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Investigating critical systems via the distribution of correlation lengths
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We introduce a novel approach to study the critical behavior of equilibrium and nonequilibrium systems, which
is based on the concept of an instantaneous correlation length. We analyze in detail two classical statistical
mechanical systems (the XY model and the Ising model) and one of the prototype models of self-organized
criticality [the forest fire model (FFM)]. The proposed method can both capture the critical behavior of the XY
model and the Ising model and discriminate between the nature of the phase transition in the two scenarios. When
applied to the FFM, it gives surprising results, suggesting that the model could be critical despite displaying
broken scaling in the distribution of cluster sizes.
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I. INTRODUCTION

The concept of criticality is widely used in many dis-
ciplines, spanning finance [1–4], meteorology [5–7], neuro-
science [8–11], and physics [12–15]. A system in a critical
state is usually characterized by scale invariance and self-
similarity and by the development of strong instabilities which
are caused by the emergence of long-range temporal or spatial
interactions. In statistical physics, the term criticality indicates
the behavior of a system near a critical point, which is typi-
cally associated with a phase transition between two different
states. A classic example of phase transition is the behavior
of magnets near a critical temperature Tc, which separates an
ordered state at low temperatures (T < Tc) from a disordered
one at high temperatures (T > Tc). When a system is in a crit-
ical state, it is highly susceptible to external perturbations, and
it is characterized by the emergence of long-range correlations
between its constituent components. This high susceptibility
is a direct consequence of the self-similarity of the correlation
function, which emerges from microscopic interactions and
leads to the presence of strong correlations on all scales of the
system.

The distinctive nature of the critical state is the reason
why it often attracts attention both theoretically and in real
systems. Here we mention a few examples from very different
systems, namely the spatial distribution of vegetation [16,17],
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the solar wind [18], and the distribution of activity across
the brain [19]. The method developed in the present paper
is of relevance in this respect because of its simplicity and
generality. It applies to models or real systems, in or out of
equilibrium, whenever one has access to snapshots describ-
ing the evolution of the spatial configurations and allows to
extrapolate the large system’s behavior by analyzing configu-
rations of different sizes.

In statistical physics, the correlation function is usually
defined as the difference between the canonical ensemble av-
erage 〈...〉 of the scalar product between two random variables
s1 and s2, which might denote, say, spins at position r0 and
r0 + r or the displacement of particles at these positions with
respect to some lattice structure and their uncorrelated average
product:

C(r) = 〈s1(r0)s2(r0 + r)〉r0 − 〈s1(r0)〉r0〈s2(r0 + r)〉r0 . (1)

Introducing the external control parameter X , in the thermo-
dynamic limit one expects to find a power-law behavior when
X is tuned to a critical value Xc:

C(r|Xc) ∼ r−η. (2)

Equation (2) implies that the relative change in correlation is
independent of the scale of r, namely

C(μr|Xc)

C(r|Xc)
∼ μ−η. (3)

The fact that correlations are present at all scales translates
into the existence of long-range correlations and the resulting
critical behavior of the whole system. Away from the critical
point, correlations typically decay as an exponential function,
and the characteristic length of the exponential is referred to
as the correlation length ξ̄ . The typical functional form that is
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assumed for the correlation function near a critical point is

C(r|X, L) ∼ r−ηe− r
ξ̄ (X,L) , (4)

where ξ̄ indicates the typical length over which two positions
in the system are correlated and depends on the control
parameter of the system X and the system size L. This length
is limited by L and diverges in the thermodynamic limit in
correspondence of the critical value of the control parameter
Xc, i.e., ξ̄ (Xc, L → ∞) → ∞, giving Eq. (2). It is clear then
that the correlation length act as a parameter that describes the
typical extension of correlations inside a system and therefore
represents the most reasonable quantity to look at when one
investigates the critical behavior of a physical system. How-
ever, it is essential to observe that measuring a diverging cor-
relation length is not enough to determine whether a system is
in a critical state because it does not convey any information
about the scaling behavior (in the sense of self-similarity or
invariance under change of scale) of the system. In other
words, one could observe a divergent correlation length even
in a system that is not scale invariant and therefore not critical,
as will be discussed in the next sections. In this paper, we
introduce a new method to investigate the critical behavior
of a system. This method is still based on the study of the
correlation function but introduces a new correlation length
that is no longer a parameter of the system, but a stochastic
variable whose distribution is able to catch at the same time
the scale invariance of the system, the asymptotic behavior
of the correlation length and the universal properties of the
model.

