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We explore the low-energy dynamics of the four siblings of Lorentz symmetry enriched SU(2) Yang-Mills
theories with a theta term at θ = π in (3 + 1)d. Due to a mixed anomaly between time reversal symmetry and
the one-form center symmetry, the low-energy dynamics cannot be symmetric trivially gapped. We focus on
two possible scenarios: (1) time reversal symmetry is spontaneously broken by the two confining vacua and
(2) a deconfined, gapless, and time reversal symmetric U(1) Maxwell gauge theory [e.g., U(1) spin liquid in
condensed matter]. In the first scenario, we find that the antiunitary time reversal symmetry in the bulk induces
a Z2 unitary symmetry on the domain wall between the two vacua. We discuss how the Lorentz symmetry and
the unitary Z2 symmetry enrich the domain-wall topological field theory. In the second scenario, we relate the
symmetry enrichments of the SU(2) Yang-Mills to that of the U(1) Maxwell gauge theory. This further opens
up the possibility that SU(2) QCD with large and odd flavors of fermions could be a direct second-order phase
transition between two phases of U(1) gauge theories as well as between a U(1) gauge theory and a trivial
vacuum (e.g., a trivial paramagnet), where the gauge group is enhanced to be non-Abelian at and only at the
transition. We characterize these transitions and name them as gauge enhanced quantum critical points.
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I. INTRODUCTION

The SU(N ) Yang-Mills theory is a non-Abelian gauge
theory with a gauge group SU(N ) described by the action

S = − 1

4g2

∫
M4

Tr(F ∧ �F ) + θ

8π2

∫
M4

Tr(F ∧ F ), (1)

which admits a topological term parameterized by a variable
θ . Since the second Chern number

c2(VSU(N ) ) = 1

8π2
Tr(F ∧ F ) (2)

of the SU(N ) vector bundle integrates to be an integer, θ is
2π periodic [1,2]. The theory has a Z2,[1] one form center
symmetry [3–6]. When θ = 0, π mod 2π , it is also time
reversal symmetric.

SU(N ) Yang-Mills is the simplest non-Abelian gauge the-
ory in 3 + 1d that exhibits rich dynamics. In contrast to the
Abelian U(1) Maxwell gauge theory which is free, the SU(N )
Yang-Mills is strongly coupled due to negative beta function,
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and the low-energy dynamics is prohibitive via merely per-
turbative approaches [7]. However, various evidences includ-
ing ’t Hooft anomalies [2,8], deformation of supersymmetric
Yang-Mills [9–11], and holographic calculation in the large
N limit [12,13] provide various constraints on the low-energy
dynamics, which we summarize as the standard lore of Yang-
Mills.

A. Standard lore of SU(N) Yang-Mills

We review the dynamics of SU(N ) Yang-Mills as a func-
tion of θ ∈ [0, 2π ).

(1) θ = 0. When θ = 0, the only term is the kinetic energy
of the gauge field, which is time reversal symmetric. Various
evidences including lattice simulations, softly broken super-
symmetry and large N holographic models suggest that the
ground state is confining with an unbroken center symmetry,
and there is a mass gap [2,7,9–11].

(2) θ = π . Another instance which is time reversal sym-
metric is when θ = π . In this case, there is a mixed anomaly
between the time reversal symmetry and the ZN center sym-
metry for even N , and a more subtle global inconsistency for
odd N [2,14,15]. Both cases are unified from the point of
view of anomaly in the space of coupling constants [16,17].
For even N , this anomaly immediately constrains that SU(N )
Yang-Mills with θ = π can not flow to a trivial phase. It is
widely believed that at the low energy, the theory confines
and the center symmetry is unbroken. However time reversal
is spontaneously broken, leading to two degenerate ground
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states [1,2,18]. Such spontaneous broken of time reversal
has been shown for large N Yang-Mills, where as one tunes
from θ < π to θ > π a first-order phase transition has been
observed [12,13].

(3) 0 < θ < π, π < θ < 2π . The dynamics in this regime
is less clear, due to the lack of time reversal symmetry
and consequently the anomaly. It is believed that the theory
confines for all θ . This is also supported by the large N
calculation [12,13]. The phase at θ = 2π , although is believed
to be dynamically trivial as θ = 0, differs from the phase
at θ = 0 by a subtle symmetry protected topological (SPT)
phase [3,4,6,11,19].1

Although the standard lore is believed to hold for large
N , there are less evidences supporting the standard lore for
small N . In particular, for N = 2, the SU(2) Yang-Mills at
θ = π can flow to one of the several possible scenarios at low
energy. The low-energy theory should either spontaneously
break time reversal, be deconfined, or preserve time reversal
symmetry and being confined while being gapless.2 As far as
we know, none of the above scenarios has been excluded for
N = 2. Therefore it is desirable to study all possible scenarios
of SU(2) Yang-Mills in detail.

B. New Aspects: Lorentz symmetry enrichments

For any gauge theory with Z2,[1] one form symmetry, and
in particular the SU(2) Yang-Mills with any theta parameter
[14,15], can be enriched by the SO(3, 1) Lorentz symmetry,3

via fractionalizing the Lorentz symmetry on the Wilson line
operators. This phenomena has been previously explored in
Refs. [25–27] and others, and has been recently termed in
Ref. [28] poetically as Lorentz symmetry fractionalization.
Fractionalization of the Lorentz symmetry on a Wilson line
requires that the Wilson line transforms projectively under
SO(3, 1), i.e., the self-statistics is shifted by h = 1/2. This is
done by shifting the background field B for the center Z2,[1]

one-form symmetry by the second Stiefel-Whitney class of
the tangent bundle of the space-time manifold, i.e.,

B → B + K2w2, (3)

where K2 = 0, 1 represents trivial/nontrivial fractionaliza-
tion.

For θ = 0, π , the SU(2) Yang-Mills is time reversal sym-
metric. Thus one can further enrich the SU(2) Yang-Mills

1For an overview and a general field theory formulation of SPT, see
Refs. [20,21].

2Gapped and confined TQFT that preserve time reversal symmetry
has been ruled out in a recent work [22]. In Refs. [14,15], the
authors constructed a H -symmetry extended TQFT via the ex-
act sequence 1 → K → H → Z2,[1] → 1, generalizing [23,24] to
higher form symmetries. By dynamically gauging K , it has been
realized that Z2,[1] is spontaneously broken, which is consistent with
Ref. [22].

3There are two branches of SO(3, 1), differed by chirality. These
are denoted as SO±(3, 1) in the literature. For our purposes, the
choice of chirality will not play a role. In the rest of the paper, we
focus on the positive chirality +, and will suppress the superscript
for simplicity.

by the time reversal symmetry [or O(3, 1) if combined with
the SO(3, 1) Lorentz symmetry] [14,15]. In this case, time
reversal symmetry can be fractionalized on the Wilson line.
Nontrivial fractionalization of time reversal means that the
Wilson line is a Kramers doublet. Formally, this is done by
shifting the background field B by the square of the first
Stiefel-Whitney class of the tangent bundle of the space-time
manifold, i.e.,

B → B + K1w
2
1, (4)

where K1 = 0, 1 represents trivial/nontrivial fractionalization
of time reversal symmetry. Of course, one can consider
enriching the SU(2) Yang-Mills at θ = 0, π by both time
reversal and SO(3, 1) Lorentz symmetry. In Refs. [14,15], we
denote the four different O(3, 1) Lorentz symmetry enrich-
ments, labeled by (K1, K2), of SU(2) Yang-Mills at θ = 0, π

as the four siblings, which we use throughout the present
work.

Keeping the symmetry enrichments in mind, it is natural to
revisit the standard lore and ask a more refined question: How
the dynamics of SU(N ) Yang-Mills depends on the O(3, 1)
symmetry enrichment, i.e., the four siblings (K1, K2)? In this
work, we study the dynamics of SU(2) Yang-Mills at θ = π ,
and focus on two low-energy scenarios.

In the first scenario (to be discussed in Sec. III), time
reversal is spontaneously broken, and we study the domain-
wall theory that is constrained by the ’t Hooft anomalies.
We highlight several features of our results, (1) The domain-
wall theory is not time reversal symmetric, in contrast to
the bulk. Instead, there is a discrete unitary symmetry U .
(2) The four siblings in the bulk corresponds to four dif-
ferent enrichments of the Lorentz symmetry as well as the
unitary symmetry U on the wall. (3) Even though the ’t
Hooft anomaly of SU(2) Yang-Mills does not depend on the
SO(3, 1) Lorentz symmetry enrichment, the ’t Hooft anomaly
on the wall does. In Sec. IV, we also discuss the consequences
of symmetry enrichments on the domain-wall theories for
SU(2) QCD within the regime of chiral symmetry breaking
Nf < NCFT.

The second scenario will be discussed in Sec. V, where
we assume that the low energy of SU(2) Yang-Mills with
θ = π is deconfined. In particular, we only discuss the
case where the low-energy theory is described by a U(1)
Maxwell theory, with certain Lorentz symmetry enrichment.
The Lorentz symmetry enriched U(1) Maxwell theories have
been studied in Refs. [29–32] where they classify the phases
of time reversal U(1) quantum spin liquids. We will use the
’t Hooft anomaly to constrain the correspondence between
the symmetry enrichments of SU(2) Yang-Mills at θ = π

and the symmetry enrichments of the Maxwell theory. In
Sec. VI, we further apply this correspondence to study the
phase transitions between different U(1) spin liquids, as well
as the phase transitions between U(1) spin liquids and trivial
paramagnets. Amusingly, we find that SU(2) QCD with Nf

fermions (Nf > NCFT) in the fundamental representation can
be interpreted as the second-order phase transition between
the above phases, where the gauge group is enhanced at and
only at the transition point. We denote such transition as gauge
enhanced quantum critical points.
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II. SU(2) YANG-MILLS THEORY AT θ = π

A. Four siblings and anomalies

We start by reviewing the results in Refs. [14,15]. The 4d
SU(2) Yang-Mills gauge theory with an SU(2) gauge group
and a theta term in the Minkowski space-time M4 is described
by an action 4

S = − 1

4g2

∫
M4

Tr(F ∧ �F ) + θ

8π2

∫
M4

Tr(F ∧ F ), (5)

where we denote a as the SU(2) gauge field and F = da − ia2

is the field strength. The partition function is

Z4d
YM ≡

∫
[Da] exp( iS). (6)

Since the second Chern number c2(VSU(2)) = ∫
M4

Tr(F ∧
F )/8π2 is quantized to be an integer, the θ parameter has
periodicity 2π . Equation (5) is time reversal symmetric only
when θ = 0, π mod 2π . The readers may refer to Ref. [14] for
details of time reversal transformations on the gauge fields, as
well as various peculiarities about SU(2).

