
PHYSICAL REVIEW RESEARCH 2, 013193 (2020)

Microscopic description of axisymmetric vortices in 3P2 superfluids
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We study quantized vortices in 3P2 superfluids using a microscopic theory for the first time. The theory is
based on the Eilenberger equation to determine the order parameters and the Bogoliubov-de Gennes (BdG)
equation to obtain the eigenenergies and the core magnetization. Within axisymmetric vortex configurations, we
find several stable and metastable vortex configurations which depend on the strength of a magnetic field, similar
to a v vortex and o vortex in 3He superfluids. We demonstrate that the o vortex is the most stable axisymmetric
vortex in the presence of a strong magnetic field, and we find two zero-energy Majorana fermion-bound states
in the o-vortex core. We show that the profiles of the core magnetization calculated using the BdG equation are
drastically different from those calculated using only the order parameter profiles known before.
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I. INTRODUCTION

Superfluidity and superconductivity are two of the most
extraordinary states of matter. They are realized in materials
or gases at low temperatures, such as metals, liquid heliums,
and Bose-Einstein condensates of ultracold atomic gases.
Apart from such situations realized in laboratory experiments,
neutron stars offer much larger, stellar-scale candidates of
superfluidity and superconductivity [1–3]. The neutron den-
sity in the interior of neutron stars ranges from 104 gcm−3 to
1016 gcm−3 and forms a hierarchical structure consisting of
crusts and cores. Neutrons in the inner crust and outer core
drip from nuclei and become a neutron fluid. The superflu-
idity is important to such a high-density region because the
temperature T ∼ 106 K is much lower than the Fermi tem-
perature TF ∼ 1010 K and the critical temperature Tc ∼ 108 K.
The presence of Cooper pairs successfully describes rapid
coolings [4] of neutron stars and slow relaxations [2] after
pulser glitches, i.e., phenomena in which angular momentum
of neutron stars increases suddenly (see Refs. [5–7] for a
recent review).

A type of the Cooper instability depends on the density.
The attractive interaction is governed by the 1S0 channel in
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the inner crust at lower density [1], while in the outer core
at higher density it becomes repulsive and the 3P2 channel
is dominant [8–25]. The 3P2 superfluid is the state in which
the angular momenta of orbital (L = 1) and spin (S = 1) are
aligned. The Ginzburg–Landau (GL) equation was obtained
for 3P2 superfluids [13,14,26–28] and the ground state was
found to be a nematic phase in the weak coupling regime
[26]. The nematic phase has a continuous degeneracy [29]
which is lifted by either magnetic field or sixth-order terms
in the GL free energy, and the uniaxial nematic (UN) phase
is favored at zero temperature while D2-biaxial nematic (BN)
and D4-BN phases are favored for finite and strong magnetic
fields, respectively [30], relevant for magnetars. Low-energy
excitations in 3P2 superfluids affect the cooling process by
neutrino emission [31–42]. The rapid cooling due to 3P2

superfluids was studied for Cassiopeia A [43–45], but a direct
proof of the existence of the 3P2 superfluidity is yet elusive.
The 3P2 superfluidity is more relevant for magnetars, in which
the strength of the magnetic field reaches about 1015 G at the
surface and possibly about 1018 G in the inside, because the
tolerance of the spin-triplet pairing in the 3P2 superfluidity
is robust against the strong magnetic fields, in contrast to the
spin-singlet pairing in the 1S0 superfluidity fragile due to the
Zeeman effect. The impact of strong magnetic fields on 3P2

superfluid phases was studied in the GL equation [46]. The
GL equation was also used for finding new exotic topological
structures such as surface topological defects (boojums) [47]
and domain walls [48].

Since neutron stars rotate very rapidly, there exist a huge
amount of quantized vortices. These vortices may play an
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important role on the glitches [49]; One of scenarios of
the glitches is described by unpinning of a large amount
of vortices which transfers the angular momentum from the
superfluid to the nonsuperfluid crust. Vortices in 3P2 super-
fluids have been studied using the GL equation [13,14,26–
28,30,50,51]. Because of a discrete symmetry of the conden-
sates, we expect rich structures of vortices, such as fractional
vortices and non-Abelian vortices [50]. In addition to such
nontrivial topology, spontaneous magnetization [28,30,50,51]
is a crucial issue to explain the above phenomena. For further
study of vortices beyond the GL equation, it is more important
to take account of the fermion degrees of freedom because
fermions form vortex bound states. Therefore, in this paper,
we formulate a microscopic theory and calculate single-vortex
states with or without a magnetic field.

The microscopic model of 3P2 superfluids was constructed
long back by Richardson [14] and Tamagaki and Takatsuka
[10–12], but the first direct calculation was done recently
[52], which clarifies that nematic states of 3P2 superfluid
is a topological superfluid with time reversal symmetry (a
class DIII in the classification of topological insulators and
superconductors), allowing gapless Majorana fermion on the
boundary. The existence of such fermion bound states is a
noticeable character of the topological states. The microscopic
theory also offers the phase diagram for the magnetic field
and temperature and elucidates that there is a tricritical point
on the phase boundary between D2-BN and D4-BN states
[52,53], which was later confirmed in the GL free energy up
to the eighth order [54]. Moreover, cyclic and ferromagnetic
phases are possible for total spin-2 condensates [55], and
these states have been shown to be Weyl semimetals for 3P2

superfluids [52,56], having gapless Weyl fermions in the bulk
which may be relevant for cooling of neutron stars.

In general, for topological superconductors and superflu-
ids, Majorana fermions may exist in the vortex core as well
as their boundary. The topological aspect of fermion degrees
of freedom emergent in vortices of 3P2 superfluids has not yet
been uncovered. In the superfluid 3He, which is a prototype of
spin-triplet p-wave superfluid, all possible vortices are classi-
fied in terms of discrete symmetries preserved in vortex states
[57]. The o-vortex and v-vortex states are the local minima of
the thermodynamic potential in the superfluid 3He-B under
rotation, where the former (latter) preserves (breaks) the mag-
netic π rotation symmetry called the P3 symmetry [58–62].
3P2 superfluids with vortices are categorized into the class
D of the topological periodic table, and remaining discrete
symmetry plays a critical role on the topological protection
of the zero energy vortex-bound states [63,64]. The o vortex is
the most symmetric vortex with spin-degenerated zero modes,
which are protected by the P3 symmetry [65,66]. In contrast,
the v vortex which spontaneously breaks the P3 symmetry has
no topologically protected zero modes. In the superfluid 3He-
B under rotation, the o-vortex state is not thermodynamically
stable against axisymmetric and nonaxisymmetric v-vortex
states with no zero modes. Therefore, it is an important issue
to study if a vortex with zero energy Majorana fermions is
possible in 3P2 superfluids.

The existence of fermion degrees of freedom is also im-
portant at the macroscopic level, as pointed out by Jones
[67]. As is known in superfluid and superconducting systems,

fermion bound states in the vortex core seriously affect vortex
dynamics through the spectral flow force [68–70]. The vortex
dynamics is a key role in interpreting a gradual decrease of an-
gular momentum of a neutron star and its glitch. Understand-
ing the self-consistent structure of vortices and the topological
protection of vortex-bound states in 3P2 superfluids may open
a door to the issues in neutron stars.