II. THE INSTANTANEOUS CORRELATION
LENGTH FORMALISM

The method proposed is based on the instantaneous cor-
relation length introduced in Ref. [20]. For simplicity, we
consider models defined on a two-dimensional (2D) lattice
consisting of a “spin” variable s(r) on each of the L2 lattice
positions r. We sample N independent lattice configurations
S1, S2, . . . , SN during the time evolution. The classic estimate
of the correlation length ξ̄ goes as follows: For each config-
uration St one computes the two-point correlation function
Ct (r) between two spins s1 and s2 at positions r0 and r0 + r.
Assuming translational invariance, one has:

Ct (r) = 〈s1(r0, t )s2(r0 + r, t )〉r0 − 〈s(r0, t )〉2
r0
, (5)

where the average 〈. . .〉 is taken summing over all the possible
pairs of spins and values of r0 at a time t . Traditionally,
one estimates the ensemble-averaged correlation function in
Eq. (1) by taking the time average of Eq. (5). Iterating this
procedure for different configurations, one obtains an ensem-
ble of correlation functions {C1,C2, . . . ,CN }, which can be
used to compute the time-averaged correlation function C(r)
for which the following functional form is usually assumed
near a critical point:

C(r|X, L) ∼ r−ηe− r
ξ̄ (X,L) , (6)

where ξ̄ (X, L) is the correlation length which depends on a
control parameter X and the system size L. In correspondence
of the critical value of the control parameter X = Xc, the

correlation length ξ̄ (Xc, L) diverges in the thermodynamic
limit, and the correlation function decays algebraically.

Now we introduce the instantaneous correlation length
formalism. Assuming that the system size is sufficiently large
to give reasonable statistics for the instantaneous correlation
function Ct (r), one can fit the instantaneous correlation length
ξt using the same functional form that is used in Eq. (6).
After the fitting procedure, explained in detail in Appendix B,
one obtains an ensemble of instantaneous correlation lengths
{ξ1, ξ2, . . . , ξN }. Each ξt is a measure of how critical a single
configuration St is. If the system is far from a critical point,
then one expects ξt to be always small because the correlation
function will decrease exponentially fast. On the other hand,
as the system approaches Xc there will be an increasing
fraction of configurations with a big correlation length, which
corresponds to the power-law prefactor in Eq. (6) dominating
the behavior. Although one expects the ensemble-averaged
correlation length ξ̄ (X ) and the average instantaneous corre-
lation length ξ to scale in the same way, it is essential to stress
the fact that they are two distinct mathematical objects: the
first being a parameter of the ensemble-averaged correlation
function and the second being a stochastic variable. Indeed,
the strength of this new approach lies in the fact that we can
now use the ensemble of ξt to compute not only the average
correlation length 〈ξ 〉 but also the distribution of correlation
lengths P(ξ ). P(ξ ) is an entirely new physical object and, as
we will see, contains essential information about the critical
behavior of the system under analysis.

III. THE DISTRIBUTION OF THE INSTANTANEOUS
CORRELATION LENGTHS

Using P(ξ ), it is possible to determine whether a system
is at a critical point. This can be done by looking at the
conditional probability P(ξ |X ), which should become scale
invariant as Xc is approached. Assuming simple scaling, one
expects:

P(ξ |Xc) = bG

(
ξ

ξc

)
ξ−τ (7)

for ξ and ξc bigger than a constant lower cutoff ξ0. In
Eq. (7), ξc represents an upper cutoff that diverges in the
thermodynamic limit, G( ξ

ξc
) is a universal scaling function,

τ is a critical scaling exponent and b is a nonuniversal metric
factor. In general, the upper cutoff scales as ξc ∼ aLβ , where
a is another nonuniversal metric factor and β is related to the
universal spatial dimension of the observable [21,22]. From
Eq. (7) one can write the nth moment as

〈ξ n〉 = bξ n−τ+1
c

∫ ∞

ξ0
ξc

G(u)un−τ du. (8)

Imposing normalization (n = 0) one gets τ � 1. Setting n = 1
in Eq. (8) and absorbing the constant prefactor in G(u), we can
define the average correlation length as

〈ξ 〉 = Lβ(2−τ )
∫ ∞

ξ0
ξc

G(u)u1−τ du. (9)

Which is equivalent to setting b = aτ−2 in Eqs. (7) and (8). In
the following sections, we will study the behavior of P(ξ ) in
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two traditional statistical mechanical systems, the Ising model
and the XY model, and in one of the prototype models of self-
organized criticality, the forest fire model. We conclude this
section observing that if Eq. (7) holds, then it automatically
allows the introduction of the new critical exponent τ .