The theory also has a Z2,[1] one-form center symmetry
that acts by shifting the connection by a Z2 flat connection.
We can turn on a background Z2 two-form gauge field B ∈
H2(M4,Z2) for this one-form symmetry.5 In the presence of
this background gauge field, the SU(2) bundle is twisted into
a PSU(2) ≡ SO(3) bundle with fixed second Stiefel-Whitney
class

w2(VSO(3)) = B. (7)

To see how B couples to the theory (5), it is convenient to
promote the SU(2) gauge field a to a U(2) gauge field â [2].
It is instructive to realize that w2(VSO(3)) = c2(VU(2)) mod 2.
Hence (7) can be equivalently written as

c2(VU(2)) = B mod 2. (8)

As we are focusing on the time reversal symmetric the-
ory, one should be tempted to formulate the theory (5) on
an unorientable manifold. The Lorentz symmetry associated
with an unorientable manifold is O(3,1). In particular, on
a generic unorientable manifold, both the first and second
Stiefel-Whitney classes, w1 and w2, of the tangent bundle of
the space-time manifold M4 are allowed to be nontrivial. One
can twist the gauge bundle constraint (8) as

c2(VU(2)) = B + K1w
2
1 + K2w2 mod 2, K1, K2 = 0, 1. (9)

As explained in Sec. I B, (K1, K2) labels four distinct O(3, 1)
Lorentz symmetry enrichments of SU(2) Yang-Mills theories.
In Refs. [14,15], the authors also referred (K1, K2) as the four
siblings of O(3, 1) enriched SU(2) Yang-Mills with θ = 0, π .

One can understand (9) as follows. We start with (7).
When B is nontrivial, the Wilson line with SU(2) isospin

4For definiteness, the space-time signature is taken to be
(−1, 1, 1, 1).

5For simplicity, we will also use the same symbol B as a repre-
sentative in H2(M4,Z2), i.e., B is a cocycle satisfying the cocycle
condition δB = 0 mod 2.

FIG. 1. Lorentz symmetry fractionalization on the Wilson line.
(Left) Wilson line with K1 = K2 = 0. When the background field B
for the one-form symmetry is activated, the Wilson line is attached
to a surface � bounded by γ . This means that the Wilson line carries
charge 1 under Z2,[1]. K1 = K2 = 0 implies that W1/2 is the worldline
of a boson and a Kramers singlet. (Right) Wilson line with nontrivial
(K1, K2). The quantum number of the Lorentz symmetry is shown
in (10).

j = 1/2 (i.e., the fundamental representation), W1/2(γ ), is
attached to a surface operator exp( iπ

∫
�

B) with ∂� = γ .
See Fig. 1. The twisted gauge bundle constraint modifies the
above surface operator by decorating an additional 2d invert-
ible TQFT of the Lorentz symmetry: π (K1w

2
1 + K2w2). The

physical meanings of these invertible TQFTs are well known.
πw2

1 is the worldsheet theory of a time reversal symmetric
SPT (also known as the Haldane chain) whose boundary sup-
ports a Kramers doublet. πw2 is the worldsheet theory whose
boundary transforms projectively under the Lorentz symmetry
SO(3,1), i.e., the boundary supports a fermion. We further
realize that without the twists from the Lorentz symmetry
O(3,1) (i.e., K1 = K2 = 0), the original SU(2) Wilson line
W1/2(γ ) transforms under O(3,1) as Kramers singlet and is a
boson. Combining the above physical understandings, under
the twists using the O(3,1) Lorentz symmetry, the statistics
h(W ) and the Kramers parity T 2

W of W1/2(γ ) are

h(W ) = K2

2
mod 1, T 2

W = (−1)K1+K2 . (10)

It is also illuminating to refer twisting the gauge bundle con-
straint from (8) to (9) as Lorentz symmetry fractionalization.
See Ref. [28] for the related discussions on 3d Chern-Simons
(matter) theories and Refs. [31,32] on 4d U(1) gauge theories.

The SU(2) Yang-Mills theory with θ = π , coupled to the
two-form background field B, is

S = − 1

4g2

∫
M4

Tr(F̂ − πBI2) ∧ �(F̂ − πBI2)

+ π

8π2

∫
M4

Tr(F̂ − πBI2) ∧ (F̂ − πBI2), (11)

subjected to the gauge bundle constraint (9). Here, F̂ =
d̂a − i â2 is the U(2) field strength. One further attempts to
formulate (11) on an unorientable and nonspin manifold M4,
which enables one to prove the full quantum anomalies. It was
found in Ref. [14] that when B is nontrivial, (11) can not be
consistently defined on an unorientable M4. The resolution is
to define (11) as a 4d-5d coupled system, where the structures
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(w1,w2, B) on M4 are extended to M5.6 In particular, M5 is
unorientable. The anomaly polynomial is7

Sanom = π

∫
M5

BSq1B + Sq2Sq1B + K1w
2
1Sq1B + K2Sq1(w2B).

(12)

We emphasize that the anomaly polynomial (12) depends
on K2 only when M5 has a nontrivial boundary M4. This
implies that the term K2Sq1(w2B) does not lead to a dis-
tinguished anomaly. Instead, it is a WZW-like counter term.
However, we will show in Sec. III that, if time reversal is
spontaneously broken at θ = π , the WZW-like counter term
leads to a nontrivial ’t Hooft anomaly on the time reversal
domain wall.

B. Low-energy dynamics: Overview and questions

The SU(2) Yang-Mills theory is strongly coupled in the
infrared, due to negative beta function. Thus the low-energy
fate of the SU(2) dynamics is hardly known. It is famously
conjectured [7] that for any N � 2 the SU(N ) Yang-Mills
with θ = 0 has a mass gap.8 Moreover, the authors of Ref. [2]
found that the SU(N ) Yang-Mills (for even N) has a nontrivial
’t Hooft anomaly only at θ = π . Since nontrivial ’t Hooft
anomaly implies that the low-energy theory can not be triv-
ially gapped, there should be nontrivial dynamics at θ = π . In
particular, the above analysis also apply to SU(2) Yang-Mills.

For the regime within θ ∈ (0, π ) ∪ (π, 2π ), the dynamics
is less clear. In fact, in Ref. [2], two scenarios for the SU(2)
Yang-Mills dynamics at zero temperature are proposed. In
one scenario, SU(2) Yang-Mills is confined for every θ . In
the other scenario, SU(2) Yang-Mills is deconfined within
a regime θ ∈ [π − x, π + x] for x ∈ [0, π ). In the following
discussion, we will not discuss the generic θ and will ex-
clusively focus on θ = π , where one can infer more on the
dynamics based on the ’t Hooft anomaly.

As mentioned above, an immediate consequence of the ’t
Hooft anomaly (12) for Yang-Mills theory at θ = π is that the
low-energy theory can not be trivially gapped. What should
the low-energy theory be at the fixed point? The authors of
Refs. [2,14] discussed several scenarios, which we enumerate
below.

(1) The theory confines, and correspondingly the one-form
symmetry Z2,[1] is unbroken. Time reversal symmetry is spon-
taneously broken. There are two vacua which are related by
the spontaneously broken time reversal transformation. This
scenario is believed to take place for SU(N ) Yang-Mills with
large N .

6For simplicity, we denote the first and second Stiefel-Whitney
classes of both M4 and M5 as w1 and w2.

7The derivation of this higher anomaly is done in Ref. [14]. The
mathematical justification of these 4d higher ’t Hooft anomalies in
terms of 5d invertible TQFTs can be read from the 5d cobordism
invariants computed from a generalized cobordism theory [33–35].

8Though the mass gap is supported by numerous evidences, it still
remains a conjecture. In Sec. VI, we contemplate another exotic
possibility where the low energy of θ = 0 Yang-Mills is gapless,
described by a deconfined U(1) Maxwell theory.

(2) The theory is gapless and deconfined, and correspond-
ingly the one-form symmetry Z2,[1] is spontaneously broken.
Time reversal is unbroken. The deconfinement can be realized
by a gapless conformal field theory (CFT) [e.g., U(1) Maxwell
theory]. See Refs. [26,29] for discussions of different time
reversal enriched gapless CFTs.

(3) The theory is gapped and deconfined, and correspond-
ingly, the one-form symmetry Z2,[1] is spontaneously broken.
Time reversal is unbroken. The deconfinement can be realized
by a gapped TQFT (e.g., Z2 gauge theory). In Ref. [14], the
authors have proposed the action of Z2 gauge theory in 4d
saturating the anomaly (12).

(4) Both Z2,[1] and time reversal are preserved by a
gapped TQFT. In Refs. [14,15], the authors constructed a
H-symmetry extended TQFT via the exact sequence 1 →
K → H → Z2,[1] → 1, generalizing [23,24] to higher form
symmetries. By dynamically gauging K , it was realized that
Z2,[1] is spontaneously broken. This suggests a possible no
go to construct a symmetric TQFT. More systematically,
this scenario is ruled out by a no-go theorem from Cordova
and Ohmori [22], by making use of the quantum surgery
constraints on cutting and gluing the space-time manifolds
[36,37] and other criteria.

(5) Both Z2,[1] and time reversal are preserved by a gapless
CFT.

Though the candidate phases have been proposed, it is
worthy to discuss in further detail the following aspects.

(1) Reference [2] only discussed one sibling, i.e., K1 =
K2 = 0 among the four siblings in Ref. [14]. Thus it is
worthwhile to explore further the dynamical consequences for
different siblings.

(2) In the first scenario, time reversal is spontaneously
broken, and there are two vacua related by time reversal
symmetry. Hence there can be a domain wall interpolating
between the two vacua. The anomaly of 4d Yang-Mills (12)
induces an anomaly for the 3d domain wall, hence there must
be nontrivial degrees of freedom supported on the domain
wall to saturate the induced anomaly. It should be interesting
to see how the four siblings of the domain-wall theory are
related to each other. This will be discussed in Sec. III.

(3) The second scenario is particularly interesting. If this
scenario takes place in dynamics, the non-Abelian SU(2)
gauge theory with matter can access a direct second-order
quantum phase transition between a U(1) spin liquid and the
trivial vacuum, or more exotically between two U(1) spin
liquids, depending on the further details which we discuss
in Sec. VI. This exotic scenario tremendously enlarges the
range of possible candidates of phase transitions, and hence
the multiuniversality class, between the above phases.