In this paper, motivated by these earlier works, we investi-
gate vortex states and fermion bound states in the vortex core
in 3P2 superfluids using the microscopic theory. The theory
is based on the Eilenberger equation to determine the order
parameters and the Bogoliubov-de Gennes (BdG) equation
to obtain the eigenenergies and the core magnetization. We
investigate several stable and metastable vortices and discuss
their stability with respect to their free energies in the presence
of a magnetic field. We also clarify if Majorana fermions
exist or not in the vortex core using the BdG equation, and
calculate spin densities around the vortex core. We find, in
the presence of axisymmetry, an o vortex is stable for strong
magnetic field and allows spin-degenerate (two) zero-energy
Majorana fermions in its core. This finding may be important
to comprehension of the cooling rate and the changes of
rotating rate of neutron stars. We also show that the profiles
of the core magnetization calculated using the BdG equation
are drastically different from those calculated using only the
order parameter profiles in the GL theory [28,30,50,51].

The remaining part of this paper consists as follows. In
Sec. II, we explain the microscopic equations of the 3P2

superfluid and its axisymmetric condition. In Sec. III, we
show the numerical results: We seek for order parameter
profiles and their free-energy densities on the basis of the
quasiclassical scheme. We also obtain the eigenenergies of
fermion excitations and core magnetizations which consist of
order parameter modulations and fermion bound states using
the BdG equation. In Sec. IV, we provide a summery and brief
discussion about nonaxisymmetric vortices. In Appendix A,
we summarize basis sets of the order parameter and their
matrix representations. In Appendices B and C, we review the
angular momentum operators of Cooper pairs and the rotation
of a basis set, respectively. In Appendix D, we compare
the fermion excitation spectra obtained by solving the BdG
equation and those in the quasiclassical theory.

Throughout the paper, we specify the orthonormal spatial
and spin directions by 1, 2, and 3, and use the notations ·̂ and
·̌ for a 2 by 2 and a 4 by 4 matrix, respectively. Particularly,
σ̂α=1,2,3 is the αth component of Pauli matrices. We also set
h̄ = kB = 1.

II. MODEL AND METHOD

A. Gor’kov equation

First we introduce the microscopic Hamiltonian with a zero
range, and attractive 3P2 force between neutrons [14]:

H = H1 + H2, (1)

H1 =
∫

dr
∑

σ,σ ′=↑,↓
ψ†

σ (r)[h0(r)δσ,σ ′ + Uσσ ′ (r)]ψσ ′ (r), (2)

H2 = −
∫

dr
∑

αβ=1,2,3

g

2
T †

αβ (r)Tαβ (r). (3)
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The second line consists of the kinetic energy h0(r) =
(−∇2

2m − μ) with a chemical potential μ and the Zeeman
energy Û (r) = −VZσ̂3 of the magnetic field parallel to the
third direction. In the third line, the interaction strength g is
positive, and T †(T ) is a pair creation (annihilation) operator
defined by

T †
αβ (r) =

∑
σσ ′

ψ†
σ (r)[t∗

αβ,σσ ′ (i∇̄)ψ†
σ ′ (r)], (4)

Tαβ (r) =
∑
σσ ′

[tαβ,σσ ′ (−i∇̄)ψσ ′ (r)]ψσ (r), (5)

where we use the dimensionless notation ∇̄ ≡ k−1
F ∇. A 2 by

2 matrix in spin space, t̂αβ , is defined for α, β = 1, 2, 3 as

t̂αβ (−i∇̄) = iσ̂2

{
1

2
√

2
[σ̂α (−i∇̄β )

+ σ̂β (−i∇̄α )] − 1

3
√

2
δαβ σ̂ · (−i∇̄)

}
. (6)

We see that [t̂αβ (−i∇̄)]∗ = t̂∗
αβ (i∇̄) and that t̂αβ is symmetric

and traceless regarding the subscripts, namely, Tαβ = Tβα .
We also find that tαβ,σσ ′ = tαβ,σ ′σ . We derive the Gor’kov
equation for Green’s functions defined by

Ǧ(r1, r2; iωn) =
[

Ĝ(r1, r2; iωn) F̂ (r1, r2; iωn)

− ˆ̄F (r1, r2; iωn) ˆ̄G(r1, r2; iωn)

]

=
∫ β

0
dτeiωnτ τ̌3〈Tτ �
(r1, τ ) �
†(r2)〉. (7)

Here Tτ is the time-ordering operator on the imaginary
axis. We have defined ψσ (r, τ ) = eHτψσ (r)e−Hτ and
ψ†

σ (r, τ ) = eHτψ†
σ (r)e−Hτ and the Nambu spinor

�
(r, τ ) = t (ψ↑(r, τ ), ψ↓(r, τ ), ψ†
↑(r, τ ), ψ†

↓(r, τ )). We
perform the Hartree–Fock–Bogoliubov approximation
for H2 while neglecting its contribution to the one body
potential: 〈Tτ Tαβ (r1, τ )ψ†

σ ′′ (r1, τ )ψ†
σ ′ (r2)〉 ≈ 〈Tαβ (r1, τ )〉

〈Tτψ
†
σ ′′ (r1, τ )ψ†

σ ′ (r2)〉. Defining �αβ (r) = g 〈Tαβ (r)〉 =
g 〈Tαβ (r, τ )〉, we introduce the mean field by �̂(r) =
−∑

αβ
1
2 {�αβ (r), t̂∗

αβ (i∇̄)}. The Gor’kov equation is given by

−1̌δ(r1 − r2) = [iωn − ȞBdG(r1)]τ̌3Ǧ(r1, r2; iωn), (8)

ȞBdG(r) =
(

h0(r)1̂ + Û (r) �̂(r)

−�̂∗(r) −h0(r)1̂ − Û T(r)

)
. (9)

The gap equation is represented using the Green function as

�αβ (R) = gT
∑

n

lim
r2→r1

Tr[t̂αβ (−i∇̄1)F̂ (r1, r2; iωn)]

= gT
∑

n

∫
dk

(2π )d
Tr[t̂αβ (k/kF)F̂ (k, R; iωn)]. (10)

B. Eilenberger equation

In a similar way, we have a right-Gor’kov equation. The
quasiclassical transport equation can be obtained by (i) sub-
tracting the right one from the left one, (ii) integrating the
equation over the single particle energy ξk = k2

2m − μ, and

(iii) retaining the contribution from the pair potentials with
Fermi momentum kF. We obtain the Eilenberger equation as

0 = ivF · ∇̄ǧ(kF, R; iωn)

+ [iωnτ̌3 + ǔ(R) + σ̌�(kF, R), ǧ(kF, R; iωn)], (11)

where ǔ = VZdiag(σ̂3, σ̂
∗
3 ), and

σ̌�(kF, R) =
(

0̂ �̂(kF, R)
−�̂†(kF, R) 0̂

)
, (12)

ǧ(kF, R; iωn) =
∮

Cqc

dξ

iπ
Ǧ(k, R; iωn). (13)

The contour Cqc stands for the mean of two-contour contribu-
tions: One is the counterclockwise contour in the half upper ξk

plane, and the other is the clockwise contour in the half lower
ξk plane [71,72]. In the quasiclassical approximation, the gap
equation is reduced to

�̂(kF, R) =
∑
αβ

�αβ (R)t̂∗
αβ (k̄F), (14)

�αβ (R) = gνniπT
∑

n

〈Trt̂αβ (k̄F) f̂ (kF, R; iωn)〉F, (15)

where k̄F = kF/kF and the quasiclassical anomalous propaga-
tor f̂ is defined as

ǧ(kF, R; iωn) =
(

ĝ(kF, R; iωn) f̂ (kF, R; iωn)

− ˆ̄f (kF, R; iωn) ˆ̄g(kF, R; iωn)

)
. (16)

The order parameter tensor Aαβ (R), which is defined as
�̂(kF, R) = ∑

αβ Aαβ (R)σ̂αiσ̂2k̄β , can be expressed as fol-
lows:

Aαβ (R) = −�αβ (R) + �βα (R)