IV. ISING MODEL

The Ising model is a mathematical model of ferromag-
netism that was invented by Wilhelm Lenz in 1920 and
solved for the first time in one dimension by Ernst Ising in
1925 [23,24]. The model consists of N interacting two-state
spin variables σi ∈ [−1, 1] which represent adjacent magnetic
dipoles. The energy that is associated with a given configura-
tion σ is given by

H (σ ) = −
∑
〈i, j〉

Ji jσiσ j −
N∑

i=1

hiσi, (10)

where the first sum is over all pairs of adjacent spins 〈i, j〉, Ji j

is the interaction strength and hi is the external magnetic field.
The two-dimensional square lattice Ising model was solved in
1944 by Onsager [25] in the case of no external field (hi =
0) and assuming periodic boundary conditions and constant
interaction strength along the x axis (Jx) and the y axis (Jy).
The 2D Ising model is central in statistical physics because
it is one of the simplest statistical models to exhibit a phase
transition between an ordered phase (low temperatures) and a
disordered phase (high temperatures). In the case of isotropic
interactions Jx = Jy, the critical value of the temperature T =
Tc that marks the phase transition is given by

kBTc

J
= 2

ln(1 + √
2)

	 2.269. (11)

When one looks at the lattice at different temperatures, it can
be noted that the high-temperature phase is characterized by
disorder, because the entropy introduced in the system by the
temperature destroys long-range correlations, which results in
random configurations with roughly half of the spins up and
half of the spins down and no emergent complex structures.
On the other hand, at low temperatures, most of the spins will
be able to align in order to minimize the energy, giving rise
to ordered configurations. At the critical point, the correlation
function decays as a power law, and we are in the presence of
long-range interactions and the creation of fractal structures,
as can be seen in Fig. 1. This behavior is reflected by the fact
that the correlation length becomes proportional to the system
size L and diverges in the limit L → ∞.

In terms of the instantaneous correlation length formalism,
it is reasonable to assume that the upper cutoff scales like L,
i.e., ξc ∼ L and hence β = 1, and then in order to maintain
the linear relationship between the system size L and 〈ξ 〉, we
should have τ = 1 in Eq. (9), meaning that the constant of
proportionality would be given by the integral of G(u). Under
these assumptions and in the large L limit, Eq. (9) reduces to

〈ξ 〉 = L
∫ ∞

0
G(u)du. (12)

As τ = 1 implies that the limit limu→0 G(u) = 0 [22]. In order
to verify whether our ansatz is correct, we need to evaluate
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FIG. 1. Sample configuration of the 2D Ising model for a square
lattice with L = 1000 at Tc.

whether there is a value of the control parameter X = Xc

such that P(ξ |Xc) becomes scale invariant. For the 2D Ising
model, this corresponds to the critical temperature given by
Onsager’s solution in Eq. (11). In our simulations, we used the
Wolff Algorithm [26] in order to reduce the critical slowing
down and for each system size L we sampled 106 independent
configurations to estimate P(ξ ) at Tc. In the following, we
will use ξ0 = 1 and ξc = L√

2
as the reference upper cutoff, as

this is the maximum physical distance between two points on
a square lattice with periodic boundary conditions. Plotting
P(ξ )ξ as a function of ξ

ξc
, we can indeed perform a data
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FIG. 2. Data collapse for the 2D Ising model. The distribution of
correlation lengths P(ξ ) becomes scale invariant in correspondence
of Tc and for τ = 1 and β = 1.
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FIG. 3. Estimate of the constant of proportionality m between
〈ξ〉 and L for the 2D Ising model. In panel (a), m is estimated by
fitting the integral of G(x) vs L with a power law. In panel (b), m
is estimated by means of a linear fit of 〈ξ〉 vs. L. The integral in
(a) converges toward the asymptotic value as L−λ, with λ = 1 ± 0.5.
The error corresponds to confidence bounds of 95%.

collapse at Tc for τ = 1 and β = 1 (Fig. 2). The resulting
curve corresponds to

√
2G(u) and its integral can be used to

compute the proportionality constant between 〈ξ 〉 and L in
Eq. (12). Figure 3 shows how the integral of G(x) converges
to a value that is consistent with the estimated gradient of the
line 〈ξ 〉 = mL.

