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Effects of vacancies on high-order harmonic generation in a linear chain with band gap
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High-order harmonic generation (HHG) in imperfect lattices with point defect vacancies is studied using a
self-consistent time-dependent density-functional approach for a one-dimensional linear chain with a band gap.
Compared with a perfect lattice with no vacancies, the HHG yield decreases by increasing the number of evenly
distributed vacancies but remains almost unchanged in the case when vacancies are localized at neighboring
lattice points. By introducing atomic-type point vacancies in the linear chain, it is effectively partitioned into
several subsystems and the overall shape of HHG spectra of the resulting system can be modeled via the HHG
of its subsystems provided each subsystem is large enough to behave like a bulk solid. For sufficiently small
subsystems, the HHG spectra show detectable signatures of finite structure but maintains the overall structure of
the spectrum of a bulk solids. A time-frequency profile of the emitted harmonics shows less regular sinusoidal
patterns in the systems with vacancies compared with the perfect lattice. The role the vacancy-induced defect-
state orbitals in the HHG process is investigated for different realizations of the linear chain and laser parameters.
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I. INTRODUCTION

Recently, high-order harmonic generation (HHG) from
solid-state systems with a band gap has received substantial
attention [1–8] with potential applications for novel vac-
uum ultraviolet (VUV) and extreme ultraviolet (XUV) light
sources and for probing ultrafast dynamics in condensed-
matter systems [9]. In solid-state systems, valence and con-
duction band electrons are delocalized over the lattice of the
crystal. The motion of electrons is therefore different than in
free space and results in the energy bands being nonparabolic
functions of the crystal momentum. Consequently, the HHG
process and the characteristics of the signal in solids is dif-
ferent than that in atoms and molecules [10]. For instance,
multiple plateaus appear in HHG spectra of a bulk solid due
to the presence of multiple conduction bands [8].

From previous studies [10], it has emerged that some of the
semiclassical concepts that were developed for strong-field
physics of atoms and molecules can be applied to study the
interaction of laser radiation with band-gap materials. For
example, interband HHG is produced in a process resembling
the atomic three-step model [11,12] and involves the follow-
ing steps: (i) an electron tunnels from the valence band to
the conduction band, producing a hole in the valence band;
(ii) the electron and its corresponding hole propagate in the
solid, driven by the external field; and (iii) they recombine
and emit HHG radiation with a frequency that corresponds
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to the band-gap energy at the crystal momentum at which
the recollision occurs [13]. More generally, it has emerged
that several aspects of the HHG process in solids can be
captured by solving the time-dependent Schrödinger equation
for Bloch electrons in single-active-electron models [14–21]
by applying many-electron approaches such as the semicon-
ductor Bloch equations [22–25], by time-dependent density-
functional theory (TDDFT) [26–37], and by time-dependent
Hartree-Fock theory [38].

In Ref. [30], a one-dimensional (1D) TDDFT model was
introduced to establish the essentials of HHG by linearly
polarized laser pulses in solids. The response of a range of
system sizes, from atomic to bulk solids, was studied with
this model to reveal how the signal changes from atomic to
solid-state HHG [32]. In the first studies, the case of a chain of
identical ions was analyzed and later real space perturbations
were introduced to address new effects. In Refs. [33,36],
HHG from a topological edge state was studied and it was
found that the below band-gap HHG signal was enhanced
substantially by the presence of a topological edge state (see
also Ref. [39] for a related model study). Recently, the effects
of both acceptor and donor-doping on the HHG spectra were
investigated [34], and it was found that a donor-doped band-
gap material, with an occupied donor state within the band
gap, can enhance the overall HHG efficiency by several orders
of magnitude, compared with undoped and acceptor-doped
materials, where in the latter case the acceptor state within the
band gap is unoccupied. Very recently, the effects of disorder
were investigated by imparting random shifts of the ionic
lattice positions [35], and disorder was found not to have a
detrimental effect on the efficiency of the HHG process.