Since the Z2 gauge theory has already been studied in
Ref. [14], we will not study it in detail in the present work.
We also have little to say about the last scenario.

III. TIME REVERSAL DOMAIN WALL

We consider the scenario where time reversal symmetry is
spontaneously broken in the low energy. There are two vacua
which are time reversal partners. Furthermore, there exists a
domain wall interpolating the two vacua. Since the two time
reversal breaking vacua are separately trivially gapped, the
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FIG. 2. When time reversal is spontaneously broken, there are
two vacua. We consider a configuration where each vacuum occupies
half of the space, and there is a domain wall in between. Time
reversal exchanges the two vacua. The anomaly (12) in the bulk
induces an anomaly (13) on the domain wall, which consequently
constrains that there is an Abelian semion TQFT on the wall.

notion of domain-wall theory is well defined. The anomaly
(12) implies that the domain-wall theory itself has nontrivial
anomaly, which enforces that the domain wall supports non-
trivial degrees of freedom.9

A. Domain wall for (K1, K2 ) = (0, 0): Semion with U 2 = 1

In this section, we discuss the domain-wall theory for
the sibling (K1, K2) = (0, 0). The anomaly (12) reduces to
π

∫
M5

BSq1B + Sq2Sq1B. Under time reversal transforma-
tion, the above anomaly implies that the partition function
transforms as Z → Z exp( iπ

∫
M4

P (B)/2), hence induces an
anomaly for the time reversal domain wall,

SDWanom = π

2

∫
M4

P (B). (13)

The domain-wall theory saturating the anomaly (13) was
proposed in Ref. [2] to be a SU(2)1 Chern-Simons (CS) theory
with an action

SU(2)1 CS : SCS = 1

4π

∫
M3

Tr

(̃
a d̃a − 2i

3
ã3

)
, (14)

where ã is a one-form SU(2) gauge field. The theory (14) is a
nonspin theory. There are two lines: an identity line 1, and a
line with semionic topological spin s, i.e., {1, s}. These lines
obey the Abelian fusion rule: 1 × 1 = 1, 1 × s = s, ands ×
s = 1. Hence the theory is an Abelian semion theory. Coin-
cidentally SU(2)1 is equivalent to U(1)2 Chern-Simons.10 See
Fig. 2.

What is the origin of the deconfined topological line s
on the domain wall? We follow the discussions in Ref. [19].
Since s is also the SU(2) Wilson line in fundamental repre-
sentation, it is natural to identify s with the SU(2) Wilson
line in the fundamental representation in the 4d Yang-Mills
theory, i.e., W1/2 ↔ s. The subscript 1/2 represents the SU(2)
isospin. However, W1/2 in the Yang-Mills obeys area law, in

9This was first discovered in the N = 1 supersymmetric Yang-
Mills in Ref. [38], and has been recently extensively studied in both
supersymmetric theories [39–41] and nonsupersymmetric theories
[2,42,43].

10This should be contrasted to the level rank duality SU(2)1 ←→
U (1)−2 which only holds when both sides are regarded as spin
TQFTs.

accordance with the confinement. s on the domain wall has
perimeter law, in accordance with the deconfinement on the
wall. The behaviors of the SU(2) line in the bulk and on the
wall can be understood from the different condensates in the
two vacua of the bulk [2,11,19,44]. In one vacua, confinement
is due to monopole condensation. In the other vacua, confine-
ment is due to dyon condensation. Thus although both vacua
are trivially gapped, they differ by a Z2,[1] symmetry protected
topological (SPT) phase which is precisely described by (13).
When W1/2 tunnels from one vacuum to the other vacuum,
due to the condensate changes, W1/2 has to deconfine on the
wall. The phenomena of deconfinement can also occur on the
boundary of a confining (e.g., SPT) or deconfining (e.g., SET)
bulk in various dimensions, see Sec. 7 of Ref. [24] for further
discussions.

s also descends from the Z2,[1] generator U in 4d. The
U is a surface operator. In the vacuum where monopole
condenses, U is the space-time trajectory of the ’t Hooft line,
which does not carry one-form symmetry charge itself. In
the vacuum where dyons condense, the Z2,[1] generator is the
space-time trajectory of the dyon line, which carries one-form
symmetry charge. We consider a stretched Z2,[1] generator
which extends to both vacua and crosses the domain wall. U
and the domain wall intersects on a line, which carries Z2,[1]

charge which is identified as s. Thus U |DW ↔ s. Notice that
semions in 3d see each other as mutual fermions. Because
s ↔ W1/2 ↔ U |DW, the mutual fermionic statistics between
s descends from the mutual semionic statistics between W1/2

and U : 〈W1/2(γ )U (�)〉 = (−1)〈�,γ 〉.
We further discuss the global symmetries of the domain-

wall theory SU(2)1. There is a Z2,[1] one form global symme-
try, generated by s. Coupling to the background B leads to the
anomaly (13).

What about the time reversal symmetry? In the bulk,
time reversal is spontaneously broken, hence time reversal
exchanges the two vacua on the two sides of the domain wall.
Hence time reversal is not a symmetry of the domain-wall
theory. In particular, time reversal T acts as

T [SU(2)1 CS] = SU(2)−1 CS. (15)

The reversed sign of the Chern-Simons level reflects the
reversal of the direction of the anomaly inflow under T . A
useful observation [45,46] is that T can be modified to be the
symmetry of SU(2)1 by multiplying an unbreakable CP⊥T
in 4d. (Analogue phenomenon and more general relation
to the Smith isomorphism have been discussed by Hason,
Komargodski, and Thorngren [45] and independently by Cor-
dova, Ohmori, Shao, and Yan [46]. See also the talk [47] by
Thorngren. We apply this general idea to the special context:
the domain wall of SU(2) Yang-Mills.) We define

U = T (CP⊥T ), (16)

where P⊥ is the reflection along the direction perpendicular
to the domain wall. Both T and CP⊥T are not symmetries of
SU(2)1, but their combination U is. Since both T and CP⊥T
are antiunitary, U is unitary.

How does U act on the line operators in SU(2)1? Because
both T and CP⊥T flip the topological spin of anyons, U
preserves the spin. Hence U does not permute the lines.
However, similar to the quantum Hall physics where anyons
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can transform projectively under U(1) charge conservation
symmetry, anyons can transform projectively under U . The
symmetry fractionalization is classified by

H2
ρ (Z2, {1, s}) = Z2, (17)

where ρ = 1 is the identity because Z2 symmetry generated
by U does not permute the anyons. To determine the action of
U , we first compute U2. Using the algebra of T and CP⊥T in
the 4d (K1, K2) = (0, 0) Yang-Mills theory,11

T 2 = 1, (CP⊥T )2 = 1, T CP⊥T = CP⊥T T . (18)

Thus

U2 = T CP⊥T T CP⊥T = T 2(CP⊥T )2 = 1. (19)

Hence U generates a Z2 unitary symmetry that acts linearly
on W1/2. Since the Wilson line in the bulk does not transform
projectively under T , the Wilson line on the wall s does not
transform projectively under U either.12 Thus the state |s〉
associated with the anyon s carries charge one (rather than
the fractional charge) under U , i.e., U |s〉 = −|s〉. In summary,
U is realized linearly on the anyons which corresponds to the
trivial element in (17).

How does the domain-wall theory couple to the back-
ground field of U? Denote the one-form background field of
U as Y , satisfying

∮
Y ∈ 1 mod 2. The action coupled to the

background field is

2

4π
ũdũ − Y dũ, (20)

where ũ is the U(1) gauge field. Here we have used the
equivalence SU(2)1 ≡ U (1)2. One can check that the Wilson
line s = exp( i

∮
ũ) indeed has charge one under U . To see

this, one inserts into the path integral a Wilson line along
γ , which amounts to add to the action a term

∫
ũ � j where

� j = δ⊥(γ ). To find the U charge of the Wilson line, we need
to find the coefficient of the term πY � j in the response action
where the dynamical fields are integrated out. This is done by
solving the equation of motion of ũ and plugging back into the
action (20).

Further coupling (20) to Z2,[1] background field B, the
action is∫

M3

(
2

4π
ũdũ − ũB − Y dũ + πY B

)
+ π

2

∫
M4

P (B), (21)

where we suppressed the cup product, e.g., Y B = Y ∪ B.
The only anomaly is the self-anomaly of Z2,[1]. There is no
anomaly involving U . This is also consistent with the fact that
U is not fractionalized on the anyons {1, s}.

11T 2 = 1 is because the Wilson line is Kramers singlet. The third
equality follows from T (CP⊥) = (CP⊥)T which holds when acting
on a bosonic line. If acting on a fermionic line, the third equality
should be modified to T (CP⊥) = −(CP⊥)T . See Sec. III E for
further details.

12In the next section, we will see that for the sibling (K1, K2) =
(1, 0), the Wilson line transforms projectively under T and accord-
ingly s transforms projectively under U .

B. Domain wall for (K1, K2 ) = (1, 0): Semion with U 2 = −1

We proceed to discuss the domain-wall theory for the
sibling (K1, K2) = (1, 0). Compared with the anomaly for
(K1, K2) = (0, 0), the anomaly for (K1, K2) = (1, 0) contains
an additional term K1π

∫
w2

1Sq1B = K1π
∫

w3
1B. Hence one

may naively conclude that the anomaly for the domain-wall
theory is π

2

∫
M4

P (B) + π
∫

M4
w2

1B. However, there are several
apparent puzzles for the above domain-wall anomaly.

(1) Since the anomaly involves the background field w1,
the domain-wall theory should be time reversal symmetric,
and can be formulated on an unorientable manifold. However,
since the 4d theory for (K1, K2) = (1, 0) only differs from
(K1, K2) = (0, 0) by Lorentz symmetry fractionalization, one
expects that the domain-wall theory for the sibling (1,0)
should be a modification of SU(2)1 by modifying the way
time reversal acts. However, SU(2)1 is not time reversal
symmetric in the first place and therefore does not make sense
to formulate it on an unorientable manifold.

(2) The anomaly itself, regardless of the details of the
domain-wall theory, is problematic. The first term π

2

∫
M4

P (B)
is not compatible with unorientable manifold. This is because
π
2

∫
M4

P (B) is Z4 valued, while any quantity that can be
integrated on an unorientable manifold has to be Z2 valued.

In this section, we propose a domain-wall theory by mod-
ifying the U symmetry realization on the domain-wall theory
SU(2)1 proposed in Sec. III A, which resolves the above
puzzles.