2
√

2
+

∑
γ �γγ (R)

3
√

2
δαβ. (17)

C. Axisymmetric condition

This tensor A has a representation using the third
component of the angular momentum M as A(R) =∑2

M=−2 γM (R)�M , where γM (R) is a scalar function and �M

is a 3 by 3 tensor. The representations of �M are explicitly
shown in Appendix A. The axisymmetric condition, which is
given by (J3 − κ )A(R) = 0 for the total angular momentum
κ , reads

A(R) =
2∑

M=−2

γM (ρ)ei(κ−M )θ�M . (18)

The definitions of angular momentum operators are given in
Appendix B. It is instructive to see the tensor in the cylindrical
representation, in which A = RθACylRT

θ . Note that Rθ denotes
the rotational matrix along the third axis by angle θ . Since
Rθ�MRT

θ = �Me−iMθ , we have

ACyl(R) =
2∑

M=−2

γM (ρ)eiκθ�
Cyl
M , (19)
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FIG. 1. Schematic images of boundary conditions using the d vectors without vorticity κ: dμ(kF, θ ) = ∑
j

∑
M γM (∞)e−iMθ�M,μ j k̄ j . The

arrows and the blue curves of the objects stand for the directions and amplitude of the d vectors, respectively, at kF(k̄3 = 0) and θ , which
are indicated, respectively, by the position of the arrows in each object and by the position of the objects [see panel (b)]. The arrows are
shown with colors, which also show the direction of the d vector for the visibility. Note that the order parameters at the boundary are unitary:
d(kF, θ ) × d∗(kF, θ ) = 0. The largest amplitude points to the direction of the max. EV of Aμi. Panels (a)–(c) represent boundary conditions
at zero magnetic field VZ = 0. They are characterized by the direction of the max. EV of the UN phase. The directions are parallel to (a) the
vorticity, and (b) the radial and (c) angular directions in the plane perpendicular to the vorticity. Panel (d) represents the boundary condition in
the D4-BN phase for field VZ > VZc.

where �
Cyl
M has the same representation as �M but for basis

kF = kρeρ + kθeθ + k3e3, and σ̂ = σ̂ρeρ + σ̂θeθ + σ̂3e3 and

kρ = cos θk1 + sin θk2, (20)

kθ = − sin θk1 + cos θk2, (21)

σ̂ρ = cos θσ̂1 + sin θσ̂2, (22)

σ̂θ = − sin θσ̂1 + cos θσ̂2. (23)

The rotation of the order parameter is also discussed in
Appendix C. There are several choices of γM (ρ → ∞), and
the schematic pictures of representative cases are shown in
Fig. 1, using the d vectors without vorticity κ: dμ(kF, θ ) =∑

j

∑
M γM (∞)e−iMθ�M,μ j k̄ j . Panels (a)–(c) are for the UN

phase, while panel (d) is for the D4-BN phase.

D. Free energy

We calculate the free energy on the basis of the Luttinger–
Ward formalism. By solving the Eilenberger equation com-
bined with the gap equation, we have determined the self
energy σ̌ self-consistently. Let us define an auxiliary Green
function in the Gor’kov equation as

Ǧ−1
λ (r1, r2; iωn) = Ǧ−1

0 (r1, r2; iωn) − λ�̌(r1, r2; iωn). (24)

Note that Ǧλ=0 = Ǧ0 and Ǧλ=1 = Ǧ. Following Ref. [73],
we obtain the difference of the thermodynamic potentials
between the superfluid and normal states as

Jsn = νn

2

∫ 1

0
dλSp

[
σ̌�

(
ǧλ − 1

2
ǧ

)]
, (25)

where Sp[· · · ] = iπT
∑

n

∫
dR

∫
d k̂
4π

Tr[· · · ] and ǧλ is the so-
lution to the equation

[iωnτ̌3 + ǔ + λσ̌�, ǧλ] = 0. (26)

When the system is axisymmetric, we obtain the free-
energy density as a function of ρ with � = πR2�3

Jsn

�
= νnT 2

c

(R/ξ0)2

∫
d ρ̄ρ̄J̄sn(ρ) ≡ νnT 2

c

(R/ξ0)2
J̄sn, (27)

J̄sn(ρ) ≡
∫ 1

0
dλ

iπT

T 2
c

∑
n

Tr

〈
ˆ̄�

(
f̂λ − f̂

2

)
− �̂

(
ˆ̄fλ −

ˆ̄f

2

)〉
F

,

(28)

where Tr in the second line stands for the trace of the 2 by 2
matrix in the spin space. We show the dimensionless total free
energy J̄sn and free-energy density J̄sn(ρ) in Sec. III.

E. Bogoliubov–de Gennes equation

The BdG equation is derived from the equation i∂tψ
(†)
σ =

[ψ (†)
σ , H] using a mean-field approximation and �
(r, t ) =∑
ν e−iEν t �uν (r)αν :

Eν �uν (r) = ȞBdG(r)�uν (r), (29)

�uν (r) = t [u↑,ν (r), u↓,ν (r), v↑,ν (r), v↓,ν (r)]. (30)

Here we note that

�̂(r) = 1

2

∑
αβ

{�αβ (r), t̂αβ (−i∇̄)}

= 1

2

∑
αβ

{Aαβ (r), (−i∇̄)β}σ̂αiσ̂2

= 1

2

∑
αβ

∑
M

{γM (r), (−i∇̄)β}�M,αβ σ̂αiσ̂2.

We use the cylindrical coordinate (ρ, θ, r3) and note the
following:

∂

∂r1
± i

∂

∂r2
= e±iθ

(
∂

∂ρ
± i

1

ρ

∂

∂θ

)
. (31)
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The eigenvector can be given by �uν (ρ, θ, r3) =
eik3r3√

�3
Ǔ�,κ (θ )�un,�,k3 (ρ) with a 4 by 4 diagonal matrix

Ǔ�,κ (θ ) = 1√
2π

diag(ei�θ , ei(�+1)θ , ei(�+1−κ )θ , ei(�−κ )θ ) and
the radial part to be determined:

�uν=(n,�,k3 )(ρ) =

⎛⎜⎜⎝
u↑n,�,k3 (ρ)

u↓n,�+1,k3 (ρ)
v↑n,�+1−κ,k3 (ρ)
v↓n,�−κ,k3 (ρ)

⎞⎟⎟⎠, (32)

because of the equations [ȞBdG, J31̌ − κ
2 τ̌3] = 0 and

[ȞBdG, (−i∂3)1̌] = 0. We may use the Bessel functions
and their zeros for expansion of the radial part (w = u or v):

wσν (ρ) =
∑

k

φ�,k (ρ)wσν,k, (33)

φ�,k (ρ) = ±√
2J�(β�,kρ/R0)

R0J�±1(β�,k )
. (34)

Here β�,k denotes the kth zero of the Bessel function J�. The
orthonormalization condition is given by∫ R0

0
dρρφ�,k (ρ)φ�,k′ (ρ) = δk,k′ . (35)

We obtain the Hamiltonian matrix to be diagonalized as
[ȞBdG(�, k3)]k,k′ = ∫ R0

0 dρρ�̌�,k (ρ)ȞBdG(ρ, �, k3)�̌�, k′ (ρ)
with �̌�,k (ρ) = diag(φ�,k, φ�+1,k, φ�+1−κ,k, φ�−κ,k )(ρ), where
the eigen equation takes the following form:∑

k′
[ȞBdG(�, k3)]k,k′ �uν,k′ = Eν �uν,k . (36)

We remark that there is a relation between the positive and
negative eigenvalues. When we fix κ = 1, the relation reads
the one between the state with ν = (n, �, k3) and the state with
ν̄ = (n̄,−�,−k3) for some n̄:

Eν̄ = −Eν, �uν̄ (r) = [τ̌1�uν (r)]∗. (37)

The Bogoliubov transformation is given by

ψσ (r) =
∑

ν:Eν>0

[uσ,ν (r)αν + v∗
ν (r)α†

ν ]. (38)

We calculate the expectation value of the third component of
local spin S3(r) = 1

2 [ψ†
↑(r)ψ↑(r) − ψ

†
↓(r)ψ↓(r)] as

〈S3(r)〉 = 1

2

∑
ν:Eν>0

{(|u↑ν (r)|2 − |u↓ν (r)|2) f (Eν )

+ (|v↑ν (r)|2 − |v↓ν (r)|2)[1 − f (Eν )]}, (39)

where f (Eν ) = 〈α†
ναν〉 = 1/(eEν/T + 1) is the Fermi distribu-

tion function.