One of the interesting issues related to HHG in solids is
how the HHG spectra and the generation process are affected
by vacancies. Defects and vacancies are inevitable present
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in real solids and may also be engineered and controlled
to modify properties of materials in a desired manner (see,
e.g., the review [40]). Very recently it was investigated by
TDDFT calculations how a single vacancy affects the HHG
yield in hexagonal boron nitride [37]. The HHG spectra were
found to be sensitive to whether a boron or a nitrogen atom
was removed. Defect states and their occupation or not were
shown to play a role, as was the case in connection with
doping [34]. In this work, we go beyond the consideration of a
single vacancy. In order to be able to explore a large parameter
space in terms of defect concentration and arrangement, we
consider a linear chain model. In this study, we will focus on
the overall changes in the HHG spectra and the generation
process with number and type of point defects. According
to Ref. [41], there are two different types of point defects:
(i) an atomic-type point defect which occupies either a point
of the crystal lattice or an interstitial position and can be
a substitutional impurity, an interstitial atom, or a vacancy
and (ii) a molecular-type point defect which occupies several
neighboring atomic or interstitial points of the crystal lattice
and can be composed of an impurity molecule or a cluster
of several neighboring vacancies. Introducing defects to the
lattice breaks the lattice periodicity which increases the theo-
retical complexity [41,42]. We will investigate how the HHG
spectrum is affected by the vacancy-type point defects either
being evenly distributed, or localized at neighboring lattice
points, addressing the signatures of atomic- and molecular-
type defects, respectively. We also study the role of the
vacancy-induced defect-state orbitals in the HHG process.
Finally, we explore a second realization of our linear chain
model to further investigate the physical effects associated
with the vacancy-type point defects. Similarly to previous
studies [30,32–36], we employ a TDDFT model to study the
HHG spectra of a linear chain of ions exposed to linearly
polarized laser pulses. In this approach, we go beyond the
single-active electron models and take electron-electron in-
teractions into account, at least on a mean-field level. More-
over, we can model lattices with different defect concentra-
tions in a straightforward manner, without making additional
assumptions.

This paper is organized as follows. In Sec. II, we describe
the theoretical model and methods used in this work. In
Sec. III, the results of our calculations are presented and
discussed. Finally, we conclude in Sec. IV. Atomic units (a.u.)
are used throughout unless stated otherwise.

II. THEORETICAL MODEL AND METHODS

In previous studies [30,32–35], a model to study HHG
in a linear chain of ions was introduced. As shown in
Refs. [30,32], if the number of ions is large enough, then
the system produces a typical band structure for a bulk solid.
Moreover, the 1D system is sufficient to capture essential
effects of the strong-field interaction along the linear polariza-
tion direction of the external pulse. In this model, we consider
a linear chain of N ions separated by the lattice constant a.
The ith ion is located at the position

xi = [i − (N − 1)/2]a, [i = 0, . . . , (N − 1)], (1)

and the ionic potential is given as

vion(x) = −
N−1∑
i=0

Zi√
(x − xi )2 + ε

, (2)

where Zi is the nuclear charge of the ith ion and ε is a
softening parameter which smoothens the Coulomb singu-
larity. As in Ref. [30], we set ε = 2.25, a = 7, and Zi = 4
[i = 0, . . . , (N − 1)] since this set of parameters was found
to produce a characteristic band structure for a band-gap
material. We choose a chain of N = 200 ions as a reference
system and introduce various number of vacancies at different
sites of the chain by changing the charge of ions from four to
zero at the considered sites. For instance, to have a vacancy
on the site of the mth ion in the chain, we set the charge of the
mth ion equal to zero (Zm = 0) and also reduce the number
of electrons by four to keep the system charge neutral. This
approach for modeling vacancies is similar to the one used in
Ref. [43].

All the studied systems are charge and spin neutral. Thus
the number of electrons with opposite spin is N↓ = N↑ = 2N
for a system without vacancies and N↓ = N↑ = 2(N − M )
for a system with M vacancies. We determine the field-free
electronic states for these systems with density-functional
theory [44]. In the Kohn-Sham (KS) scheme, KS orbitals
[ϕσ, j (x), (σ = ↓,↑)] are determined by

{
−1

2

∂2

∂x2
+ vKS[nσ ](x)

}
ϕσ, j (x) = εσ, jϕσ, j (x), (3)

with the static KS potential

vKS[nσ ](x) = vion(x) + vH [n](x) + vxc[nσ ](x). (4)

The Hartree potential is given as

vH [n](x) =
∫

dx′ n(x′)√
(x − x′)2 + ε

, (5)

and the exchange-correlation potential is treated in the local
spin-density approximation

vxc[nσ ](x) � vx[nσ ](x) = −[6nσ (x)/π ]1/3. (6)

The spin densities for spin σ = ↓,↑ and the total density
reads

nσ (x) =
Nσ −1∑
j=0

|ϕσ, j (x)|2, n(x) =
∑

σ=↓,↑
nσ (x). (7)

We use the local spin-density approximation for the three-
dimensional electron gas since we aim at modeling HHG from
a three-dimensional system rather than solving a 1D system
exactly. As shown in Ref. [30], this approach captures the
main features of HHG in a bulk solid.