For the sibling (K1, K2) = (1, 0), the SU(2) Wilson line in
the bulk W1/2 is a Kramers doublet, hence

T 2 = (−1)2 j, (22)

where j is the SU(2) isospin. For our purposes, we still regard
time reversal symmetry in 4d as a ZT

2 symmetry, and (22) is
interpreted as the Wilson line transforms in the projective rep-
resentation of ZT

2 symmetry. The algebra between T , CP⊥T
is (see Sec. III E for further details)
T 2 = (−1)2 j, (CP⊥T )2 = 1, T CP⊥T = CP⊥T T . (23)

Hence
U2 = T 2 = (−1)2 j . (24)

Similar to the discussion below (22), we still interpret U as a
Z2 unitary symmetry, and (24) implies that the anyon s trans-
forms projectively under U . Such a projective representation
is the nontrivial element in (17).

The domain-wall theory is thus SU(2)1 with Z2,[1] one-
form symmetry and Z2 zero-form symmetry generated by U ,
satisfying (24). How does SU(2)1 couple to U background
field? As in Sec. III A, we still denote the U background
as Y satisfying

∮
Y ∈ 1 mod 2. The action coupled to the

background field is
2

4π
ũdũ − 1

2
Y dũ. (25)

Using the method discussed below (20), we find that the
semion s = exp( i

∮
ũ) carries U charge 1/2, i.e., U |s〉 = i |s〉.

U is fractionalized on s as expected.
Is the Z2 symmetry generated by U anomalous? First it

does not have anomaly with itself. To see this, we examine
that under the background gauge transformation Y → Y + δy,
(25) transforms by −δydũ/2, which vanishes modulo 2π . We
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further check the mixed anomaly between U and Z2,[1]. The
mixed anomaly is most conveniently seen by activating the
Z2,[1] background field B,∫

M3

(
2

4π
ũdũ − ũB − 1

2
Y dũ

)
+

∫
M4

(
π

2
P (B) + πYY B

)
.

(26)

Indeed, we find two types of anomaly: π
2 P (B) is the anomaly

already appeared in the domain wall for the sibling (K1, K2) =
(0, 0). πYY B is the mixed anomaly between U and Z2,[1],
due to nontrivial U symmetry fractionalization in (17). Con-
sistently, πYY B implies that on the domain wall, the Z2,[1]

generator s is attached by a surface operator exp( iπ
∫
�

YY ) =
exp( iπ/2

∫
�

δY ) = exp( iπ/2
∮
∂�

Y ) which precisely reflects
the fact that s carries Y charge 1/2. We make several com-
ments. (1) In (26), the domain wall theory SU(2)1 is not
time reversal symmetric. Consistently, the anomaly does not
involve w1, which resolves the two puzzles mentioned in the
beginning of this subsection. (2) The time reversal symmetry
fractionalization in the 4d induces a unitary Z2 symmetry
fractionalization on the domain wall. Correspondingly, the
mixed T − Z2,[1] anomaly πw3

1B induces a mixed U − Z2,[1]

anomaly πYY B on the domain wall. (3) Since CP⊥T is
always an unbreakable symmetry in 4d Yang-Mills, one can
freely modify the T background field w1 to T (CP⊥T ) back-
ground field Y . Hence the anomaly πw3

1B for Yang-Mills
can be equivalently be written as πw1YY B. This rewriting
makes the induced anomaly πYY B of the domain wall natural,
because under time reversal, 4d Yang-Mills partition function
transforms as

Z → Z exp

(
iπ

2

∫
M4

P (B) + iπ
∫

M4

YY B

)
, (27)

which naturally provides the anomaly inflow of the 3d
domain-wall theory (26). We emphasize that in (26), one can
not replace Y by w1 back, because CP⊥T is no longer the
symmetry of the domain wall.

C. Domain wall for (K1, K2 ) = (0, 1): Antisemion with U 2 = 1

We proceed to discuss the domain-wall theory for the sib-
ling (K1, K2) = (0, 1). We will find that although the anomaly
for 4d Yang-Mills does not depend on K2, the anomaly of the
domain wall does! To see this, we rewrite K2 dependent term
in (12) as K2πSq1(w2B) = K2πw1w2B which does not vanish
on a manifold with boundary. This term induces an anomaly
on the domain wall K2πw2B. The complete anomaly for the
domain wall is

SDWanom = π

2

∫
M4

P (B) + π

∫
M4

w2B. (28)

We look for the domain-wall theory that saturates such an
anomaly.

We start with SU(2)1 ≡ U(1)2 theory for the sibling
(K1, K2) = (0, 0). We have shown in Sec. III A that SU(2)1

saturates the first term in (28). One needs to find a proper
fractionalization of the Lorentz symmetry (whose background
is w2) to further match the anomaly πw2B. Denote the topo-
logical spin of the Z2,[1] generator s in SU(2)1 as h(s). The
additional anomaly π

∫
w2B modifies the topological spin

of s by [28]
h(s) → h(s) + 1

2 mod 1. (29)

Hence after symmetry fractionalization, h(s) shifts from 1/4
to 3/4 mod 1. In other words, the semion in the domain wall
for the sibling (K1, K2) = (0, 0) becomes an antisemion for
the domain wall in the sibling (K1, K2) = (0, 1). Thus the
domain-wall TQFT for (K1, K2) = (0, 1) contains a trivial
anyon and an antisemion, i.e., {1, s}. Such a TQFT is precisely

SU(2)−1CS. (30)

Apart from using Lorentz symmetry fractionalization, the
domain-wall theory can further be obtained by rewriting the
anomaly (28) as

SDWanom = π

2

∫
M4

P (B) + π

∫
M4

P (B) = 3π

2

∫
M4

P (B)

= −π

2

∫
M4

P (B). (31)

Comparing with the anomaly (13), the anomaly (31) simply
changes the sign, i.e., the direction of the anomaly inflow is
reversed. Consistently, the level of the domain-wall Chern-
Simons theory is also reversed, from SU(2)1 for the sibling
(K1, K2) = (0, 0) to SU(2)−1 for the sibling (K1, K2) = (0, 1).

The Lorentz symmetry fractionalization can also be viewed
from the quantum number of Wilson line W1/2 in the 4d
Yang-Mills. For the sibling (K1, K2) = (0, 1), W1/2 transforms
projectively under the SO(3, 1) Lorentz rotation, hence it is a
fermion. As explained in Sec. III A, the deconfined line s is
obtained from the Wilson line in the bulk. Hence the Lorentz
symmetry fractionalization (the shift of statistics by 1/2) for
W1/2 naturally induces a Lorentz symmetry fractionalization
(the shift of statistics by 1/2) for s on the domain wall, which
yields s, consistent with the additional anomaly πw2B for the
domain wall.

It is instructive to consider the fractionalization of the
unitary Z2 symmetry U on s. In the 4d Yang-Mills of the
sibling (K1, K2) = (0, 1), the Wilson line W1/2 is a Kramers
doublet, i.e., T 2 = −1. More generally, T 2 = (−1)2 j where j
is the SU(2) isospin. Hence using the algebra of T and CP⊥T ,
(see Sec. III E for further details)

T 2 = (−1)2 j, (CP⊥T )2 = 1,

T (CP⊥T ) = (−1)2 j (CP⊥T )T , (32)

we find
U2 = (−1)2 jT 2 = (−1)4 j = 1. (33)

It is ramarkable that although the time reversal symmetry
is fractionalized on Wilson line W1/2 in the bulk, U is not
fractionalized on the anyon s ! Hence similar to the case
in Sec. III A, the antisemion s transforms linearly under U ,
i.e., U2(s) = s. We further couple SU(2)−1 to both Z2,[1]

background field B and the U background field Y ,∫
M3

(
− 2

4π
ũdũ + ũB + Y dũ − πY B

)

+
∫

M4

(
π

2
P (B) + πw2B

)
. (34)

The fact that U is not fractionalized on s is in accord with the
fact that there is no anomaly involve U on the wall.
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TABLE I. Symmetry fractionalization and anomalies on the domain-wall theory for four siblings of Yang-Mills.

(K1, K2) (h mod 1, T 2) DW Theory U2 DW anomaly

(0,0) (0,1) SU(2)1 = {1, s} 1 π

2

∫
M4

P (B)

(1,0) (0, (−1)2 j ) SU(2)1 = {1, s} (−1)2 j π

2

∫
M4

P (B) + π
∫

M4
YY B

(0,1) ( j, (−1)2 j ) SU(2)−1 = {1, s} 1 π

2

∫
M4

P (B) + π
∫

M4
w2B

(1,1) ( j, 1) SU(2)−1 = {1, s} (−1)2 j π

2

∫
M4

P (B) + π
∫

M4
(YY + w2)B

D. Domain wall for (K1, K2 ) = (1, 1): Antisemion with U 2 = −1

We finally discuss the domain-wall theory for the sibling
(K1, K2) = (1, 1). From the discussion in Secs. III B and III C,
we find that the anomaly for the domain-wall theory is

SDWanom = π

2

∫
M4

P (B) + π

∫
M4

(YY + w2)B, (35)

where Y is the background field for the unitary symmetry
U = T (CP⊥T ). The domain-wall theory is SU(2)−1 properly
coupled to background fields Y and w2:∫

M3

(
− 2

4π
ũdũ + ũB + 1

2
Y dũ

)

+
∫

M4

(
π

2
P (B) + πw2B + πYY B

)
. (36)

We emphasize that although time reversal is not fraction-
alized on the W1/2 in the bulk, i.e., T 2 = 1, the U unitary
symmetry is fractionalized on the anyon s. Furthermore, we
again observe that domain wall carries nontrivial anomaly
related to w2, although the bulk does not.

E. Remarks on CP⊥ and T and summary

We provide some additional remarks on the 4d symmetries
CP⊥ and T . The purpose is to further explain the algebra
between T and CP⊥T , i.e., (18), (23), and (32).