III. NUMERICAL RESULTS

In this section, by self-consistently solving the Eilenberger
Eq. (11) and gap Eq. (15) with the boundary conditions as
shown in Fig. 1, we show the core structure of stable o and
v vortices in 3P2 superfluids. Using the BdG Eq. (29) with
the gap function obtained from the quasiclassical theory, we

discuss excitation spectra and magnetizations around the vor-
tices. We set T = 0.4Tc and ωc = 10Tc for all the calculations
shown here. The units of energy and length are, respectively,
Tc and ξ0 = vF/(2πTc).

Since we show several kinds of single vortices, we summa-
rize our classification rule here. Their differences appear ow-
ing to the symmetry of order-parameter components around
the core and the boundary conditions. Regarding the sym-
metry around the core, we construct o and v vortices; They
are distinguished whether a P3 symmetry exists or not. This
classification is based on the context of the superfluid 3He-B
phase [57], and details are discussed in the next subsection.
As for the boundary conditions, we label 3, ρ, θ for vortices
in the UN or D2-BN phase, which depend on the boundary
conditions, while use no label for the D4-BN phase. Let VZc

be a transition magnetic field between the D2-BN and D4-BN
states. For magnetic field VZ < VZc, where either UN or D2-
BN state realizes, the name is determined by the direction of
the maximum eigenvalue (max. EV) of the order parameter
tensor. We consider three representative directions: the third,
radial and angular directions. At zero magnetic field, the
schematic images of the boundary conditions for these three
cases are shown in Figs. 1(a)–1(c), which stand for 3, ρ,
and θ vortices, respectively. In the presence of magnetic field
parallel to the third axis, the boundary conditions are obtained
by transforming Figs. 1(b) and 1(c) continuously, though we
do not explicitly show their schematic images. Note that when
the magnetic field is parallel to the direction of the max. EV,
such an order parameter is unstable and changes its direction
of the max. EV. Therefore, we do not study magnetic field
effects on the 3 vortex. For VZ � VZc, the D4-BN state is
realized and the boundary conditions of ρ and θ become
the same. We name vortices in that region “D4-BN vortex.”
When we have several configurations with the same boundary
condition, we just add further labels 1 and 2 to the above rules
to distinguish them, e.g., θ1 and θ2 and so on.

A. Zero magnetic field

First we consider the zero-field case, where the equilibrium
state is the UN state. The state can be characterized by the
direction of the max. EV of the order parameter matrix A. A
simple form of single-vortex states is given when the max. EV
points to the third direction, i.e., A = A0diag(−1/2,−1/2, 1)
[Fig. 1(a)], which we call the 3 vortex. The boundary con-
dition is imposed at ρ = Rc as A(Rc, θ ) = γ0eiκθ�0 with the
vorticity κ , where γ0 is the value of the order parameter in
the uniform state. We fix κ = 1 and first show the possible
axisymmetric vortex solutions and compare the results with
those for 3He-B. In the earlier work using GL theory up to
the sixth-order term [30], the axisymmetric form of A(R) =
γ0(ρ)eiκθ�0 is only considered. We investigate other solutions
in the form of Eq. (18) in an analogy to the case of 3He-B.

Figures 2(a) and 2(b) show the spatial profiles of the order
parameter. The axisymmetric form of A(R) = γ0(ρ)eiκθ�0 in
Ref. [30] corresponds to γM=0(ρ) in panel (a) with γM=±2 =
0. We remark that it does not satisfy the gap Eq. (15) since
the right-hand side in Eq. (15) has nonzero components
with M = ±2. Instead, we obtain the profile shown in panel
(a) with nonzero induced components γM=±2(ρ), which is
the so-called “o vortex” in the context of 3He B-phase.
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FIG. 2. Order parameter profiles of (a), (c), (e) o vortices and (b), (d), (f) v vortices in UN states. At the boundary, the max. EV of the UN
state points to the third direction as shown in Fig. 1(a) for panels (a) and (b), while it points to the angular direction as shown in Fig. 1(c) for
panels (c)–(f) [(c, d) θ1 vortex and (e, f) θ2 vortex, see the text]. The relation between the color and the component γM (ρ ) is available in panel
(c). The inset in each panel shows the profile around the vortex core ρ � 3ξ0. The components in o vortices are slightly different from those in
v vortices owing to the induced components γM=±1.

The o vortex is the most symmetric vortex in terms of the
three discrete symmetries: They are called P1, P2, and P3

symmetries with P1P2P3 = 1. The physical meaning of these
symmetries are, respectively, inversion, magnetic mirror, and
magnetic π rotation symmetries and the details are referred
to as Refs. [57,65,66,74]. The presence of these symmetries
is equivalent for 3P2 superfluids to the case in which the
components of M = ±2 and 0 are real, and those of M = ±1
are zero. Perturbations with nonzero γ±1 change it to “v
vortex” shown in panel (b). The v vortex is characterized by
the presence of P2 symmetry and broken P1 (P3) symmetry. It
is represented by five real components γM=−2,...,2. Since the
v vortex has the unwinding component, M = 1, the vortex
core is filled with γ1. The power law of γ±1 in the asymptotic
region is 1/ρ, while γ0,±2 approaches to the bulk values with
1/ρ2. This asymptotic behavior is the same as that of the v

vortex in the 3He B-phase. The difference may appear owing
to the restriction of the total angular momentum to the J = 2
sector. The v vortex in the 3He B-phase is considered to have
the A-phase core since the A-phase component at ρ = 0 is
more dominant than the β-phase component. Only these two
components are allowed to be nonzero at the origin, and they
have opposite signs. However, in the case of 3P2 superfluids,
these two components always have the same magnitude with
the same sign because the order parameter tensor is symmet-
ric. We also calculate free-energy densities of these vortices.
Figure 3(a) shows the free-energy densities of these vortices
measured from the uniform solution, i.e., δJsn(ρ) → 0(ρ →
∞) with 1/ρ2. The integrated values shown in its legend
imply that the v vortex is the most stable. It seems to gain
the condensation energy at the vortex center by filling its
core with γ1. The o vortex has less free energy owing to the
condensation energy of γ±2 than the vortex constructed by
γ0 without any induced components, i.e., γM �=0 = 0, which is
labeled “w/o ind.” in Fig. 3(a).

