermodynamic limit. At θ = 0.5π ,
the high-temperature peak is a consequence of the crossover
from the paramagnetic state to a nematic-like SRO state,
while the low-temperature peak is a signature of the stripe
LRO.

Because of the emergence of LRO and/or SRO due to the
Heisenberg term, a peak on the low-temperature side of C(T )
develops with decreasing θ in both the KL and TL. Therefore,
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we can say that there is a competitive effect between the
Heisenberg and Kitaev terms with respect to the intensity of
the low-temperature peak in C(T ).

The kagome and triangular systems have a significant
difference at θ = 0.5π (Kitaev limit). In the triangular system,
order by disorder due to the quantum fluctuations occurs in
common with many frustrated quantum spin systems, and the
ground state becomes the stripe order. On the other hand, it
does not occur in the kagome system.

We have developed improved FTLMs: these are the
RFTLM and OFTLM. These FTLMs improve the accuracy
for all physical quantities at low temperatures compared to
the standard FTLM.

VI. SUMMARY

Inspired by the remarkable development of the quantum
Kitaev-Heisenberg models in recent years, we investigated the
finite-temperature properties of the S = 1/2 KH models on
the kagome lattice and triangular lattice by means of improved
finite-temperature Lanczos methods. We obtained the multiple
peaks in the specific heat in both lattice models. The origin of
the high-temperature peak of the specific heat is attributed to
a crossover from the paramagnetic state to the SRO state with
zigzag or linear structure on the SSSF. We believe that the
origin of the low-temperature peak is the q = 0, 120◦ order

in the KL and the Z2 vortex state in the TL, caused by the
Heisenberg term.

We also reveal that at θ = 0.5π (Kitaev limit) in the
triangular system, the order-by-disorder phenomenon due to
the quantum fluctuations occurs, and the ground state exhibits
the stripe order. On the other hand, in the kagome system it
does not occur even in the presence of both the temperature
and quantum fluctuations. We believe this effect is peculiar to
the Kitaev model on the kagome lattice.

We have succeeded in improving the finite-temperature
Lanczos method. For larger systems, we can expect further
improvements, especially faster calculations, using a tech-
nique for decomposing full Hilbert space with several symme-
tries such as in the case of SPINPACK [90]. The next target for
finite-temperature calculations will be lattices with 48 sites,
which remains a future work.
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