As mentioned in Sec. II A, for the sibling (K1, K2), the
Wilson line W1/2 has spin h(W ) = K2/2, which is explained
below (9). However, the fact that time reversal squares to
be T 2 = (−1)K1+K2 , rather than T 2 = (−1)K1 , needs further
explanation, which we provide below. (See Ref. [31] for
similar explanation in 4d Maxwell theory.) For K2 = 0,
T 2 = (CP⊥)2 = (−1)K1+K2 = (−1)K1 , hence K1 = 0, 1
represents Kramers singlet and doublet respectively.
However, for K2 = 1, suppose when we move from a
Minkowski space-time to a Euclidean space-time, T becomes
a Euclidean reflection R via a Wick rotation. Then T 2

differs by a sign from R2, i.e., T 2 = −R2. Such a minus
sign only occurs when acting on a fermion. Notice that in
Minkowski space-time, CP⊥ is a still a Euclidean reflection,
so T 2 = −(CP⊥)2. To synthesize, we have

T 2 = (−1)K2 (CP⊥)2. (37)

If T 2 = (−1)K1+K2 , then (CP⊥)2 = (−1)K1 , hence

T (CP⊥) = CP⊥T CP⊥T T (CP⊥) = (CP⊥T )T 2(CP⊥)2

= CP⊥T (−1)K2 , (38)

where we used (CP⊥T )2 = 1. This further gives rise to the
commutation relation between T and CP⊥T as

T (CP⊥T ) = (−1)K2 (CP⊥T )T . (39)

This is precisely the relation in (18), (23), and (32).
We summarize the symmetry properties of the Wilson lines

of isospin j in the bulk, the domain-wall theory, their symme-
try fractinoalization pattern and the anomalies in Table I.

IV. APPLICATION I: DOMAIN-WALL THEORY Nf < NCFT

We start by considering the domain-wall theory for SU(2)
QCD with Nf fermions. The theory depends on the mass and
the theta parameter via mNf e i θ . In this section, we assume m
to be real and non-negative, and keep θ in the Lagrangian.
(In Sec. VI, we will adopt the different assumption.) We
exclusively focus on θ = π , which is time reversal symmetric.
We denote 
 as the strong coupling scale.

When m � 
, one can integrate out the massive fermions,
and the low-energy effective theory is the SU(2) Yang-Mills
theory with θ = π . Assuming the scenario where the time
reversal is spontaneously broken, there are two vacua which
are time reversal partners. Between the two vacua, there is
a time reversal domain wall. We further assume that Nf is
below the conformal window, i.e., Nf < NCFT, the domain-
wall theory has been conjectured to be [48]

SU(2)
1− N f

2

+ Nf ψ ←→ U(1)−2 + Nf φ. (40)

In the large mass limit, the domain-wall theory (40) flows
to SU(2)1 ≡ U(1)2, corresponding to the domain-wall the-
ory of the pure SU(2) Yang-Mills at θ = π . As discussed
in Sec. III, there are multiple versions of SU(2)1 theories,
distinguished by the enrichments of the unitary symmetry U
and the Lorentz symmetry. In this section, we determine the
symmetry enriched versions of SU(2)

1− N f
2

+ Nf ψ , and how

the symmetry enrichments match across the duality (40).

A. Lorentz symmetry fractionalization, K2 = 1

We first show that domain-wall theory realized in SU(2)
QCD requires K2 = 1. In the bulk, since the SU(2) gauge field
is coupled to fermions, the 2π Lorentz rotation, which multi-
plies the fermions by −1, can be compensated by a SU(2)
gauge transformation. More precisely, the gauge-space-time
symmetry is

SU(2) × Spin(3, 1)

Z2
, (41)

and the constraint of the symmetry bundle is

w2(VSO(3)) = w2. (42)
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Comparing with (9), we find that the Lorentz symmetry
SO(3, 1) is always realized projectively, hence the effective
Yang-Mills corresponds to the sibling K2 = 1. As discussed
in Sec. III C, in the large mass limit on the domain wall
SU(2)1, the SU(2) gauge bundle in the domain-wall theory
is also twisted by the Lorentz symmetry SO(2,1), i.e., the
gauge-space-time symmetry on the domain wall, as well as
the bundle constraint are

domain wall :
SU(2) × Spin(2, 1)

Z2
, w2(VSO(3)) = w2.

(43)
Thus at large mass limit on the wall, the Chern-Simons is the
K2 = 1 enrichment of SU(2)1, i.e., SU(2)−1 Chern-Simons
theory discussed in Sec. III C. Notice that this is precisely
the large positive mass limit on the bosonic side of (40).
Hence the SO(2, 1) Lorentz symmetry fractionalization is
matched across the duality on the wall. See Ref. [28] for more
examples.

B. U unitary symmetry fractionalization

We proceed to discuss the fractionalization of Z2 unitary
symmetry generated by U on the domain wall. We first con-
sider the large positive mass limit in the theory SU(2)1−Nf /2 +
Nf ψ . There are two options of fractionalization of U on
the antisemion s,13 labeled by K1. Concretely, there is the
correspondence

U2 = (−1)K1 on antisemion s. (44)

When the mass of ψ is finite, the Z2 unitary symmetry acts
on the fermion ψ . For K1 = 0, the fermion carries charge
1, while for K1 = 1, the fermion carries charge 1/2 (i.e.,
fractionalized).

On the other hand, notice that SU(2)1−Nf /2 + Nf ψ

naturally has the U(1) symmetry associated with Baryon
conservation, and we adopt the normalization that the Baryon
has U(1) charge 2, while the quark ψ has U(1) charge 1. The
symmetry is

U(1) × SU(2) × Spin(2, 1)

Z2 × Z2
, (45)

where the constraint between the bundles is w2(VSO(3)) +
c1(VU(1)/Z2 ) + w2 = 0 mod 2.

How does the Z2 symmetry generated by U relate to U(1)?
For K1 = 0, the quark ψ carries U charge 1, hence the Z2

is embedded in U(1) in the natural way, i.e., Z2 ⊂ U(1). For
K1 = 1, the quark ψ carries U charge 1/2, hence the Z2 is
embedded into U(1) as Z2 ⊂ U(1)/Z2, or equivalently Z4 ⊂
U(1). We enumerate the total U -gauge-space-time symmetry
and their gauge bundle constraint as follows:

(K1, K2) = (0, 1) :
Z2 × SU(2) × Spin(2, 1)

Z2 × Z2
,

w2(VSO(3) ) + w2 = 0 mod 2,

(K1, K2) = (1, 1) :
Z4 × SU(2) × Spin(2, 1)

Z2 × Z2
,

Sq1Y +w2(VSO(3) ) + w2 = 0 mod 2. (46)

13Notice that Lorentz symmetry fractionalization of the semion
results in an antisemion.

Notice that the gauge bundle constraints for the domain-
wall theories (46) are nicely in accord with (9) in 4d.

Let us consider the dual theory U(1)−2 + Nf φ, and discuss
how the U symmetry is realized. We first consider the large
mass limit, where the theory flows to U(1)−2. The monopole
in the bosonic theory is dual to the baryon in the fermionic
theory. In the fermionic theory, baryon carries U(1) charge 2.
Using the embedding of Z2 into U(1), we find that Baryon
carries U charge K1 mod 2. Thus the monopole carries U
charge K1 mod 2.

The symmetry breaking quantum phase (described by the
nonlinear sigma model) on the domain wall can be easily seen
from the bosonic theory. By turning on the large negative mass
squared of the scalar, we land on the symmetry breaking phase
described by the nonlinear sigma model with the target space

G = Sp(2)

Sp(1) × Sp(1)
= Sp(2)

Spin(4)
. (47)

In the sigma model, there exists a configuration of skyrmion
which also carries the U charge K1 mod 2.

V. DECONFINED GAPLESS U(1) GAUGE THEORY

In this section, we discuss the scenario where the low-
energy theory of SU(2) Yang-Mills at θ = π is a U(1) gauge
theory.14 We attempt to find a U(1) gauge theory that matches
the anomaly (12).

We consider the time reversal invariant U(1) gauge theory
described by the action

S = − 1

4e2

∫
M4

f ∧ � f + θ

8π2

∫
M4

f ∧ f , θ = 0, 2π, (48)

where f = du and u is the U(1) gauge field. The U(1) theory
is time reversal symmetric, where ZT

2 acts on the gauge field
as

T (u0(t, �x)) = −u0(−t, �x), T (ui(t, �x)) = ui(−t, �x). (49)

This choice of time reversal flips the U(1) gauge charge,
while preserves the U(1) gauge monopole. Hence one can
assign monopole Kramers degeneracy, i.e., T 2 to the lines
with charge (qe, qm) = (0, 1).15 In the present case, T 2 = 1
acting on Wilson lines. Under Lorentz rotation, the Wilson
line transforms with integer spin, while the ’t Hooft line
transforms with half integer spin or integer spin depending
on θ = 0, 2π , due to the statistical Witten effect.

(48) also has one form symmetries U(1)e,[1] × U(1)m,[1]

where the subscripts e and m represent electric and magnetic
respectively. The electric U(1)e,[1] acts on Wilson lines, and
U(1)m,[1] acts on ’t Hooft lines. To make contact with the
SU(2) Yang-Mills, we will focus on the Z2,[1] subgroup of
U(1)e,[1]. To couple (48) to two-form background gauge field

14We will also comment on θ = 0.
15For θ = 0, the dyonic line with charge (qe, qm ) = (0, 1) is de-

noted the ’t Hooft line. However, for θ = 2π , due to Witten effect,
the ’t Hooft line T is has charge (qe, qm ) = (1, 1). The dyonic line
with charge (qe, qm ) = (0, 1) is W −1T , i.e., ’t Hooft line attached
with an anti-Wilson line.
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B, we replace f by f − πB. The action is

S = − 1

4e2

∫
M4

( f − πB) ∧ �( f − πB)

+ θ

8π2

∫
M4

( f − πB) ∧ ( f − πB), θ = 0, 2π. (50)

We further discuss coupling (48) to the Lorentz background
fields w1,w2.

A. U(1) gauge theory and spin liquids at θ = 0

For θ = 0, one can further couple (48) to the Lorentz back-
ground fields. Changing B → B + J2w2 modifies the statistics
of the U(1) charge. To modify the Lorentz symmetries of the
U(1) monopole, we add to the action a term

1
2 ( f − πB − J2πw2)

(
L1w

2
1 + L2w2

)
. (51)

The Lorentz quantum numbers of the U(1) charge Ẽ and the
U(1) monopole M̃ are

Ẽ : h(Ẽ ) = J2

2
mod 1,

M̃ : h(M̃ ) = L2

2
mod 1, T 2

M̃ = (−1)L1+L2 ,

(52)

where we use the tilde to emphasize that the time reversal
parities of the U(1) charge and monopole are the opposite
compared with the convention in [29], namely the time re-
versal flips the charge Ẽ other than the monopole M̃. We will
bridge both conventions at the end of this section.