We show other possible boundary conditions of axisym-
metric vortices in the absence of the magnetic field. They
are more relevant for finite magnetic field because the above
vortex states are unstable against the magnetic field parallel
to the third axis. We consider two representative directions
of the max. EVs, which are the radial and angular directions
[Figs. 1(b) and 1(c), respectively]. At zero field, we construct
solutions for the angular direction only and we will discuss
the case of the radial direction later in the presence of the
magnetic field. As far as we investigated, we have found two
kinds of solutions θ1 [Figs. 2(c) and 2(d)] and θ2 [Figs. 2(e)
and 2(f)], each of which has vortices with a core (o vortex) and
without a core (v vortex). We label panels (c–f) “θ1-o,” “θ2-
o,” “θ1-v,” and “θ2-v,” respectively. In all the cases, there are
structures similar to a domain wall ring in 10 � ρ/ξ0 � 30,
and structures in the domain including the vortex center are
well-described by those in Figs. 2(a) and 2(b). In the middle
and right panels in Fig. 2, the order parameters in the domains
including their vortex cores have opposite signs. The order
parameters around the domain wall rings are also different.
In the middle panels in Fig. 2, γ0(ρ) does not cross the zero
values. We discuss which vortices are the most stable on the
basis of the free energy. The free-energy density for each
profile is shown in Fig. 3(b). We see that the free energies
of the θ1 vortices [Figs. 2(c) and 2(d)] are lower than those
of the θ2-vortices [Figs. 2(e) and 2(f)]. For the θ1 vortices,
the core region and the bulk region are gradually connected,
accompanied by loss of the free energy with a gentle tail, as
indicated by the red-solid, and pink-dashed curves in Fig. 3.
The θ2-o and θ2-v vortices have bump structures around the
connecting regions in their free-energy densities, as indicated
by the blue-solid, and light-blue-dashed curves. The differ-
ence in these structures determine the free-energy difference
between the θ1 and θ2 vortices. The difference between o and
v vortices can be seen in the vortex core, where a v vortex
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FIG. 3. (a) Free-energy densities for vortices with max. EV parallel to the third direction. The integrated values from 0 to Rc � 100 is given
in the legend. The curves labeled as “o vortex,” and “v vortex” are obtained on the basis of the order parameter profiles shown in Figs. 2(a) and
2(b), respectively. The curve labeled as “w/o ind.” is obtained for γM=0(ρ ) shown in Fig. 2(a) with γM �=0 = 0. (b) Free-energy densities for
several order parameter configurations. The labels from the top to the bottom, showing the corresponding order parameter profile, are put in the
same order as the panels in Figs. 2(a)–2(f). Their integrated values are also shown in the legend. (c) Free-energy densities in the logarithmic
scale with 1/ρ2 behavior for an eye-guide. The color plots are the same as those in panel (b).

has the condensation energy. In Fig. 3(c), the power law in
the asymptotic region is 1/ρ2 and its coefficient depends on
the boundary condition, i.e., it does not depend on induced
components or the difference in profiles around the cores. This
hydrodynamic part proportional to 1/ρ2 gives a logarithmic
divergence log Rc in the free energy δJsn. Therefore, the 3
vortex has much lower energy than any of θ vortices in the
absence of magnetic fields, although it may be unstable in the
presence of a magnetic field.

Among all possible vortices, the o-vortex states have
topologically-protected zero-energy modes bound to vortices
regardless of the boundary condition at ρ → ∞. Following
Refs. [64–66], we start with the semiclassical approximation
where the Hamiltonian varies slowly in the real-space coordi-
nate. The spatial modulation due to a vortex line is considered
as adiabatic changes in the Hamiltonian as a function of the
real-space coordinate surrounding the defect with an angle θ .
Then, the Hamiltonian is obtained in the base space, (k, θ ), as

Ȟ(k, θ ) =
(

ε̂(k) �̂(k, θ )

�̂†(k, θ ) −ε̂T(−k)

)
, (40)

where ε(k) is composed of the kinetic energy h01̂ and the Zee-
man energy Û . �̂(k, θ ) is the asymptotic form of the vortex
order parameter at ρ → ∞ that satisfies the boundary condi-
tion in Fig. 1. The o vortex preserves the P3 symmetry, that is,
the magnetic π rotation symmetry. Then, one can construct
the chiral operator �̌ as a combination of the particle-hole
exchange operator and P3 operator, and the BdG Hamiltonian
Ȟ(k, θ ) preserves the chiral symmetry, {�̌, Ȟ(k, θ )} = 0 for
k2 = k3 = 0. As long as the chiral symmetry is preserved, one
can define the one-dimensional winding number for θ as

w1d(θ ) = − 1

4π i

∫
dk1tr[�̌Ȟ(k, θ )∂k1Ȟ(k, θ )]k2=k3=0, (41)

where w1d(θ = 0) = 2 and w1d(θ = π ) = −2 for the o-
vortex state regardless of the boundary condition. Then, the
topological invariant is defined as the difference of w1d(θ ),

w1d = w1d(0) − w1d(π )

2
= 2, (42)

which ensures the presence of the two zero-energy states at
k3 = 0. Hence, a pair of zero energy states is guaranteed by
the P3 symmetry in the o-vortex state.

Solving the BdG Eq. (29), we here investigate the excita-
tion spectra and core magnetizations for the o and v vortices
in the cases of max. EV 3, θ1, and θ2. The effects of magnetic
field are discussed in the next subsection. Here we set kFξ0 =
4 and R0/ξ0 = 80. Figure 4 shows the energy spectra of quasi-
particles with k3 = 0. The local density of states (LDOS),
which is comparable with the eigen spectra, is shown in
Appendix D for θ2 vortices. We do not show the helical edge
modes which appear in all the cases. Another common feature
is that there are two spin degenerated Majorana zero modes
with � = 0 in o-vortex cores, while they mix up and split in
v-vortex cores, as is known in 3He-B, and the anomalous
branches cross at � = ±�c. The presence of the zero-energy
modes is consistent with topological consideration shown in
Eq. (42). In addition, the cases of o and v vortices with
max. EV along the third direction [in Figs. 4(a) and 4(b),
respectively] are almost the same as those of 3He-B. Here we
show the spin polarization rate using the color bar, which is
defined by

Ps =
∫ R0

0
dρρ

∑
σ

σ (|uν,σ (ρ)|2 + |vν,σ (ρ)|2). (43)

The Hamiltonian is block diagonalized by spin sectors Ps =
±1 for the o vortex at k3 = 0. In the 3He-B phase, the spin-
splitting of the vortex core bound states has been found in
Refs. [75,76]. However, for the v vortex Ps takes neither −1
nor 1 around small � because the mixing of the spin sectors is
caused by γ1 and γ−1 which are induced in the v-vortex core.

Then we see the case of max. EV-θ1, shown in the middle
panels. In Fig. 4(c), there are three chiral anomalous branches
with spin-down crossing at � = 0 and � � ±6. The only one
branch appears for the spin up component with the opposite
angular velocity, which is the slope at � = 0. The induced
components with γM=±1 gap out a pair of chiral branches
with spin-up and spin-down crossing at � = 0, as seen in
Fig. 4(d). The other two chiral anomalous branches with
mainly spin-down component are present, but they do not
possess topological zero modes.

In the case of max. EV-θ2, excitation spectra with
small angular momentum, |�| � 15, are similar to those of
max. EV-3. The sign of the angular velocities of two spin
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FIG. 4. Eigen spectra obtained by solving BdG equations. Each panel shows the spectra for the corresponding vortex with the profile
in Fig. 2. We input the pair potentials obtained as self-consistent solutions to the quasiclassical equations into the BdG equation with a
quasiclassical parameter kFξ0 = 4. For interests in Majorana fermions, we show the eigenspectra for k3 = 0. A horizontal (vertical) axis is the
angular momentum (eigenenergy) of the quasiparticle, while the color plot stands for the spin polarization rate as defined in the main text.

sectors near � = 0 are the same. Topological structures of the
anomalous branches are the same as those of max. EV-θ1;
as � decreases (increases), three branches (a single branch)
carry (carries) spin-down (spin-up) quasiparticles from neg-
ative energy to positive energy [see Figs. 4(c) and 4(e)]. In
the presence of γM=±1 components, two of the anomalous
branches turn to two branches which cross zero of energy an
even number of times. This topological structure is the same
as that in Fig. 4(d).