The interaction of our systems with the laser fields is sim-
ulated using TDDFT. In the adiabatic approximation [45], the
stationary KS equation (3) is replaced by the time-dependent
KS equation

i
∂

∂t
ϕσ, j (x, t ) =

{
−1

2

∂2

∂x2
− iA(t )

∂

∂x
+ ṽKS[nσ ](x, t )

}
ϕσ, j (x, t ),

(8)
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where the KS potential reads

ṽKS[nσ ](x, t ) = vion(x) + vH [n](x, t ) + vxc[nσ ](x, t ). (9)

In this study, the driving laser pulse is linearly polarized
along the x axis and the vector potential is given as

A(t ) = A0 sin2[ω0t/(2ncyc)] sin(ω0t ), (10)

for 0 � t � 2πncyc/ω0 and zero otherwise, where ω0 and ncyc

are the angular frequency and the number of cycles of the laser
pulse. Here A0 is the amplitude of the vector potential related
to the field strength F0 by A0 = F0/ω0.

The KS orbitals were propagated in time according to the
time-dependent KS equation (8) using the Crank-Nicolson
method (with a predictor-corrector step) [46]. The system
starts at time t = 0 from the ground state with spin densi-
ties nσ (x, 0) = nσ0(x) and total density n(x, 0) = n0(x). The
dynamic KS potential is updated in each time step. For small-
enough field strengths, there is almost no difference between
the dynamic and static KS potentials (ṽKS0(x) = vion(x) +
vH [n0](x) + vxc[{nσ0}](x)) [30]. The calculations that we have
performed in connection with this study show that the main
conclusions regarding effects of vacancies on HHG in the
linear chain are unaffected whether a static or dynamic KS
potential is used. For simplicity, we therefore focus on the
results obtained using the static KS potential in the following.

The numerical calculations were performed on an equidis-
tant spatial grid with spacing 	x = 0.1 and 45 000 grid points
corresponding to a box ranging from x ≈ −321.5a to x ≈
321.5a. The extent of the physical system with 200 ions is
from x = −99.5a to x = 99.5a. The initial conditions for
the TDDFT calculations, i.e., the field-free ground-state KS
orbitals, were found via imaginary time propagation with
orthogonalization in each time step [47]. A fixed step size
	t = 0.5 was used for imaginary time propagation. A fixed
step size 	t = 0.1 was used for real-time propagation and
convergence was checked. The laser parameters will be given
in Sec. III B.

III. RESULTS AND DISCUSSION

In this section, we discuss the influence of introducing va-
cancies on the field-free potentials and band structures within
the KS scheme and how vacancies change the HHG spectrum
compared to the vacancy-free system. In the rest of the paper,
the indexes of the positions of the vacancies are showed in
parentheses. For instance, 200(100) represents a system with
length of 199a in which the index of the vacancy is 100. We
denote a system with length of 199a having vacancies at the
site of every m ion as 200-mul(m), so, e.g., 200-mul(40) has
vacancies at indexes of 40, 80, 120, and 160. From previous
studies we know that a linear chain with more than 60–80 ions
responds to the driving field like a bulk solid [32].

A. Effects of vacancies on KS potentials and band structures

Here we investigate how the field-free properties in the
DFT description are changed by introducing vacancies in
the system. First, we compare the systems with and without
vacancies in terms of the static KS potential which is obtained
by imaginary time propagation. The impact of inserting va-
cancies in a chain of ions is restricted in real space to a small

200
200(100)

FIG. 1. Zoom-in of the central region of the static KS potential
of 200 and 200(100) systems where the former is a perfect lattice
with 200 ions and the latter has a single vacancy at the lattice position
with index 100. Each local minimum of the KS potential corresponds
to the position of a nucleus. The vacancy in the 200(100) system
introduces a maximum (potential barrier).

region around its position. As an example, we consider in
Fig. 1 the static KS potential of the single-vacancy 200(100)
system compared with the system with no vacancy. This figure
shows that the vacancy introduces a potential barrier around
its position compared to the potential heights at neighboring
positions. As we shall see later, this barrier to some extent
leads to a partitioning of the lattice into subsystems. The
motion of the electrons, however, is not entirely restricted by
the barrier: When the electrons gain sufficient energy, they can
pass the potential above the barrier.

From the static KS potential, we obtain the occupied
and unoccupied KS orbitals and their corresponding energies
through diagonalization. It should be noticed that in the KS
scheme, the classification into occupied and unoccupied or-
bitals is automatically determined by the number of electrons
and the Pauli exclusion principle.