In summary, when applied to the 2D Ising model, our
method was able to identify the critical temperature as the T
for which P(ξ |T ) becomes scale invariant and to capture the
scaling behavior of 〈ξ 〉, which is consistent with the classical
theory. In addition to these two well-known results, we were
able to introduce a new critical exponent for the Ising model,
i.e., τ = 1, and to relate the rate of growth of the correlation
length to the integral of G(u).

V. XY MODEL

The two-dimensional XY model is a paricular case of the
Heisenberg model, which was introduced in 1928 [27] as a
model for ferromagnetism. Similarly to the Ising model, it
consists of a system of spins on a lattice, with the difference
that the individual spins can rotate in any direction in the
two-dimensional XY spin plane, i.e., 
σi = (σx, σy), and are
not constrained to take only two values. The energy of the
model is given by

H (σ ) = −
∑
〈i, j〉

Ji j 
σi · 
σ j = −
∑
〈i, j〉

Ji jcos(θi − θ j ), (13)

where the first sum is over pairs of adjacent spins 〈i, j〉, Ji j

is the interaction strength, and θi is the angle that a spin 
σi

makes with respect to some arbitrary direction in the lattice
plane. As for the Ising model, in our simulation we keep
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FIG. 4. Sample configuration of the 2D XY model with L = 300
at TKT. The range of angles [−π, π ] has been mapped to a periodic
spectrum of colors for better representation.

the interaction strengths constant Ji j = J and apply periodic
boundary conditions. A typical realization of the model is
represented in Fig. 4.

The two-dimensional version of this model is well known
for the peculiar behavior of the correlation function, which
decays exponentially fast at high temperatures, and as a
power law at low temperatures [28], even though the overall
magnetization remains zero. This peculiar transition is named
after Kosterlitz and Thouless who first discovered it in 1973
[29]. The XY model is a relevant case to discuss in our
context because of the behavior of the correlation length,
which diverges even for finite systems at temperatures below
the Kosterlitz-Thouless temperature TKT 	 0.892J [30–32].
In the XY model, the two-point correlation function is defined
as [33]

C(r) = 〈cos[θ (r0) − θ (r0 + r)]〉. (14)

In our simulations we used the Wolff algorithm [26] sampling
105 independent configurations to estimate P(ξ ) at TKT and
used ξ0 = 1 and ξc = L√

2
. As for the Ising model, it is possible

to perform a data collapse for P(ξ ) in correspondence of
TKT and for τ = 1 and β = 1. Although the Ising model and
the XY model share the same exponents, we can observe in
Figs. 5 and 6 that in the XY model, ξ is able to exceed the
system size L. This is in line with the theory, which predicts
a pure power law in two dimensions in correspondence of
TKT [28]. The presence of the Kosterlitz-Thouless phase tran-
sition and the behavior of the correlations is summarized in
Fig. 7, where we plot the probability P(ξ > L) at different
temperatures. As one lowers the temperature, the fraction of
correlation lengths that exceed the system size goes from 0
to 90%, which corresponds to the pure power-law decay of
correlations at T < TKT.

VI. FOREST FIRE MODEL

The last model we consider is an out-of-equilibrium one,
and it is one of the prototype models of self-organized
criticality: the Drossel-Schwabl forest fire model (FFM) [34].
This model is different from the Ising model and the XY
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FIG. 5. Data collapse for the 2D XY model. The distribution of
correlation lengths P(ξ ) becomes scale invariant in correspondence
of TKT and for τ = 1 and β = 1.