In summary of the excitation spectra, the adiabatic pump-
ing under a virtual process with increasing an angular mo-
mentum, two quasiholes are carried into the negative energy
region as a net change in any case. In terms of spins, two
spin-down holes are created for max. EV-θ1 and θ2, while
nothing changes for max. EV-3.

Next we see the polarization of spins around the vortex
core. We calculate it using Eq. (39) in addition to the calcula-
tion using the formula given by

〈S3(r)〉 = 1

3
ν ′

n(εF) ln

(
1.13

�BCS

Tc

) ∑
ν=±,0

(∣∣AAM
+ν

∣∣2 − ∣∣AAM
−ν

∣∣2)
= 1

6
ν ′

n(εF) ln

(
1.13

�BCS

Tc

)∑
M

M|γM (ρ)|2. (44)

The magnetization is basically zero when the system is
particle-hole symmetric. Equation (44) incorporates the con-
tribution from the slope of the density of states at the Fermi
energy. The formula based on the microscopic theory Eq. (39)
includes other particle-hole asymmetric contributions such as
the one in the gradient expansions in the mixed representation
of the order parameter. To calculate the spin density and the
excitation spectra beyond the first-order quantum correction

correctly, we need to take account of the feedback effect of
the magnetization profile to the order parameter profile.

Figure 5 shows the polarization of spins 〈S3(ρ)〉 for several
cases with comparison between Eqs. (39) and (44). We set
an energy cut-off of the summation in Eq. (39) to 15Tc. In
the case of o vortices shown in Figs. 5(a), 5(c), and 5(e),
the magnetization at the origin is always zero in the GL
picture because the vortex has a normal core [Fig. 5(a)].
However, in the microscopic point of view, the quasiparticles
with the angular momentum � = 0 and −1 contribute to the
spin density at the origin and thus there are finite spontaneous
magnetizations as shown by red circles and in the inset of
Fig. 5(a). In Figs. 5(c) and 5(e), we see finite magnetizations
far from the vortex core even for the GL picture. They are
attributed to the large difference between M = 2 and −2
components owing to the domain structure. In addition, the
magnitudes of these components are large because they are
finite in the bulk region. Sign reversals for ρ � ξ0 are related
to the change of the magnitude between M = 2 and −2. The
number of sign reversals in Figs. 5(a), 5(b) and 5(c) are,
respectively, 1, 0, and 2. This character is consistent with the
order parameter profiles.

In the case of the v vortices shown in Figs. 5(b), 5(d), and
5(f), finite magnetization occurs at the origin even in the GL
picture because there is the finite order parameter as well.
However, the peak position is shifted in the microscopic point
of view by ρ = bc, because an anomalous branch crosses at
the finite angular momentum �c ≈ kFbc.

B. Finite magnetic field

In this subsection, we work out effects of the magnetic
field. In the 3He B-phase, there are several reports on the
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FIG. 5. Profiles of spin densities. Each panel shows the spin densities for the corresponding vortex with the profile shown in Fig. 2. The
red curves with solid circles are obtained on the basis of Eq. (39), while the blue curves are calculated using order parameter profiles. The inset
in panel (a) shows the spatial profiles of the bound state contribution (black-open squares) and the continuum states contribution (green-solid
squares). They compose the total spin profile equivalent to the red circles in the main plot.

effects on v and double-core vortices on the basis of the
GL theory [61,62]. In this paper, we restrict ourselves in
the axisymmetric cases and study the field effects on o and
v vortices. We show the free energies as functions of the
magnetic field in Figs. 6(a) and 6(b). For the magnetic field

FIG. 6. Magnetic field dependence of free energy for several
vortices. (a) Each free energy is measured from the corresponding
uniform state. (b) Free-energy difference of o vortices from corre-
sponding v vortices are shown. At VZ/Tc = 0.85 and 0.9, the energies
of both D4-BN-o1 and D4-BN-o2 vortices are measured from that of
the unique v vortex.

lower than the critical field between the D2-BN and D4-BN
phases, we distinguish the species of vortices by the direction
of the max. EVs: ρ, θ , and 3. Note that we have seen that
two solutions θ1 and θ2 are possible at zero field. The free
energies of θ2 vortices become lower than those of θ1 vortices
for VZ/Tc � 0.15. This may be understood as follows: The
magnetic field destabilizes the 3 vortex. An area of the core
consisting of the 3 vortex reduces, namely, the position of
the bump structure goes inside. The loss of the free energy
at the bump region decreases because the circumstance along
the bump structure becomes small. However, the difference
in the free-energy density decays slowly for the θ1 vortex,
and it is not affected very much by changing the domain
position.

We can construct ρ vortices for finite VZ, which have
domain structures as well as θ -vortices. There are o and v

vortices under the axisymmetry. We show the profile of the
v vortex at VZ = 0.2Tc in Fig. 7(a). It has a domain structure
similar to a θ2-v vortex. It should be noted that the gradient
energy of a ρ vortex is higher than that of a θ vortex in
contrast to the GL theory. This difference may be attributed
to the higher order corrections in the GL expansion. In the
D4-BN phase, the boundary conditions of ρ and θ vortices
are equivalent, and the branches of ρ and θ vortices in the
state space merge into one branch. Actually Fig. 6 shows that
the free energy of the θ2 vortex becomes the same as that of
the ρ vortex at VZ = VZc. However, the θ1-o and θ1-v vortices
are destabilized for a decay into θ2-o and θ2-v vortices, re-
spectively, by applying the field. In particular, the θ1-o vortex
becomes unstable for VZ � 0.5Tc and it is different from the
ρ-o vortex even for VZ � VZc. We remark that structures of
the excitation spectra for ρ vortices are similar to those for θ2
vortices as expected from the similarity in their profiles.

We discuss the field effects in the D4-BN phase. The
axisymmetry imposes the unique boundary condition except
for the global gauge transformation [see Fig. 1(d)] because
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FIG. 7. Order parameter profiles of (a) the case at VZ/Tc = 0.2 with the boundary condition schematically shown in Fig. 1(b), and (b)–(d)
the cases of v, o1, and o2 vortices in D4-BN phase at VZ/Tc = 0.9, respectively. We also show the order parameter profile and excitation spectra
at VZ = 1.5Tc in panels (e) and (f), respectively. The profile in the vicinity of the vortex center is shown in the inset of each panel.

the amplitude of the order parameter in the uniform state is
isotropic in the momentum space. For VZ � 0.9Tc, the solu-
tions for o and v vortices can be obtained as ones connected
smoothly to the ρ and θ2 vortices. Their free energies are
displayed in Figs. 6(a) and 6(b) by inverted triangles. We
find that there are different solutions only for the o vortices
at VZ = 0.85Tc and 0.9Tc. We call these two o vortices in
the D4-BN phase “D4-BN-o1” and “D4-BN-o2” vortices. The
former smoothly connects to ρ-o and θ2-o vortices, as shown
by the red-inverted triangles in Figs. 6(a) and 6(b), while
the latter is shown by blue rhombuses. For VZ � 0.9Tc, the
D4-BN-o1 vortex is destabilized and the D4-BN-o2 vortex
becomes the unique o-vortex solution. In Figs. 7(b)–7(d), we
show the solutions of D4-BN-v, D4-BN-o1, and D4-BN-o2
vortices, respectively, at VZ = 0.9Tc. We see slight differences
between Figs. 7(c) and 7(d), e.g., the initial slopes of M = 2
components, but we do not discuss it in details. Note that the
global π gauge transformation is necessary to see a smooth
connection between Figs. 2(e) and 7(c) and that between
Figs. 2(f) and 7(b).