We can classify the orbital energies into bands, since our
model behaves like a solid for the considered large system
sizes [32]. The band structures can be constructed from the
Fourier-transformed orbitals (in k space), as done, e.g., in
Refs. [30,32]. Figure 2 shows the norm square of the k-space
KS orbitals for illustrative examples of systems with and
without vacancies. The energy range in this plot includes the
highest valence band (VB) and two conduction bands (CB1
and CB2). Since our simulations are performed in a finite
box, the free-space (FS) dispersion k2/2 is also present in
Fig. 2. For HHG in solids, however, the FS parabola does
not play any noticeable role [30,32]. Finally, in this figure,
the dashed (red) lines show the energies of the (b) two and
(c) four defect-state orbitals introduced by the vacancies.
According to Fig. 2, the band structures of systems with one
and two vacancies are similar to the band structure of the
system without any vacancy. However, as can be seen in
Fig. 2(c), systems with evenly distributed vacancies display
more structures in addition to the main band structures. This
change indicates that the KS orbitals in these systems are
less localized in k space than those for the system without
any vacancy. This difference in k-space localization can
be understood in the real space picture. By introducing
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FIG. 2. Band structures of (a) 200, (b) 200(100), and (c) 200-
mul(67) systems calculated by the norm square of the Fourier-
transformed KS orbitals. The systems correspond to a perfect lattice
with 200 ions, a lattice with a vacancy in the middle of the lattice
at the lattice position with index 100, and a lattice with vacancies
at the lattice positions with indexes 67 and 134, respectively. The
free-space (FS) dispersion k2/2 is visible due to the finiteness of
the simulation box (see text). The first-Brillouin-zone boundary is
at k = ±π/a ≈ ±0.449. In the figure, we show the energy range of
the highest valence band labeled by VB and the two first conduction
bands labeled by CB1 and CB2, respectively. The horizontal (red)
dashed lines in panels (b) and (c) show the energy levels of defect-
state orbitals. In the present system, two defect-state orbitals are
introduced per defect, so in (b) there are two and in (c) there are four
defect-state orbitals. Their energy differences cannot be resolved at
the scale of the figure.

vacancies in the system, the KS orbitals mostly localize
between vacancies due to the additional potential barriers
(Fig. 1). We have performed calculations that show that if a
limited number of vacancies are confined to a small localized

region of the chain [e.g., 200(98)(99)(100)(101)(102) or in
a compact notation 200(98to102)], then the band structure
is similar to that of the system with just one vacancy. For
the considered set of parameters the band-gap energies for
systems with and without vacancies are equal up to the
third digit. Finally, we note that for the present system, each
vacancy leads to the introduction of two defect-state orbitals
that are spatially localized around each vacancy. Accordingly,
in Fig. 2(b) there are two defect-state orbitals and in Fig. 2(c)
there are four defect-state orbitals. The energies of these latter
orbitals cannot be distinguished on the scale of the figure. We
will come back to the contribution to the HHG spectra from
these defect-state orbitals in the next section.

B. Effects of vacancies on the HHG spectra

We use the ground-state occupied KS orbitals as the initial
state and perform calculations with a static KS potential for
the systems interacting with a 15-cycle laser pulse of angular
frequency ω0 = 0.023 (corresponding to a wavelength of
1981 nm) and A0 = 0.24 (corresponding to an intensity of
∼1012 W/cm2). The band gap between the highest VB and
the first conduction band (CB1) at the 
 point (k = 0) equals
0.235 a.u. ∼6.395 eV which corresponds to approximately
10 times the carrier photon energy 0.626 eV. It means that
at least 10 photons are needed to make a transition from the
valence band to the conduction band. As a result, harmonics
up to order 10 are in the sub-BG regime for the studied
systems. This dynamic regime is similar to the one consid-
ered experimentally, where the minimum number of photons
required for an excitation from the valence to the conduction
band is typically between 10 and 20: A minimum number
of 9 photons was required for ZnO [1], 13 for solid Kr [8],
15 for solid Ar [8], and 14 to 19 for bulk GaSe [5,6]. We
note that the critical vector potential, estimated by equating
the band-gap energy, Ebg, with the energy in the field over
a lattice spacing, Acr = Fcr/ω0 = (Ebg/a)/ω0 � 1.4, is much
larger than the considered vector potential.

The time-dependent current is calculated by adding the
contributions to the current from the KS orbitals,

J (t ) =
∑
σ, j

∫
dx Re

{
ϕ∗

σ, j (x, t )

[
−i

∂

∂x
+ A(t )

]
ϕσ, j (x, t )

}
,

(11)

and the HHG spectral intensity is evaluated as the modulus
square of the Fourier-transformed current, as given by

S(ω) ∝
∣∣∣∣
∫

dtJ (t ) exp(−iωt )

∣∣∣∣
2

. (12)

Hence, we do not account for macroscopic propagation ef-
fects, which may modify the HHG spectra via absorption and
phase mismatch. Such effects, however, can be reduced by
controlling the thickness of target materials [8]. Therefore, it
is expected that our conclusions hold for a thin target material.