When coupled to all the background fields B,w1,w2 (i.e.,
by formulating the theory on an unorientable and nonspin
manifold), the U(1) gauge theory with θ = 0 is16

S = − 1

4e2

∫
M4

( f − πB − J2πw2) ∧ �( f − πB − J2πw2)

+ 1

2

∫
M4

( f − πB − J2πw2)
(
L1w

2
1 + L2w2

)
. (53)

The last term − 1
2

∫
M4

(πB + J2πw2) ∧ (L1w
2
1 + L2w2) is not

well-defined on an unorientable manifold. To make sense of
it on an unorientable manifold, we need to promote it to a 5d
action,

−π

∫
M5

Sq1
(
(B + J2w2)

(
L1w

2
1 + L2w2

))
. (54)

Among the four terms by expanding (54), only two terms
represent the ’t Hooft anomalies,

Sanom = −π

∫
M5

(
L1w

2
1Sq1B + J2L2w2w3

)
, (55)

where w3 ≡ w3(T M5) is the Stiefel-Whitney class for the
tangent bundle of M5. When L1 = 1, there is a mixed anomaly
between the time reversal and Z2,[1]. When J2 = L2 = 1,
there is an anomaly for the “all fermion electrodynamics”
[29,49,50].

16The wedge product (∧) of the characteristic classes (e.g., Stiefel-
Whitney classes) should be understood as the cup product (∪).
Below, we suppress the cup product for simplicity.

We summarize the U(1) gauge theories at θ = 0 and their
’t Hooft anomalies as

(J2, L2, L1) = (0, 0, 0) ẼbM̃b 0,

(J2, L2, L1) = (0, 0, 1) ẼbM̃bT − π

∫
M5

w2
1Sq1B,

(J2, L2, L1) = (0, 1, 0) ẼbM̃ f T 0,

(J2, L2, L1) = (0, 1, 1) ẼbM̃ f − π

∫
M5

w2
1Sq1B,

(J2, L2, L1) = (1, 0, 0) Ẽ f M̃b 0,

(J2, L2, L1) = (1, 0, 1) Ẽ f M̃bT − π

∫
M5

w2
1Sq1B,

(J2, L2, L1) = (1, 1, 0) Ẽ f M̃ f T − π

∫
M5

w2w3,

(J2, L2, L1) = (1, 1, 1) Ẽ f M̃ f −π

∫
M5

w2
1Sq1B +w2w3,

(56)

where we used the Lorentz symmetries of the U(1) charge and
U(1) monopoles to label the spin liquid, similar to Ref. [29].
However, we emphasize that Ẽ is time reversal odd and M̃ is
time reversal even, in contrast to the conventions of Ref. [29]
where the time reversal parities are the opposite to ours.

Comparing with the anomalies of SU(2) Yang-Mills with
θ = π (12), none of the U(1) spin liquids in (56) can be the
potential IR candidate phases of SU(2) Yang-Mills at θ = π .
However, we will see in Sec. VI that some of the U(1) spin
liquids in (56) can be obtained by Higgsing SU(2) gauge
group to U(1) for the SU(2) Yang-Mills with θ = 0, although
it is very unlikely that the deconfined U(1) spin liquids are
dynamically realized by the RG flow.

It is illuminating to connect our identification of the U(1)
spin liquids to those in Ref. [29]. In Ref. [29], the convention
is that U(1) charge E is time reversal even while the U(1)
monopole M is time reversal odd. For θ = 0, the two con-
ventions are related by S duality, i.e., E ↔ M̃, M ↔ Ẽ which
can be understood as the π/2 rotation of the charge-monopole
lattice. Thus we arrive at the following dictionary:

ẼbM̃b = EbMb, ẼbM̃bT = EbT Mb, ẼbM̃ f T = E f T Mb,

ẼbM̃ f = E f Mb, Ẽ f M̃b = EbM f , Ẽ f M̃bT = EbT M f ,

Ẽ f M̃ f T = E f T M f , Ẽ f M̃ f = E f M f . (57)

In the dual theory, only M is charged under Z2,[1].

B. U(1) gauge theory and spin liquids at θ = 2π

We proceed to discuss the U(1) spin liquids with θ = 2π .
Similar to Sec. V A, one can still modify the statistics of
the U(1) charge by replacing B → B + J2w2. To modify the
Lorentz symmetries of the monopole with charge (qe, qm) =
(0, 1), we realize that due to the Witten effect, the ’t Hooft
operator (’t Hooft line) carries θ/2π = 1 electric charge. Thus
to form the pure monopole with vanishing electric charge, one
needs to attach a U(1) charge (i.e., a Wilson line). As noted in
Ref. [31], for θ = 2π , a dyon with charge (qe, qm) couples
to the U(1)e,[1] and U(1)m,[1] background fields Be and Bm by
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attaching a surface operator

exp

(
i
∫

�

(qe − qm)Be + qmBm + (qe − qm)qmπw2

)
. (58)

Applying (58) to our case, Be = π (B + J2w2). We demand
that when B = 0, the surface operator for (qe, qm) = (0, 1)
should be L1w

2
1 + L2w2. As we will see below, to match

the mixed anomaly between time reversal and Z2,[1], we
need to modify the above expression to L1w

2
1 + L2w2 + B

when B is nonvanishing. This implies that both Ẽ and M̃
are charged under Z2,[1], and the mixed T -Z2,[1] anomaly
descends from the mixed anomaly of Z2,[1] ⊂ U(1)e,[1] and
Z2,[1] ⊂ U(1)m,[1]. The Lorentz symmetry of the U(1) charge
Ẽ and U(1) monopole M̃ is

Ẽ : h(Ẽ ) = J2

2
mod 1,

M̃ : h(M̃ ) = L2

2
mod 1, T 2

M̃ = (−1)L1+L2 . (59)

Thus we find

Be = π (B + J2w2), Bm = π
(
L1w

2
1 + (L2 + J2 + 1)w2

)
.

(60)

Notice that the Yang-Mills couples to U(1)e,[1] and U(1)m,[1]

background fields Be and Bm as

S = − 1

4e2

∫
M4

( f − Be) ∧ �( f − Be) + 2π

8π2

∫
M4

( f − Be)

∧ ( f − Be) + π

2π

∫
M4

( f − Be)Bm. (61)

Substituting (60) into (61), we obtain the U(1) gauge theory
coupled to B,w1,w2 as

S = − 1

4e2

∫
M4

( f − πB − J2πw2) ∧ �( f − πB − J2πw2)

+ 2π

8π2

∫
M4

( f − πB − J2πw2)( f − πB − J2πw2)

+ π

2π

∫
M4

( f − πB − J2πw2)
(
L1w

2
1 + (L2 + J2 + 1)w2

)
.

(62)

The anomaly can be derived by examining the terms in
(62) that are not well-defined on an unorientable manifold
M4. Such terms are 2π

8π2

∫
M4

(πB + J2πw2)2 − π
2π

∫
M4

(πB +
J2πw2)(L1w

2
1 + (L2 + J2 + 1)w2) due to the fractional coeffi-

cients. To make sense of these terms, we promote these terms
to a 5d integral.

Sanom = π

∫
M5

BSq1B + Sq2Sq1B + (L2 + 1)Sq1(w2B)

+ L1w
2
1Sq1B + J2(L2 + J2 + 1)w2w3. (63)

As commented in Sec. II, the term Sq1(w2B) is a WZW-like
counter term.

We summarize the U(1) gauge theories/spin liquids with
θ = 2π and their genuine ’t Hooft anomalies (i.e., excluding
the WZW-like counter terms) as follows:17

(J2, L2, L1) = (0, 0, 0) (ẼbM̃b)2π π

∫
M5

BSq1B + Sq2Sq1B,

(J2, L2, L1) = (0, 0, 1) (ẼbM̃bT )2π π

∫
M5

BSq1B + Sq2Sq1B + w2
1Sq1B,

(J2, L2, L1) = (0, 1, 0) (ẼbM̃ f T )2π π

∫
M5

BSq1B + Sq2Sq1B,

(J2, L2, L1) = (0, 1, 1) (ẼbM̃ f )2π π

∫
M5

BSq1B + Sq2Sq1B + w2
1Sq1B,

(J2, L2, L1) = (1, 0, 0) (Ẽ f M̃b)2π π

∫
M5

BSq1B + Sq2Sq1B,

(J2, L2, L1) = (1, 0, 1) (Ẽ f M̃bT )2π π

∫
M5

BSq1B + Sq2Sq1B + w2
1Sq1B,

(J2, L2, L1) = (1, 1, 0) (Ẽ f M̃ f T )2π π

∫
M5

BSq1B + Sq2Sq1B + w2w3,

(J2, L2, L1) = (1, 1, 1) (Ẽ f M̃ f )2π π

∫
M5

Sq1B + Sq2Sq1B + w2
1Sq1B + w2w3.

(64)

17The mathematical justification of these 4d higher ’t Hooft anoma-
lies in terms of 5d invertible TQFTs can be read from the 5d
cobordism invariants computed from a generalized cobordism theory
[33,34].

We use the subscript 2π to emphasize that both Ẽ and M̃ lines
are charged under Z2,[1]. By rotating the charge-monopole
lattice by π/2 (i.e., performing the S duality), we are also
able to map the U(1) spin liquids in (64) to those discussed
in [29]. One simply exchange Ẽ ↔ M and M̃ ↔ E . The
correspondence has been enumerated in (57). We emphasize
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that the Z2,[1] one form symmetry background field couples to
both E and M lines in the dual theory.

Notice the WZW-like counter term does not have to be
matched along the RG flow. By matching the genuine ’t Hooft
anomalies in (64) and the anomalies of SU(2) Yang-Mills
at θ = π , we can enumerate the U(1) spin liquids for each
sibling of SU(2) Yang-Mills as follows:

(K1, K2) = (0, 0), (0, 1) : (ẼbM̃b)2π , (ẼbM̃ f T )2π , (Ẽ f M̃b)2π ,

(K1, K2) = (1, 0), (1, 1) : (ẼbM̃bT )2π ,(ẼbM̃ f )2π ,(Ẽ f M̃bT )2π .

(65)

The remaining two U(1) spin liquids can not emerge under
the RG flow of any sibling of SU(2) Yang-Mills due to
the additional w2w3 anomaly. Merely from matching the ’t
Hooft anomalies, we are not able to determine which among
the three U(1) spin liquids in each row of (65) is realized
for a given (K1, K2). However, by imposing more physical
requirements as we will discuss in Sec. VI, we are able to
determine which U(1) spin liquid phase is realized.