From Fig. 6(b), we observe that the free-energy difference
between the o2 and v vortices decreases after discontinuous
transitions from the D4-BN-o1 to D4-BN-o2 vortices. Finally,
the difference vanishes continuously at around VZ ∼ 1.4Tc;
the M = ±1 components of the v vortices are no longer finite,
and the axisymmetric vortex recovers the P1(3) symmetry. The
spatial profile of the order parameter at VZ = 1.5Tc is shown in
Fig. 7(e). As the Majorana fermions in the o-vortex core of the
superfluid 3He B-phase is protected by the P3 symmetry, we
have confirmed the existence of the Majorana fermion in the
D4-BN phase within the axisymmetry as shown in Fig. 7(f).
It should be emphasized that the microscopic calculation of

a single vortex in multicomponent superfluids had not been
done for finite Zeeman field so far even in the context of the
superfluid 3He-B. We have microscopically demonstrated for
the first time that the strong magnetic field actually eliminates
M = ±1 components, which break the P3 symmetry.

We give a few comment on axisymmetric vortices in the
presence of the magnetic field. In the case of the superfluid
3He-B phase, the GL theory suggests that the nonaxisymmet-
ric double-core vortex is still stable even though the v vortex
becomes unstable in the presence of a strong magnetic field.
We also emphasize that situations may be different in the 3P2

superfluids. In this case, the magnetic field affects components
which are unaffected in the 3He-B phase, through the property
of symmetric tensor, and thereby we expect that the strong
magnetic field excludes the possibility of the double-core
vortex which is stable in the 3He-B phase. However, a single
vortex in D4-BN phase is split into two half-quantized vortices
in the GL theory [50] using different boundary conditions. It
remains important to study a possibility of nonaxisymmetric
vortices in 3P2 superfluids and the presence of topological
zero modes on the basis of microscopic theory.

IV. SUMMARY AND DISCUSSION

We have studied axisymmetric vortices in 3P2 superfluids,
using microscopic theory: the Eilenberger equation to deter-
mine the order parameters and the BdG equation to study the
eigenenergies and the core magnetization. We have found that
several features as a multicomponent superfluid are common
to the superfluid 3He-B phase, though they are overlooked in
the GL theory for 3P2 superfluids, e.g., the existence of the
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v vortex. We have shown that the profiles of the core mag-
netization calculated using the BdG equation are drastically
different from those calculated using only the order parameter
profiles calculated in the GL theory. We have demonstrated
that the o vortex is the most stable axisymmetric vortex in
the presence of a strong magnetic field, and have found two
zero energy Majorana fermions in the o-vortex core. This
observation is based on the microscopic calculation in the
presence of the magnetic field for multicomponent superfluids
and the P3 symmetry argument.

One of open questions is whether two Majorana zero
modes in the o vortex give a nontrivial non-Abelian statistics,
in contrast to the conventional case of one Majorana fermion
zero mode in a vortex resulting in non-Abelian statistics
among vortices [77], which can be generalized to odd num-
bers of Majorana fermions [78–80]. In the presence of the
mirror symmetry, a possibility of the non-Abelian statistics of
spin-degenerated Majorana zero modes are considered [81].

The case of a nonaxisymetric case is one of the most impor-
tant extensions of the present work. Although the quadrupole
deformation leads to the nonaxisymmetric double-core vor-
tex in the 3He-B phase, the order parameter tensor of 3P2

superfluids is restricted to symmetric traceless one and it is
nontrivial whether the same deformation may occur or not
[82]. Thus, we should take account of a general symmetric
deformation of an o vortex to a nonaxisymmetric vortex also
in terms of the protection of Majorana fermions [83–86]. It
is also important whether 1/2 quantized non-Abelian vortices
in the D4-BN phase [50] admit zero-energy fermions in their
cores, and if so whether it may give a novel non-Abelian
statistics.

In this paper, we have focused on vortices in the nematic
phases, which are the most stable 3P2 superfluid phases in the
weak coupling regime under no rotation. However, neutron
stars are dense neutron matter under extreme conditions, such
as rapid rotation. Strong coupling effect and rapid rotation
might essentially change the superfluid phase diagram, and
make the cyclic phase and the ferromagnetic phase com-
petitive to the nematic phases [52,56]. In particular, it has
been found that the cyclic phase admits the 1/3 quantized
non-Abelian vortices [87,88]. It is important to explore the
microscopic structures of vortices and existence of Majorana
zero modes in the cyclic and the ferromagnetic phase in 3P2

superfluids.
Finally, applications of fermion zero modes to neutron

star physics such as contribution to cooling rate and vortex
dynamics remain as an important future work [67].
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APPENDIX A: REPRESENTATION OF COOPER PAIRS

In this Appendix, we summarize the basis for order pa-
rameter and matrix representations. We consider the two basis
sets for Aμ j . In one basis, μ and j take 1, . . ., 3, and in the
other basis they take +, 0,−. We distinguish them by calling
Cartesian (Car) and Angular Momentum (AM), respectively.
We denote them by ACar and AAM. Here the relations between
two basis sets are given by

k± = k1 ± ik2√
2

, k0 = k3, (A1)

τ̂± = τ̂1 ± iτ̂2√
2

, τ̂0 = τ̂3, (A2)

with τ̂μ=1,2,3 ≡ iσ̂μ=1,2,3σ̂2. The matrix for the transformation
is given by

AAM = UTU T
4 ACarU4UT, (A3)

with

U4 = 1√
2

⎛⎝ 1 1 0
−i i 0
0 0

√
2

⎞⎠ UT =
⎛⎝1 0 0

0 0 1
0 1 0

⎞⎠. (A4)

Then we review the decomposition of triplet p-wave pair-
ing with respect to the total angular momentum. A Cooper pair
has L = 1 and S = 1, and thus the total angular momentum
J = L + S takes J = 0, 1, 2: (L = 1) ⊗ (S = 1) = (J = 0) ⊕
(J = 1) ⊕ (J = 2). The order parameter tensor ACar

μν , which is
defined by dμ = ACar

μν k̄ν , satisfies the following properties:

A ∝ 1 for J = 0, (A5)

AT = −A for J = 1, (A6)

AT = A and TrA = 0 for J = 2. (A7)

Next, we see the decomposition of traceless and symmetric
tensor, AJ=2, into the irreducible representations: �M=−2,...,2:
A = ∑

M γM�M . The basis �M in Cartesian representation is
defined so that

(�M )∗ = (−1)M�−M, Tr�M�∗
M ′ = δM,M ′ . (A8)

Therefore, we obtain in Cartesian representation

�Car
±2 = 1

2

⎛⎝ 1 ±i 0
±i −1 0
0 0 0

⎞⎠, (A9)

�Car
±1 = 1

2

⎛⎝ 0 0 ∓1
0 0 −i

∓1 −i 0

⎞⎠, (A10)

�Car
0 = 1√

6

⎛⎝−1 0 0
0 −1 0
0 0 2

⎞⎠. (A11)

013193-11
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The basis set in terms of the order parameter is explicitly
written down, through �̂M (k) = �M,μik̄iτ̂μ, as

�̂±2(k) = k̄1 ± ik̄2√
2

τ̂1 ± iτ̂2√
2

= k̄±τ̂±, (A12)

�̂±1(k) = 1√
2

(
∓k̄3

τ̂1 ± iτ̂2√
2

∓ k̄1 ± ik̄2√
2

τ̂3

)
= ∓ 1√

2
(k̄0τ̂± + k̄±τ̂0), (A13)

�̂0(k) = 1√
6

(−k̄1τ̂1 − k̄2τ̂2 + 2k̄3τ̂3)

= 1√
6

(−k̄−τ̂+ − k̄+τ̂− + 2k̄0τ̂0). (A14)

The orthonormal basis sets in momentum and spin spaces are
given, respectively, by

|±1〉k = ∓k̄±, |0〉k = k̄0, (A15)

|±1〉s = ∓τ̂±√
2

, |0〉s = τ̂0√
2
, (A16)

where 〈·|·〉k = 3
4π

∫
d cos θdφ · · · , and 〈·|·〉s = Tr· · ·. For

these notations, �̂M (k) are represented as

�̂±2 =
√

2 |±1〉k |±1〉s =
√

2|2,±2〉J , (A17)

�̂±1 = |±1〉k |0〉s + |0〉k |±1〉s =
√

2|2,±1〉J , (A18)

�̂0 =
√

2√
6

(|1〉k |−1〉s+ |−1〉k |1〉s+ 2 |0〉k |0〉s)=
√

2|2, 0〉J .