At first, we study the effect of introducing vacancies which
are evenly distributed along the chain of ions. By introducing
vacancies in the reference system, we divide it into several
subsystems with smaller lengths. Figure 3 shows the HHG
spectra for the reference system without any vacancy to-
gether with spectra obtained from systems with an increasing
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0-Vacancy
1-Vacancy
2-Vacancies
3-Vacancies
4-Vacancies

FIG. 3. Logarithm of the peaks of HHG spectra of systems
with different number of vacancies evenly distributed in the chain
of ions. The reference system consists of 200 ions with a lattice
spacing of 7 a.u.. Adding more vacancies reduces the HHG peak
signals until the fifth plateau, i.e., until harmonic order �140. A
15-cycle laser pulse with wavelength of 1981 nm and intensity of
1.0665 × 1012 W/cm2 is used.

number of vacancies. All HHG spectra shown in Fig. 3 have
similar overall structure with five plateaus and corresponding
cutoffs. The cutoffs of these spectra can be determined by
the maximum energy difference between the highest VB and
the conduction bands (CB1, CB2, CB3, CB4, CB5) at a
specific k value being accessible from at least one initial k0

(see Ref. [30] for more details about the origin of plateau
cutoffs). At low order harmonics the maxima of the HHG
spectra of these systems are relatively close to each other. At
higher harmonics (especially after ω � 100ω0) the maximum
HHG peaks decrease in amplitude with increasing number of
vacancies. At the 5th plateau with harmonic orders between
150 and 200, this trend still exist if we ignore the system
with two vacancies. This exception appears in a regime with
very small yield and it will therefore not be studied further in
this work. To compare the harmonic yields of these systems
quantitatively, we integrate the spectrum of the system with m
vacancies over harmonic orders 10 to 25. The result of this in-
tegration is labeled by Im. Figure 4 shows Im/I0 versus number
of vacancies, and we see how the integrated spectrum in the
first plateau decreases with increasing number of vacancies.

In our linear chain system, each vacancy introduces two
defect-state orbitals that are spatially localized around the
corresponding vacancy. These defect-state orbitals are occu-
pied and their energies are located slightly below the lowest
energy orbital in the valance band [see dashed (red) horizontal
lines in Figs. 2(b) and 2(c)]. It is instructive to consider the
role of these defect-state orbitals in the HHG process. To do
so, we introduce the HHG-orbital index profile plot which
shows the HHG yield as a function of the orbital index j =
0, . . . , (Nσ − 1). The orbital index specifies the orbital and its
energy and therefore also whether it is a defect-state orbital or
a VB orbital. The HHG yield generated by the jth orbital is
obtained by | ∫ dtJj (t ) exp(−iωt )|2, where

Jj (t ) =
∑

σ

∫
dx Re

{
ϕ∗

σ, j (x, t )

[
−i

∂

∂x
+ A(t )

]
ϕσ, j (x, t )

}
.

(13)

FIG. 4. Comparison of the HHG yield for harmonics in the
first plateau of systems with different number of vacancies evenly
distributed along the chain of ions. The ratio Im/I0 denotes the yield
with m vacancies relative to the yield with no vacancy and shows
how the yield decreases with increasing m. The laser parameters are
as in Fig. 3.

From the HHG-orbital index profile plot, it is easy to identify
the contribution of the individual orbitals to the HHG signal.
Figure 5 shows the HHG-orbital index profile of the system
with four vacancies and for a 15-cycle pulse with A0 = 0.24,
λ = 1981 nm and using the static KS potential. In this figure,
the eight orbital indexes from 199 to 206 correspond to

FIG. 5. HHG–orbital index profile plot of the system with four
vacancies using the static KS potential. The vertical axis shows the
harmonic orders from 0 to 250. The color scale bar to the right in
the figure shows the logarithm of the harmonic yield. The horizontal
axis at the bottom of the figure shows the orbital indexes from 196
to 392. These indexes correspond to the defect-state and the VB
orbitals. Each orbital has a particular energy. The energy range as-
sociated with the displayed orbital indexes is shown at the top of the
figure in units of 10−3 a.u. (see also Fig. 2). The defect-state orbitals
are located between the two vertical lines to the left in the figure and
are seen to contribute significantly to the yield. The laser parameters
are as in Fig. 3.
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200
200-mul(40)
204-mul(41)

FIG. 6. Comparison of the HHG spectra of the 200 ion reference
system, the system 200-mul(40) with four vacancies and the system
204-mul(41) with four vacancies. The similarity of the spectra of
the two latter systems illustrate the insensitivity to the number of
electrons in this parameter range. The laser parameters are as in
Fig. 3.

defect-state orbitals and the orbital indexes from 207 to 392
belong to orbitals in the VB. The energy range of the orbitals
with indexes from 197 to 392 is shown at the top of the figure
(from −0.510 to −0.415 a.u.) and we see that this energy
range is similar to the defect-state vs. VB energy range in
Figs. 2(b) and 2(c). According to the results in Fig. 5, the
defect-state orbitals, located in the figure between the two
vertical black lines, contribute significantly to the HHG yield
compared to, e.g., the VB orbitals with indexes around 220.
We note that the importance of the defect states for the HHG
process was recently reported in a study on hexagonal boron
nitride [37].