model because it entails a dissipative dynamics and does not
have an external control parameter, like temperature, that can
be fine-tuned in order to reach a critical state. The dynamic
involves the occupation of empty sites on a 2D grid with new
trees (planting steps) and the removal of entire clusters of trees
(burning steps). The creation of new trees and the removal of
clusters results in the typical patchy appearance of the lattice,
which is characterized by the presence of patches of different
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FIG. 6. Estimate of the constant of proportionality m between 〈ξ〉
and L for the 2D XY model. In panel (a), m is estimated by fitting the
integral of G(x) vs L with a power law. In panel (b), m is estimated by
means of a linear fit of 〈ξ〉 vs L. The integral in (a) becomes constant
asymptotically as L−λ, with λ = 1±0.5. The error corresponds to
confidence bounds of 95%.
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FIG. 7. Kosterlitz-Thouless phase transition in the 2D XY model
with L = 100. The fraction of correlation lengths that exceeds the
system size goes from 0 to 1 as the temperature approaches TKT.

densities (Fig. 8). As in the XY model and the Ising model,
we use periodic boundary conditions.

The way we implement the FFM follows [35–38] and is
concisely summarized by the following pseudocode:

Algorithm 1 Forest Fire Model

while True do
for i=1:θ do

choose randomly a site s
if s is empty then

s becomes occupied
end if

end for
choose randomly a site s
if s is occupied then

collect statistics
burn the whole cluster connected to s

end if
end while

To estimate P(ξ ), we collected 106 independent configura-
tions after a transient of 5×106 burning steps. From Algorithm
1 it is clear that two parameters must be considered: the
number of trees that one tries to plant θ and the system
size L. In order to reach a critical state one would like to
have both L and θ infinitely large, although there is not a
clear rule about how to tune θ for a finite system, and in the
literature different authors have used quite a large span of θ

values for the same system size L [38,39]. Despite the model
being introduced as critical, it was subsequently realized that
the observed power law in the distribution of clusters sizes
displayed deviations from perfect scaling for large system
sizes [38,39], implying that the model is not critical in the
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FIG. 8. Sample configuration of the 2D forest fire model for
L = 3000.

sense of being scale free [38] and that all proposed scaling
laws seem to be just transient [35]. The correlation length
was first studied in Ref. [40] for systems sizes L and θ up to
L = 512 and θ = 2048, finding that ξ ∼ θν , with ν = 0.56.
The authors also studied the connected correlation function
finding νc = 0.58 and attributed this discrepancy between the
two exponents to numerical error. Another estimate for larger
system sizes was given in Ref. [41], where the authors used up
to L = 17408 and θ = 104 finding ν = 0.541 and νc = 0.576
to be statistically inconsistent and therefore concluding that
the model presents two different diverging correlation lengths.
This finding points in the same direction as the lack of scaling
observed in the distribution of cluster sizes. However, as noted
in Ref. [35], there seem to be small deviations from a power
law in Fig. 1 of Ref. [41], meaning that the estimate of ν

would be unreliable and therefore not suitable to confirm the
presence of multiple diverging correlation lengths. Now we
want to apply the instantaneous correlation length formalism
to investigate whether P(ξ ) displays broken scaling as one
should expect from a noncritical model. A similar approach
was adopted in Ref. [20], where the critical exponent was
obtained by fitting the tail of P(ξ ). However, the tail includes
contributions from the universal function G(ξ, L) and there-
fore that estimate of the critical exponent is spurious.

A. Critical behavior in the forest fire model

As we discussed in the previous section, it is not clear
how to tune the system size L and θ . In previous studies on
the correlation length, the standard procedure consisted in
keeping the system size L fixed and looking at the behavior
of the correlation length as a function of θ [40,41]. Following
this approach, it turns out that it is impossible to perform a
data collapse for P(ξ ), which agrees with the general lack
of scaling observed in the literature so far. The same broken
scaling can be observed keeping θ fixed and changing the
value of L. If we consider the correlation length as a surface
in the space of parameters ξ (θ, L), then to keep one of the
two dimensions fixed corresponds to two different ways of

FIG. 9. 〈ξ〉 as a function of θ and L. The black circles correspond
to the numerical simulations that have been performed to extrapolate
the surface, while the red line on the surface corresponds to the path
θ

L2 = 10−3.

crossing this surface. In particular, increasing the system size
L without a suitable rescaling of the parameter θ could lead
to a different statistical behavior of the system, although most
observables like the average density of trees or the average
cluster size seem to be quite robust for a wide range of θ

at a fixed L. Even though there are infinitely many ways of
coupling θ and L, it is sensible to choose θ