VI. APPLICATION II: GAUGE ENHANCED QUANTUM
CRITICAL POINT Nf � NCFT

In this section, we discuss an application of the decon-
finement scenario in Sec. V. Assuming the SU(2) Yang-Mills
at θ = π can flow to a deconfined U(1) gauge theory which
describes the low-energy physics of the U(1) quantum spin
liquid, it opens up the possibility of exotic quantum phase
transitions between different U(1) spin liquids and/or trivial
paramagnet, where the gauge group is enhanced to SU(2) at
and only at the critical point. We denote such transition as a
gauge enhanced quantum critical point (GEQCP).

A. SU(2) QCD4 and higher-order interactions:
U(1) spin liquid phases from Higgsing

We consider the SU(2) QCD4 with Nf fermions, described
by the following action

S =
∫

M4

⎛
⎝ Nf∑

i=1

 i( iγ μDμ − m)i + Lhigh

⎞
⎠

− 1

4g2

∫
M4

Tr(F ∧ �F ). (66)

where i is the four component Dirac fermion with a flavor in-
dex i = 1, . . . , Nf and a SU(2) color index a = 1, 2 which is
suppressed. For the sake of the following discussion, we have
also included a phenomenological four and eight-fermion
interaction term Lhigh,

Lhigh = u
3∑

a=1

⎛
⎝ Nf∑

i=1

 iτ
ai

⎞
⎠

2

+ λ

⎡
⎣ 3∑

a=1

⎛
⎝ Nf∑

i=1

 iτ
ai

⎞
⎠

2⎤
⎦

2

,

(67)

where τ a (a = 1, 2, 3) denotes the generator of the SU(2)
gauge group. We will always take λ > 0 and allow u to be

FIG. 3. Schematic RG flow diagram around the QCD4 fixed
point for odd Nf and Nf > 11. Possible IR fates are listed for
completeness, although some [such as the U(1) SL on the θ = 0 side]
may be extremely unlikely.

either sign. Throughout, we assume there is a flavor symmetry
Sp(Nf ) or U(Nf ) such that the masses of all the flavors of
fermions are degenerate.

We work in the parameter regime of Nf � NCFT such that
the QCD4 with m = 0 flows to a conformal field theory which
can describe a second-order phase transition between the two
semiclassical phases (which we will discuss in detail below).
In particular, when Nf > 11, the QCD4 with m = 0 is in
the infrared free phase and the coupling constant g flows to
zero under RG. At this RG fixed point, the only relevant
perturbation is the fermion mass m, and the terms in Lhigh

are irrelevant. Thus for m = 0, adding the higher-order terms
Lhigh in (66) does not affect the dynamics in the IR. In
particular, u, g, and λ all flow to zero, as shown in the middle
panel of Fig. 3.

We proceed to discuss the mass deformation by allowing m
to be either positive or negative.18 We focus on the case when
Nf is an odd integer. Then depending on the sign of m, the
QCD flows to the SU(2) Yang-Mills theory with either θ = 0
(for m > 0) or θ = π (for m < 0). The SU(2) Yang-Mills
theory does not describe the ultimate IR fate of the system. It
continues to flow towards different possible IR fixed points as
we have discussed in previous sections. One possibility is that
the system enters the confinement phase, where the coupling
g flows large away from the m = 0 QCD4 fixed point. In
the confinement phase on the θ = π (m < 0) side, Z2,[1]

is unbroken and time reversal symmetry is spontaneously
broken [2,51]. Another possibility is that the system remains
deconfined with a reduced gauge group, which can lead to
either a U(1) or a Z2 spin liquid phase. The possible U(1) spin
liquid phases that saturate the ’t Hooft anomalies are provided
in Sec. V. In the rest of this section, we provide a potentially

18In general, the mass parameter in 4d QCD can be complex, which
is obvious when we rewrite the Dirac fermions into Weyl fermions
with both chirality. In this work, we focus on the real mass for
simplicity.
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possible mechanism for the deconfinement scenario to take
place, and we further determine, if so, which type of U(1)
spin liquid [among the candidates in (65)] is indeed realized
for a given sibling of SU(2) Yang-Mills.

Viewing the SU(2) Yang-Mills as the large mass deforma-
tion limit of a SU(2) QCD4 allows us to propose a natural
mechanism to realize the deconfinement scenario in Sec. V.
When |m| is nonzero, it is possible that the interaction strength
u and λ in (66) and (67) could flow strong. Assuming u < 0,
the higher-order term (67) drives the condensation of SU(2)
gauge triplet  iτi and consequently Higgses the SU(2)
gauge group to its subgroup. If only one component of the
gauge triplet acquires expectation value, e.g., 〈 iτ

3i〉 �= 0,
the SU(2) gauge group will be Higgsed down to its U(1)
subgroup. The remaining low-energy theory will be a U(1)
Maxwell theory that describes the U(1) spin liquid. It will
be important in Sec. VI B that after Higgsing, each flavor
of i gives rise to two types of fermions 1i, 2i which
carry opposite U(1) gauge charge. 1i carries U(1) charge
1, while 2i carries U(1) charge −1. If more than one
components of the gauge triplet acquire expectation values
(depending on the details of higher-order interactions), e.g.,
〈 iτ

1i〉, 〈 iτ
2i〉 �= 0, then the remaining gauge group

will be Z2, realizing the TQFT description of the topo-
logically ordered Z2 spin liquid phase. (See Ref. [14] for
such Z2 spin liquid phases.) In the following, we will take
the U(1) spin liquid as the example to illustrate the de-
confined phase. The schematic RG flow diagram is shown
in Fig. 3.

We comment on the possibilities of the signs of m and u in
(66) and (67), and their consequences.

(1) u > 0 for both m > 0 and m < 0. In this scenario,
the gauge group SU(2) is not Higgsed. When m is positive,
the theory flows to a trivial gapped phase, in accord with
the standard lore [7]. When m is negative, the theory flows
to a strongly coupled confining phase where time reversal is
spontaneously broken.

(2) u < 0 for both m > 0 and m < 0. In this scenario, the
gauge group SU(2) is Higgsed for both signs of m, with the
only exception at m = 0. The SU(2) Yang-Mills with both
θ = 0 and π flow to certain U(1) spin liquids. We will deter-
mine on the U(1) spin liquid in Sec. VI B. We emphasize that
although it is extremely unlikely that SU(2) Yang-Mills with
θ = 0 flows to a deconfined U (1) gauge theory and is beyond
the standard lore [7], this scenario is still not completely ruled
out rigorously.

(3) u > 0 for m > 0, and u < 0 for m < 0. The signs of
m and u are correlated. In this scenario, the gauge group
SU(2) is Higgsed only for θ = π . While for θ = 0, the SU(2)
Yang-Mills flows to a trivial gapped phase, consistent with
the lore [7]. However, the underlying mechanism for the sign
correlation between u and m still needs to be understood.

B. Symmetries realizations and symmetry enriched
U(1) spin liquids in the infrared

The specific type of the U(1) spin liquid that is realized
under the gauge triplet condensation depends on how the time
reversal symmetry is implemented in the QCD theory (66).
We consider the following two possibilities of time reversal

implementation, where the gauge and global symmetries are

CI :
SU(2) × Sp(Nf ) × ZT

4

Zc
2 × Z f

2

, (68)

CII :
SU(2) × U(Nf )

Z f
2

× ZT
2 . (69)

For (68), the SU(2) ≡ Sp(1) gauge transformation and the
time reversal symmetry act on the fermionic matter field as
SU(2) : i → e i θ·τi and

CI : T : i → Kγ 5γ 0
†
i . (70)

In particular T 2 = −1 on i. Here the Zc
2 center of SU(2)

is the same as the fermion parity Z f
2 ; we mod out Zc

2 = Z f
2

twice because SU(2), Sp(Nf ) and ZT
4 all share the same

normal subgroup Zc
2 = Z f

2 . Sp(Nf ) is the flavor symmetry.
If we just focus on the SU(2) and time reversal [i.e., ignore
the flavor symmetry Sp(Nf )], this symmetry coincides with
the CI symmetry class in the ten fold classification of the
fermionic SPT. This motivates an alternative way to under-
stand the SU(2) QCD4 (66): the SU(2) QCD4 with symmetry
class (68) can be understood as from gauging the SU(2)
global symmetries of Nf copies of free fermions in symmetry
class CI.

For (69), the SU(2) gauge transformation acts in the same
way as in the CI class. However, time reversal acts on the
fermionic matter field differently:

CII : T : i → K iγ 5γ 0
†
i . (71)

Compared with (70), there is an additional U(1) ⊂ U(Nf )
flavor transformation. In particular, T 2 = 1. The quotient in
(69) is to identify the common normal subgroup of SU(2) and
U(Nf ). The SU(2) QCD4 with symmetry class (69) can be
understood as from gauging the SU(2) global symmetries of
Nf copies of free fermions in symmetry class CII.

Under the condensation of 〈 iτ
3i〉 �= 0, the remaining

U(1) gauge group acts as U(1) : i → e i θτ 3
i. The U(1) gen-

erator commutes with the time reversal transformation, which
forms the AIII symmetry class. The class AIII fermionic SPT
state is Z8 × Z2 classified, where only the phases associated
with Z8 can be represented by the free fermion theories.19

Turning on the fermion mass m effectively put the i field in
the class AIII fermionic SPT states labeled by the topological
index ν = 0 (m > 0) or ν = 2Nf (m < 0). Connecting with
the U(1) gauge theories in Sec. V, θ = νπ . If i is in the
ν = 0 phase, the U(1) monopole is simply a boson. If i is in
the ν = 2Nf phase, the U(1) monopole will carry will carry
2Nf fermion zero modes. However, these zero modes carry
U(1) gauge charge. To form U(1) gauge invariant monopole
operator, we need to consider only those monopole that are
neutral under U(1). We note that under Higgsing, both CI and
CII classes reduce to AIII classes,

Higgsing : CI → AIII, CII → AIII. (72)

19Before gauging, the AIII SPT theory is simply Nf free fermions
coupled to U(1) background fields. Hence only the Z8 part is relevant
for our purpose.
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(72) can also be interpreted as different ways of embedding
AIII symmetry class into CI and CII classes. See Ref. [26]
for extensive discussions of the embedding in (72) and other
examples among the ten Cartan symmetry classes. The dif-
ference between the two reduced AIII classes are that the
U(1) neutral monopoles have different symmetry quantum
numbers, which we determine below.