Despite the importance of the defect-state orbitals in the
HHG process in systems with vacancies [Fig. 5], we see
from Figs. 3 and 4 that the introduction of vacancies leads
to an overall decrease in the generation of harmonics. To
identify why the systems with evenly distributed vacancies
generate harmonics less efficiently than the reference system
with no vacancy, we have made a number of considerations.
First, we note that the changes in the band-gaps energies (in
their third digit) with increasing number of vacancies are so
small that they cannot explain the differences in the HHG
yields based on Zener tunneling ∼ exp[−aE2

bg/(4ω0A0)] [48].
Second, we considered possible effects related to the number
of electrons involved in the HHG process, which is smaller in
the system with vacancies than without. We therefore enlarged
the systems with vacancies to keep the number of electrons
fixed at the number in our 200 ion reference system. As an
example, the number of electrons in the 204-mul(41) system
with four evenly distributed vacancies and in the 200 system
is identical, but their HHG spectra do not resemble each
other (Fig. 6). However, the HHG spectra of the 204-mul(41)
system is similar to the HHG spectra of the 200-mul(40)
system, having a different number of electrons but identical
number of vacancies and composed of subsystems with very
similar length (see Fig. 6). We therefore conclude that the
change in the HHG spectra in Fig. 3 is not directly associated
with a change in the number of electrons participating in the
generation process but rather a result of dividing the system

into several subsystems by the change of potential, i.e., by the
extra barriers effectively introduced in the KS potential by the
vacancies (see Fig. 1). To this end, it is also useful to recall
that the HHG spectrum can be expressed in terms of a Fourier
transform (FT) of an expression involving the total density and
the gradient of the ionic potential [29] as

S(ω) ∝
∣∣∣∣FT

[ ∫
dx n(x, t )

∂

∂x
vion(x)

]∣∣∣∣
2

. (14)

Near the vacancies, the gradient of the ionic potential
[ ∂
∂x vion(x)] becomes smaller and the total electronic density

[n(x, t )] decreases drastically in such a way that the multi-
plication of these two terms, i.e., n(x, t ) ∂

∂x vion(x), effectively
reduces to zero. Consequently, by increasing the number of
vacancies, no matter if they are localized or evenly distributed,
the absolute value of the integral in Eq. (14) is decreased.

According to Eqs. (11) and (12), if we divide the ref-
erence system into q subsystems, then Jsystem = qJsubsystem.
Thus it can be expected that the HHG of a system which has
several vacancies with similar distance between them [e.g.,
200-mul(m)] can be modeled via the HHG of its subsystems
by

S(ω)system � q2S(ω)subsystem, (15)

where q represents the number of subsystems. If the sub-
systems are large enough to show bulklike behavior, i.e., if
the number of ions �80 [32], then the above formula works
reasonably accurately for the whole spectrum [Fig. 7(a)].
For smaller subsystems, the resulting total spectrum only
partly resembles the main system’s spectrum [only the lower
harmonics are well described by Eq. (15), see Fig. 7(b)]. This
again links the reduction in the yield (Figs. 3 and 4) to a
finite-size effect related to a division into subsystems by the
effective KS potential (Fig. 1).

As discussed in Ref. [32], for system sizes between the
atomic system and the bulklike limit, the finite size restricts
the movement of the electron-hole pair, limiting its propaga-
tion length to be smaller than the system size which leads to
a linear dependence of the HHG cutoff on the system size. So
there are smaller cutoffs for smaller systems and we expect
to see the imprinting signature of the finite-size subsystems
in the main HHG spectrum. According to Fig. 7(b), at low
harmonics the HHG spectrum of the 200-mul(20) system
composed of subsystems with finite structure (20), resembles
the HHG spectrum of its subsystems as described by Eq. (15),
but it is different from the HHG spectrum of the reference
system (200). On the other hand, the number of states in the
valence band of the 200-mul(20) system enables a harmonic
generation process similar to the 200 system. As a result, the
200-mul(20) HHG spectrum has several plateaus similar to the
200 HHG spectrum. The reason that this system with vacan-
cies still produces such a spectrum is that some electrons gain
enough energy to overcome the effective barriers introduced
by the vacancies (see Fig. 1), and these electrons contribute to
the generation of harmonics from the bulk.

Interestingly, if we localize a limited number of vacancies
next to each other to mimic a molecular-type point defect,
then the overall HHG spectrum is similar to that of the system
with just a single vacancy. As shown in Fig. 8(a), the HHG
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(a) 200
200-mul(100)

22*100

(b) 200
200-mul(20)

10 2*20

FIG. 7. (a) Comparison of the HHG spectrum of the 200 ion
reference system with the spectrum of the 200-mul(100) system with
a single vacancy and the spectrum obtained from Eq. (15) and a
system with 100 ions. (b) HHG spectra of the 200-ion reference
system, the 200-mul(20) system, and the spectrum obtained from the
20-ion system and Eq. (15). The laser parameters are as in Fig. 3.

spectra of 200(100) (a system with only a single vacancy) and
200(98to102) (a system with five vacancies localized next to
each other) are very similar because of the similarity of the KS
potential of these two systems. Both of them have a barrier in
the middle and two almost similar subsystems, see Fig. 8(b).