L2 = k for a constant
k (k = 10−3 in our simulations). In this way, for different
system sizes, one tries to plant the same fraction of trees,
which seems to be reasonable if one wants to assure statistical
consistency at different values of L. This particular path
choice is shown in Fig. 9. Surprisingly, coupling the value of
θ and L in this way allows for a data collapse of P(ξ ), making
P(ξ ) the first scale-invariant distribution observed in the forest
fire model so far. Using ξ0 = 1 and ξc = Lβ√

2
, we can perform

a data collapse for τ = 1 and β = 1.12 (Fig. 10). We also

10-2 10-1
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10-2

10-1

100

101

L = 1000
L = 2000
L = 3000

FIG. 10. Data collapse for the 2D forest fire model with θ

L2 =
10−3. The distribution P(ξ ) becomes scale invariant in correspon-
dence of τ = 1 and β = 1.12.
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FIG. 11. Estimate of the constant of proportionality m between
〈ξ〉 and Lβ for the 2D forest fire model. In panel (a), m is estimated
by fitting the integral of G(x) vs L with a line. In panel (b), m is
estimated by means of a power law fit of 〈ξ〉 vs L. In the FFM, 〈ξ〉
grows algebraically, which results in a straight line with gradient β

in the log-log plot. The error corresponds to confidence bounds of
95%.

estimated the value of β via fit obtaining β = 1.123 ± 0.038
with a 95% confidence bound (Fig. 11). From the relation-
ship θ

L2 = k, it follows that β = 2ν and ν = 0.561 ± 0.019.
This measurement is consistent with the exponents computed
for the two-point and the connected correlation lengths in
previous studies [40,41]. We conclude this section observing
how the broken scaling in the distribution of cluster sizes
P(S) found in Refs. [38,39] is not affected by the choice of
keeping fixed the ratio θ

L2 . This means that the distribution of
cluster sizes is not scale invariant, although the distribution of
correlation lengths is scale free. Therefore, even though the
clusters grow in a noncritical and non-scale-free way, there
seems to be some global order in terms of the correlations,
which is highlighted by the scale invariance of P(ξ ). This is
a highly nontrivial result and an aspect that surely requires
further investigations.

Finally, we observe that the value β = 1.12 corresponds
to a faster growth with the system size L of the range, ξ , of
the correlations, than observed in the Ising and in the XY
model. This superlinear growth might be due to the burning
mechanism, which introduces long-range correlations in the
system as a consequence of the simultaneous removal of sites
that belong to the burning cluster.

VII. CONCLUSIONS

The instantaneous correlation length formalism introduced
here is able to reproduce the well-known results about the
critical behavior of the Ising model and the XY model,
proving that P(ξ ) can be used to identify the presence of a

phase transition and to estimate the asymptotic behavior of
the correlation length. Furthermore, the introduction of P(ξ )
allowed us to define a new critical exponent τ , which happens
to be equal to 1 for all the three models discussed in the paper.
When applied to the forest fire model, this method allowed to
identify a coupling of the two parameters L and θ for which
P(ξ ) is scale invariant. The scale invariance of P(ξ ) was
unexpected as it is the first scale-free distribution observed
in the model so far, and this opens once again the debate
about the criticality of the forest fire model. We observe that
even though the FFM is an out-of-equilibrium model, it shares
the same critical exponent τ = 1 of the Ising model and the
XY model, while it differs from them in terms of the critical
exponent β.

From a theoretical perspective, all systems that present a
critical exponent τ = 1 share a very elegant property, namely
that the constant of proportionality between the average cor-
relation length and the system size dependence is given by
the integral of G(u). In the case of the Ising model and the
XY model, we found τ = 1 and β = 1. This means that all
the details of the two models are contained in the integral
of G(u), which is characteristic of the model under analysis
and becomes the only relevant quantity to distinguish be-
tween the critical behavior of correlations for the Ising model
and the XY model. In Appendix A, we discuss in more detail
the relationship between the ensemble correlation length and
the instantaneous correlation length and how it is possible to
obtain the classic critical exponent for the correlation length
starting from the instantaneous correlation length formalism.