We proceed to determine the time reversal proper-
ties (Kramers degeneracy) of the time reversal symmetric
monopole operators of charge (qe, qm) = (0, 1). For illustra-
tive purposes, we first determine the time reversal properties
of the monopole in AIII class ν = 2 (i.e., Nf = 1 copy of
AIII system and the topological theta parameter in the U(1)
Mexwell theory is θ = 2π ) with the global symmetry

U(1) × ZT
4

Z f
2

. (73)

The time reversal properties of the fermion zero modes de-
scend from the time reversal transformations in (70) and (71).
In (70), time reversal maps a fermion to its conjugate, and only
the spinor indices are rotated. Hence the fermion zero mode ca

(for Nf = 1), where a = 1, 2 is the SU(2) index, maps under

time reversal as

CI : T : ca → c†
a, c†

a → ca. (74)

In (71), time reversal maps a fermion to its conjugate, accom-
panied by a Z4 ⊂ U(1) transformation generated by i . Hence
the fermion zero mode ca maps under time reversal as

CII : T : ca → ic†
a, c†

a → − ica. (75)

Using the operator-state correspondence, the monopole M
without any fermion zero mode occupied is mapped to a state
|0〉 with ca|0〉 = 0 for a = 1, 2. Under T , the empty state
|0〉 is mapped to a fully occupied state c†

1c†
2|0〉, i.e., T |0〉 =

c†
1c†

2|0〉. We further notice that the two fermion zero modes
has opposite gauge charge. c1 carries U(1) charge 1, while
c2 carries U(1) charge −1. Thus the U(1) neutral monopole
operators are associated with the states

|0〉, c†
1c†

2|0〉 (76)

rather than the half filled states c†
1|0〉, c†

2|0〉. Combined with
(74) and (75), we can compute T 2 of the empty and full states
in (76) as

CI : T 2|0〉 = c1c2c†
1c†

2|0〉 = −|0〉, T 2c†
1c†

2|0〉 = c†
1c†

2c1c2c†
1c†

2|0〉 = −c†
1c†

2|0〉,
CII : T 2|0〉 = −c1c2c†

1c†
2|0〉 = |0〉, T 2c†

1c†
2|0〉 = −c†

1c†
2c1c2c†

1c†
2|0〉 = c†

1c†
2|0〉.

(77)

In short, for Nf = 1 (or ν = 2), the (qe, qm) = (0, 1)
monopole is Kramers doublet (T 2 = −1) in the AIII class
descended from CI, while Kramers singlet (T 2 = 1) in the
AIII class descended from CII. Moreover, in both cases,
the (qe, qm) = (0, 1) monopole is a boson, which is obvious
from (59).

Using similar analysis for the monopole quantum numbers
in (77) for the AIII class ν = 2, it is straightforward to ob-
tain the monopole quantum numbers for AIII class ν = 2Nf ,
which is

CI : T 2 = (−1)Nf , CII : T 2 = 1, (78)

for monopoles associated with the U(1) neutral states
|0〉, c†

1ic
†
2 j |0〉, . . . , (c†

1i1
. . . c†

1iN f
c†

2 j1
. . . c†

2 jN f
)|0〉 where the

number of 1 and 2 of the SU(2) indices should balance.
Since we focus on the case where Nf is odd, the time
reversal Kramers degeneracy for the two cases in (78) are
different.

We emphasize that the quantum numbers in (78) are for
the probe monopoles in the AIII symmetry classes. Further
gauging the U(1) global symmetries of the AIII fermionic
SPTs lead to different U(1) spin liquids. Thus (78) also char-
acterizes the quantum numbers of the dynamical monopoles
in the U(1) spin liquids.

We are ready to identify the U(1) spin liquid phases in
the IR. We first determine the candidate U(1) spin liquid
for SU(2) Yang-Mills with θ = 0. Since in SU(2) QCD4,
the SU(2) gauge field is coupled to fermions, the SU(2)
Yang-Mills theories should have fermionic Wilson lines, i.e.,
K2 = 1. (See an similar discussion in Sec. IV A.) On the other

hand, the U(1) charges should also be fermionic because they
descend from Higgsing the fermionic SU(2) charges, i.e., Ẽ
should be fermionic. Combining with the U(1) monopole
quantum numbers in (78), we find that, when m < 0, the QCD
in the CI class flows to (Ẽ f M̃bT )2π , while the QCD in CII class
flows to (Ẽ f M̃b)2π .

The make contact with the siblings of SU(2) Yang-Mills
at θ = π , we further need relate the U(1) spin liquids deter-
mined above to the labels of the siblings, i.e., (K1, K2). As
we find above, K2 = 1. Furthermore, K1 can be determined by
matching the anomaly of the U(1) spin liquids in (64) with the
anomaly of the SU(2) Yang-Mills (12). Thus we we determine
the U(1) spin liquids as well as the siblings of the Lorentz
symmetry enriched SU(2) Yang-Mills as

ν = 2Nf : CI : (K1, K2) = (1, 1),→ AIII : (Ẽ f M̃bT )2π .

(79)

ν = 2Nf : CII : (K1, K2) = (0, 1),→ AIII : (Ẽ f M̃b)2π . (80)

The U(1) spin liquids on the m > 0 side is simply

ν = 0 : CI, CII : (K1, K1) = (0, 1), (1, 1) → AIII : Ẽ f M̃b.

(81)

Thus we have singled out a particular symmetry enriched U(1)
spin liquid as the low energy of SU(2) Yang-Mills from the
anomaly matched candidates in (65), by embedding the SU(2)
Yang-Mills into a SU(2) QCD4 with the assumed SU(2)
triplet Higgsing pattern. (79) and (80) are precisely the time
reversal CFTs initially proposed [26].
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We finally comment that although i in (70) satisfies T 2 =
−1, this does not mean i is Kramers doublet, because i

is not mapped to itself under time reversal. See [52] for an
analog discussion in 2 + 1d. A priori, it seems to be difficult
to determine the (K1, K2) from the symmetry assignment (70).
Here, we provide a way to determine it through identifying
the U(1) spin liquid (Ẽ f M̃bT )2π and via anomaly matching.
Analogue comments also apply to (71).

C. Gauge enhanced quantum critical points

From the U(1) spin liquids determined in Sec. VI B, we are
able to predict a series of gauge enhanced quantum critical
points (GEQCP) using SU(2) QCD4. We will focus on the
second and third scenarios in Sec. VI A which involve U(1)
spin liquid phases, and finally comment on the first scenario
where no U(1) spin liquid phases are involved.

We first discuss the second scenario in Sec. VI A where
the fermion bilinear condensation takes place for both m >

0 and m < 0, realizing Ẽ f M̃b and (Ẽ f M̃bT )2π respectively
for the sibling (K1, K2) = (1, 1), while Ẽ f M̃b and (Ẽ f M̃b)2π

respectively for the sibling (K1, K2) = (0, 1). For simplicity,
we will mainly discuss the sibling (K1, K2) = (1, 1) below.
The transition between Ẽ f M̃b and (Ẽ f M̃bT )2π spin liquids can
be realized by tuning the mass m in (66), assuming the SU(2)
Yang-Mills theory can flow to the deconfined U(1) Maxwell
theory on both sides. At m = 0, both the gauge coupling g
and the interaction u are irrelevant (if Nf > 11), such that the
transition is controlled by the IR free QCD fixed point. This
provides a novel GEQCP scenario for the Kramer-changing
quantum criticality between Ẽ f M̃b and (Ẽ f M̃bT )2π spin liquids
as a QCD theory, where the gauge group is enhanced from
U(1) to SU(2) at the critical point, which is different from
the QED description proposed in Ref. [29]. Nevertheless,
similar to Ref. [29], additional symmetries must be imposed
to guarantee a single direct transition, otherwise the critical
point can be interrupted by other time reversal invariant terms
such as the alternating chemical potential term ψ

†
i γ 5ψi or can

be split to multiple transitions if different fermion flavors have
different masses. One simple way is to demand an inversion
symmetry I : ψi → γ0ψi, x → −x together with the Sp(Nf )
flavor symmetry.

We proceed to the third scenario in in Sec. VI A where
the fermion bilinear condensation takes place only for m < 0,
realizing (Ẽ f M̃bT )2π for the sibling (K1, K2) = (1, 1), while
(Ẽ f M̃b)2π for the sibling (K1, K2) = (0, 1). On the m > 0
side, the theory flows to a trivial vacua. For simplicity, we
only discuss the sibling (K1, K2) = (1, 1). The QCD theory
also afford a GEQCP scenario for the phase transition between
the (Ẽ f M̃bT )2π U(1) gauge theory and the trivially confined
vacuum. The conventional transition from a Ẽ f M̃b U(1) spin
liquid to a trivial paramagnet can happen by monopole con-
densation (as a confinement transition). Note that Ẽ is a

fermion and can not be condensed, unless condensing in pairs
which would lead to a Z2 topological order. However for the
(Ẽ f M̃bT )2π spin liquid, if we condense the monopole, the time
reversal symmetry will be spontaneously broken because the
monopole is a Kramers doublet. It seems difficult to drive a
direct transition from the (Ẽ f M̃bT )2π spin liquid to a trivial
paramagnet. Nevertheless, our analysis provides a compelling
possibility by first enlarging the gauge group from U(1) to
SU(2) and then allowing the SU(2) to confine trivially by
removing tuning to the θ = 0 side. As shown in the flow
diagram Fig. 3, it is possible to connect the (Ẽ f M̃bT )2π spin
liquid and the trivial paramagnet in the parameter space by
going through the plane of m = 0, which is controlled by
the QCD fixed point, where an enlarged SU(2) gauge group
together with gapless fermionic partons will emerge. This
constitutes yet another example of the GEQCP.

We finally comment on the first scenario, where time rever-
sal is spontaneously broken for m < 0, and a trivial gapped
phase is realized for m > 0. If this scenario takes place,
the SU(2) QCD4 with odd Nf fundamental fermions can
access as a second-order deconfined phase transition, where
deconfinement is realized at and only at the critical point. This
scenario is discussed in Ref. [51]. See Refs. [53–56] for other
deconfined quantum critical points (DQCP) between various
confining phases.

Note added. Recently, Ref. [51] appeared, which partially
overlaps with our work. In particular, our discussion of the
more general GEQCP has been partly motivated by the talk
given by T. Senthil at the Ultra Quantum Matter kickoff meet-
ing about the possible DQCP towards the symmetry breaking
phases [57]. Also, we learned that similar discussion about the
U(1) spin liquid and its transition to a trivial insulator had also
appeared in Sec. V of [51]. Our results agree with Ref. [51]
when they overlap, in particular, (Ẽ f M̃bT )2π in our work is
denoted as E f 1

2
M 1

2 T in Ref. [51].
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