We also used a time-frequency profile analysis to see how
the HHG spectra of the systems with and without vacancies
are built up in the time domain. In order to obtain these
profiles, we perform a Gabor transform of the current J (t )
given in Eq. (11) by calculating

G(ω, t ) =
∫

dt ′J (t ′) exp(−iωt ′) exp

[
− (t − t ′)2

2τ 2

]
, (16)

where the width of the time window τ is chosen to be 5π

(a.u.). The Gabor spectra |G(ω, t )|2 for the systems with and
without vacancies are shown in Fig. 9. Figure 9(a) shows the
result for the reference system. According to Fig. 9(b), the
system with four evenly distributed vacancies shows fewer
regular sinusoidal structures in the third plateau (ω = 65 −
100ω0), especially after a time of eight laser cycles. This
feature is induced by the new periodicity added to the lattice
periodicity by introducing vacancies in the chain. For the
system with nine vacancies [Fig. 9(c)], the blurring out of the
sinusoidal pattern is more significant at high harmonic orders.

(a) 200
200-mul(100)
200(98to102)

(b)
200(100)
200(98to102)

FIG. 8. (a) HHG spectra of the 200-ion reference system, the
200(100) system with a single vacancy in the middle of the linear
chain, and the 200(98to102) system with five vacancies localized
next to each other in the middle of the linear chain. (b) Zoom-in of
the central region of the static KS potential of systems with one and
five localized vacancies [200(100) and 200(98to102) systems]. The
laser parameters are as in Fig. 3.

As shown in Ref. [35], in the case of disorder in the ionic
positions in the lattice, the emission of harmonics is also
less regular in time. However, in this case, the irregularity is
induced by breaking the lattice periodicity by random shifts of
ionic locations. Very recently, the appearance of ill-resolved
electron trajectories in the Gabor profile of systems with
vacancies were related to the interference of additional paths
for the electron dynamics introduced by the defect states [49].

Once a sufficiently large number of ions (�80) is consid-
ered, the results are insensitive to the system size. Our results
regarding the effects of vacancies are also insensitive to the
location of the atomic-type point vacancies when the number
of vacancies in the two systems are exactly the same (for
instance, we have checked that the HHG spectra of 200(10)
and 200(100) are very similar to each other). Thus the results
are independent of the symmetry of systems. Furthermore, we
have performed additional calculations to confirm the reported
trends in our results for a range of laser intensities from
8.6384 × 1011 to 1.2904 × 1012 W/cm2.

Finally, we study a second realization of our linear chain
model to be able to obtain a more complete picture of the pos-
sible effects of vacancy defects in HHG. As in Ref. [35], we
set N = 200, ε = 2, a = 4, and Zi = 2 [i = 0, . . . , (N − 1)]
in Eq. (2) and use an eight-cycle laser pulse with a wavelength
of 3036 nm and an intensity of 7.0875 × 1011 W/cm2. An
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FIG. 9. Time-frequency profile of (a) the 200 ion reference sys-
tem, (b) the 200-mul(40) system with four evenly distributed vacan-
cies, and (c) the 200-mul(20) system with nine evenly distributed
vacancies. The color scale bars to the right in the figure show the
logarithm of the harmonic yield. The laser parameters are as in
Fig. 3.

0-Vacancy
1-Vacancy
2-Vacancies
3-Vacancies
4-Vacancies

FIG. 10. Logarithm of the peaks of HHG spectra of a spin-
and charge-neutral linear chain with Zi = 2 and a lattice spacing of
a = 4. The figure shows the peaks of the HHG spectra for different
number of vacancies evenly distributed in the chain. Adding more
vacancies reduces the HHG peak signals until the second plateau, i.e.,
until harmonic order �50. Interestingly, the harmonic yield increases
in the second plateau by increasing the number of vacancies. An
8-cycle laser pulse with wavelength of 3036 nm and intensity of
7.0875 × 1011 W/cm2 is used.

illustration of the band structure can be found in Ref. [35].
In this system each vacancy introduces two defect-state or-
bitals. Their energy position is at the bottom of the VB.
Figure 10 shows the HHG spectra for this chain without any
vacancy together with spectra obtained from systems with an
increasing number of vacancies. All HHG spectra shown in
this figure have similar overall structure with two plateaus.
By introducing vacancies in this second chain, the harmonic
yield decreases in the first plateau and interestingly increases
in the second plateau. Figure 11 shows Im/I0 versus number of
vacancies and is obtained by integrating the spectrum of the
system with m vacancies (labled as Im) over harmonic orders
20 to 50 (the first plateau). Comparing with Fig. 4, the har-
monic yield of the first plateau of the spectrum decreases more
rapidly with increasing number of vacancies. We have made