Finally, we note how the presented method could be easily
applied to the study of real-world phenomena, such as brain
activity or rain precipitation, as the estimate of P(ξ ) only
requires to collect different images of the system during its
time evolution. The study of P(ξ ) in real systems could be a
useful tool to assess the scale invariance of the systems under
examination and to contribute to a more accurate characteri-
zation of their critical behavior.
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APPENDIX A: CRITICAL EXPONENT
OF THE CORRELATION FUNCTION

As is well known from classical statistical mechanics, the
correlation function of the 2D Ising model is characterized
by a critical exponent η̄ = 0.25 [28]. It is therefore natural
to investigate whether it is possible to recover this critical
exponent employing the formalism we have introduced. It is
worth to stress the fact that although we assume the same
functional form for the instantaneous correlation function and
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FIG. 12. The estimate of 〈η〉 for the 2D Ising model converges
toward an asymptotic value of 〈η〉 = 0.34 as L−λ with λ = 1.69 ±
0.05. The error corresponds to confidence bounds of 95%.

the classic one, the instantaneous values of ξ and η represent
two different mathematical quantities with respect to their
traditional counterpart. The crucial point is that we expect
the standard correlation length ξ̄ and ξ to scale in the same
way, even though the two quantities are defined differently. In
particular, ξ is a variable that is related to how correlated a
single configuration is, and it is not bounded by the system
size L. Regarding η, since it is an exponent, we do not expect
its distribution to scale with system size but instead expect that
the average of this distribution 〈η〉 will converge to a value
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FIG. 13. It is possible to recover η = 0.25 for the 2D Ising model
by reverse engineering the individual correlation functions from the
fitted parameters and then performing a data collapse for different
values of L.
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FIG. 14. Schematic representation of the fitting procedure.

that in principle is different from η = 0.25 because the two
quantities are averaged differently. This is confirmed by our
simulations, which show that the distribution of η is not scale
invariant and that the mean value of η tends to 〈η〉 = 0.34 as
L increases (Fig. 12). However, it is still possible to estimate
the ensemble critical exponent η̄ = 0.25 and, at the same time,
check the accuracy of our method. In order to do so, one can
use the parameters estimated via fit for each configuration i
and reconstruct the corresponding correlation function Ci(r).
If the error that we do in fitting Ci(r) is negligible, then we
should be able to compute the classical correlation function
averaging over all configurations and hence recover η̄ = 0.25.
Indeed, plotting C(r)r0.25 vs. 2r

L for different system sizes we
can perform a data collapse (Fig. 13), meaning that the fitting
error is negligible and that we can safely recover the ensemble
critical exponent η̄ = 0.25.
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FIG. 15. Fraction of configurations that follow Eq. (4) (blue),
are pure power laws (red), have R2 < 0.9 (purple), or are pure
exponentials (yellow). On the x axis is represented the system size
L. The three figures correspond to the Ising model (a), the XY model
(b), and the forest fire model (c).
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APPENDIX B: THE FITTING PROCEDURE

The fitting procedure that we have implemented follows
the logic presented in Fig. 14, where we use the inverse
of the correlation length ω = 1

ξ
as a fitting parameter. The

fitting algorithm goes as follows. First, we try to fit the
correlation function with Eq. (4), checking that the coefficient
of determination R2 is bigger than 0.9. After the fit, if ω is
fixed at zero (i.e., the quality of the fit is constantly improving
by making ω closer to zero), then we perform a new fit using
a pure power law and set ξ = ∞. If ω is well behaved and η is
fixed at zero, then we make a new fit with a pure exponential,
setting η = 0. If at any point of the fitting procedure R2 < 0.9,
then we reject the fit.

In most cases, this procedure might be regarded as
overcautious. However, there are situations, like in the XY
model, where one might have a pure power law even for finite

systems. Although we cannot use pure power-law
configurations to build the histogram of P(ξ ), it is convenient
to keep track of these configurations to get a better
understanding of the behavior of the system. In Fig. 15,
we represent for each model the fraction of configurations
that follow Eq. (4) (blue), are pure power laws (red), and
have R2 < 0.9 and thus are rejected (purple) or are pure
exponentials (yellow). It turns out that for the Ising model
(15a) and the forest fire model (15c) the rejection rate is low,
and the vast majority of the configurations follow Eq. (4).
On the other hand, the XY model shows richer behavior. We
found that around 60% of the configurations are better fitted
by a pure power law, while roughly 30% of the configurations
follow Eq. (4) and thus are used to analyze P(ξ ). Finally, we
observe that for the XY model, the rejection rate is higher
than in the Ising model and the FFM, but it decreases with the
system size, going from 18% at L = 30 to 7% at L = 400.
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