(A19)

In angular momentum representation, �M are described as

�AM
±2 = 1

2

⎛⎝1 ± 1 0 0
0 0 0
0 0 1 ∓ 1

⎞⎠, (A20)

�AM
±1 = 1

2
√

2

⎛⎝ 0 −1 ∓ 1 0
−1 ∓ 1 0 1 ∓ 1

0 1 ∓ 1 0

⎞⎠, (A21)

�AM
0 = 1√

6

⎛⎝ 0 0 −1
0 2 0

−1 0 0

⎞⎠. (A22)

APPENDIX B: ANGULAR MOMENTUM

Here we summarize the definitions of angular momentum
operators for Cooper pairs, which are given by

[LαA(R)]Car
μi = [(

Lext
α + Lint

α

)
A(R)

]Car
μi

= (−iεαβγ rβ∂γ ACar
μi (R) + ACar

μ j (R)iεα ji
)
. (B1)

The antisymmetric tensor in the last term can be regarded as
the matrix acting on the right subscript of A. The spin angular
momentum operator is given by

[SαA(R)]Car
μi = [−iεαμνACar

νi (R)
]
. (B2)

The total angular momentum is given by J = L + S = Lext +
J int . For the irreducible representations, the third component

of the angular momentum J int
3 can be calculated as

J int
3 �M = (

Lint
3 + S3

)
�M = M�M . (B3)

APPENDIX C: ROTATION OF TRIAD

In this Appendix, we discuss rotations of a basis set
of the order parameter for intuitive understanding of our
boundary conditions. Let û, v̂, ŵ be the triad. Here, ŵ = 3̂,
and û, v̂ are obtained by rotation 1̂ and 2̂ about 3̂. Tensors
discussed above are described using 1̂, 2̂, 3̂. For example,
in the Cartesian representation, �Car

M=2,μν = (̂1μ1̂ν − 2̂μ2̂ν +
î1μ2̂ν + î2μ1̂ν )/2. We consider the following triad:

û = cos ϕ1̂ + sin ϕ2̂, (C1)

v̂ = − sin ϕ1̂ + cos ϕ2̂. (C2)

Instead, we can write (̂u, v̂, ŵ) = (̂1, 2̂, 3̂)Rϕ , where Rϕ is
a rotation matrix around 3̂ by angle ϕ. Let us summarize
this kind of rotation at first. Note that we take the third
component of L and S in the same direction 3̂. The rotation
operator in real vector (e.g., k, R) is performed using UL(ϕ) =
exp[−iϕL3]. [UL(ϕ) : (ρ, θ, r3) → (ρ, θ − ϕ, r3)]. The oper-
ation on a function in the Wigner representation ψ (k, R)
is given by UL(ϕ)ψ (k, R) = ψ (R−1

ϕ k, R−1
ϕ R). Therefore, the

order parameter is transformed as

UL(ϕ)dμ(k, R) = dμ

(
R−1

ϕ k, R−1
ϕ R

)
=

∑
i j

Aμi
(
R−1

ϕ R
)
Rϕ, ji k̄ j . (C3)

The simultaneous rotation in real and spin spaces is performed
using UJ (ϕ) = exp(−iϕJ3) as

[UJ (ϕ)d(k, R)]μ =
∑

ν

Rϕ,μνdν

(
R−1

ϕ k, R−1
ϕ R

)
=

∑
νi j

Rϕ,μνAνi
(
R−1

ϕ R
)[

RT
ϕ

]
i j k̄ j . (C4)

Then we can check Rϕ�MRT
ϕ = e−iMϕ�M .

Noting 1̂i = δ1i, we see that[̂
1RT

ϕ

]
j = 1̂iR

T
ϕ,i j = RT

ϕ,1 j = RT
ϕ,1i ĵi = [ ĵRϕ]1 = û j, (C5)

[Rϕ 1̂] j = Rϕ, jî1i = Rϕ, j1 = ĵiRϕ,i1 = [ ĵRϕ]1 = û j . (C6)

This reads

Rϕ�Car
2 RT

ϕ = [̂ûu − v̂v̂ + i(̂ûv + v̂û)]/2. (C7)

Therefore, the rotation of the triad is described by that of �.

APPENDIX D: COMPARISON BETWEEN LOCAL
DENSITY OF STATES AND EIGEN SPECTUM

The angular momentum of the quasiparticle state is related
to the impact parameter in the quasiclassical theory: |�| = kFb,
where the Bohr-Sommerfeld quantization is necessary for the
discreteness of �. Therefore, the relation of the bound state
spectra with the angular momentum is also approximated by

013193-12
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FIG. 8. (a), (b) Eigen spectra, (c), (d) LDOS, and (e)–(f) spin dependent LDOS for θ2 vortices. The top panels are for the o vortex, while
the bottom panels are for the v vortex. In the horizontal axes of panels (a) and (b), the angular momentum is converted to the impact parameter
|�|/(kFξ0) � b/ξ0.

the peak positions of the LDOS. The LDOS can be calculated
through the retarded quasiclassical Green functions as

ν(b, ε) = ν↑(b, ε) + ν↓(b, ε), (D1)

νσ (b, ε) =
∫ 2π

0

dα

2π
Regσσ (kF, bê1; iωn → ε + iη), (D2)

where kF = kF(cos αê1 + sin αê2), and η is an infinitesimal
positive value set to 0.02Tc. We only consider k3 = 0, and
compare the LDOS with the eigen spectra obtained by solving
the BdG equation for θ2 vortices. The eigen spectra are again
shown in Figs. 8(a) and 8(b) for the o vortex and the v

vortex, respectively, by changing the horizontal axis to the
aboslute value of the angular momentum |�| divided by the
quasiclassical parameter kFξ0 = 4 for comparison. In Fig. 8,

the top panels are for the o vortex and the bottom panels
are for the v vortex. We show the total LDOS given by
Eq. (D1) in Figs. 8(c) and 8(d). The contribution from each
spin component is also given in panels (e)–(f). In the case
of the o vortex, the spin-up and the spin-down sector are not
coupled. Hence, we see the correspondence between the red
(blue) symbols in panel (a) and panel (e) [panel (g)]. However,
in the case of the v vortex, the spin sectors are coupled near
the vortex core owing to the induced components γ±1(ρ). The
effect appears in Ps in Fig. 8(b). Correspondingly, the spin-
dependent LDOS for the v vortex ν↑ and ν↓ have the intensity
on the same energy near the vortex core b � 5ξ0, while they
have different branches for b � 10ξ0 since Ps � ±1 in panel
(b). After all, for both the o vortex and the v vortex, the
consistency between the spectra and the LDOS are confirmed.
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