FIG. 11. Comparison of the HHG yields for the harmonics in the
first plateau for the linear chain considered in Fig. 10 for different
number of vacancies evenly distributed along the chain of ions. The
ratio Im/I0 denotes the yield with m vacancies relative to the yield
with no vacancy and shows how the yield decreases with increasing
m. The laser parameters are as in Fig. 10.
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HHG-orbital index profile plots also for the cases considered
for this chain system but do not include these plots here. The
conclusion from these profile plots is that there is no particular
role of the defect-state orbitals in the HHG process for this
chain, in opposition to the conclusions drawn from Fig. 5 for
the other considered chain system, and illustrating that the role
of defect-state orbitals can be very system dependent. As it is
shown in Figs. 10 and 11, the shape of the HHG spectrum and
the harmonic yield may change considerably by introducing
vacancies in a linear chain system. A comparison with the
results in Figs. 3 and 4, where we observed relatively small
changes, show that the magnitude of such changes can be very
sensitive to the chain system.

IV. CONCLUSION

We employed a self-consistent time-dependent density-
functional approach to study how the presence of vacancies
in a perfect lattice changes the band structure and, conse-
quently, the HHG spectrum of the lattice. We used a 1D
model system of a linear chain of identical ions to produce
a typical band structure and to capture the essential aspects
of HHG in solids. We found that by introducing a limited
number of evenly distributed vacancies, the band structure is
almost not affected. In the case where several vacancies are
confined to a small region of the chain, the band structure is
similar to that of the system with just one vacancy. Because
of the localization of the KS orbitals between vacancies (or
between a vacancy and an edge of the chain), the systems with
vacancies display more structures in their band structures. In
the HHG spectra of the vacancy-free reference system and
also for the systems with one to four vacancies, five plateaus
appeared. The corresponding cutoffs can be determined by
the maximum energy difference between the highest valence
band and the first five conduction bands at a specific k value.
At low-order harmonics, the maximum peaks of the HHG
spectra of these systems are relatively close to each other. At
higher harmonics, the maximum HHG peaks decrease with
increasing number of vacancies. We identified this change in
the overall shape of the spectrum as originating from the addi-
tional effective potential barriers introduced at the positions of
the vacancies, which means that only electrons having gained
enough energy to pass above these barrier can effectively par-
ticipate in HHG from the bulk. For one of the chain systems
considered, we found that the induced defect-state orbitals are
located energetically slightly below the lowest energy orbital
in the VB. We found that the contribution from these former
orbitals to the HHG spectrum may be more important than
that from orbitals in the VB.

We showed that if the number of vacancies is limited, then
the associated reduction in the number of electrons involved
in the HHG process does not significantly affect the harmonic
yield. We found that the number of evenly distributed vacan-
cies (no matter if they are atomic- or molecular-type point
vacancies) and the size of the subsystems are the factors
which control the HHG yield. By introducing atomic-type
point vacancies, the linear chain lattice is divided into several
subsystems. We found that the HHG spectrum of a system
with several vacancies can be modeled via the HHG of its
subsystems if each of them is large enough to behave indi-
vidually like a bulk solid, i.e., if it contains more that around
60–80 ions. Signatures of finite structure were detected in the
HHG spectrum of a system composed of smaller subsystems,
i.e., with smaller distance between the vacancies. Also in this
case, the spectrum is composed of several plateaus resembling
the overall structure of a bulk solid spectrum. Our results
regarding overall changes in the spectra with vacancies are
insensitive to the location of the atomic-type point vacancies
and as a result to the symmetry of the system. Nevertheless,
the shape of the spectra and the change with the number of
vacancies may be very sensitive to the specific system. We
illustrated this point by showing the significant difference in
the change in the spectra with vacancies for two different
realizations of the linear chain systems.

In our approach we ignored lattice relaxations around a
vacancy and also the unpaired dangling bonds states at the
vacancy site [50]. By considering these effects, more realistic
imprinting of defects in the HHG spectra can be accessible
[37]. Here we considered only spin and charge neutral vacan-
cies; however, there is an interesting physics underlying F cen-
ters (anionic vacancies) [50]. With the advent of modern thin-
film technology, targeted manipulation and control of defects,
in particular at their two-dimensional surfaces and interfaces,
has become possible [51]. Moreover, theoretical investigation
of defects is critical to understanding the electronic properties
of semiconducting compounds [52]. As discussed here, the
HHG spectra are sensitive to defects and vacancies, and in
the future the time-resolved perspective associated with HHG
(see, e.g., Ref. [53]) may be useful to shed new light on
ultrafast dynamics in such systems.
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