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Rising bubble in a cell with a high aspect ratio cross-section filled with a viscous fluid
and its connection to viscous fingering
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We investigate, both experimentally and theoretically, the velocity and shape of bubbles that rise in a vertical
cell with a rectangular cross-section due to buoyancy. The shorter length of the cross-section is comparable to,
and the longer length is larger than, the capillary length. This geometry allows us to confine the bubble in two
lateral directions, where the bubble is strongly confined by the front and back walls of the cell, and weakly
confined by the side walls. Due to this double confinement, one lateral dimension of the bubble is comparable to,
but the other lateral and vertical dimensions are larger than, the capillary length. This combination of length
scales results in the distinct behavior described in the present study. Our focus here is on the dynamics in
the viscous regime, in which buoyancy acts as the driving force for the vertical motion, which is opposed by
viscous drag. We have successfully established simple laws for the velocity and shape of the doubly confined
bubbles, which lead to a scaling law for the viscous drag acting on the bubble. It is shown that the downward
flow around the bubble is essential to the dynamics in this regime. Confocal imaging on submillimeter scales
reveals velocity profiles consistent with the present theory. We explore how this doubly confined regime exhibits
crossover to previously known scaling laws, and present a corresponding phase diagram. By using a simple
velocity transformation, we show the behavior of rising bubbles in the present study corresponds to, and leads to
a deeper understanding of, certain types of viscous fingering.
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I. INTRODUCTION

The dynamics of a bubble rising in a confined space is
a classic problem that is replete with interesting physics yet
to be explored. The bubble motion is driven by pressure,
which typically originates from buoyancy or forced flow. This
motion is opposed by viscous drag and/or inertia. The rele-
vant dynamics are in the viscous regime when viscous drag
dominates, and in the inertial regime when inertia dominates.
When the length scales associated with confining space and/or
bubbles are smaller than, or comparable to, the capillary
length, capillarity becomes an important consideration. Be-
cause of the interplay between inertia, viscosity, capillarity,
and gravity, this classic problem has continued to be an active
area of research.

In this study, we focus on a viscous regime where the
driving force for a bubble is a buoyant force that is opposed
predominantly by viscous drag. There are several important
length scales for the confining space and bubbles, and some
of them are comparable to, and others are larger than, the
capillary length. On the length scales considered in this work,
capillarity effects are non-negligible in one lateral direction,
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in contrast to some studies [1]. The present study is also
distinct from studies focusing on small rectangular tubes [2,3],
where the length scales of confinement are smaller than the
capillary length in both lateral directions. In our case, the
rising velocity is inversely proportional to viscosity, and
the capillary number Ca is smaller than unity (Ca is typically
from 0.01 to 0.1). Therefore the nonlinear viscous dynamics
originating from meniscus dissipation is not dominant [4,5],
as discussed below. However, in some cases, the meniscus
dissipation becomes important for bubble dynamics [6].

Now, we will present a brief history of the study of rising
bubbles in a confined space. Two pioneering studies were per-
formed using two distinct geometries. One study by Saffman
and Taylor in 1958 [7] used Hele-Shaw cells, and another by
Bretherton in 1961 [8] used capillary tubes. In both studies,
one of the main concerns was the viscous regime, which is
the dominant regime in the present study. The length scales of
the cross-section of the containers used by Bretherton tend
to be smaller than the capillary length. However, those of
Hele-Shaw cells used by Saffman and Taylor tend to be a
mixture of length scales, comparable to (or smaller than), and
larger than, the capillary length.

The Saffman-Taylor problem for the Hele-Shaw geometry
[7] was revisited by Tanveer [9]. However, the theoretical
models [7,9] were purely two-dimensional, implying that they
did not consider the possibility that thin lubricating films exist
between the bubble and the cell plates. Systematic experi-
mental studies in a constant velocity regime were performed
in a cell inclined to a nearly horizontal position [10–12]. In
2011, bubble motion in a highly viscous liquid in a vertical
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cell was considered, to find a scaling regime in which viscous
dissipation around the bubble is dominant, as in the case of
Saffman and Taylor, but with the presence of a lubricating
film [13]. (In this paper, another scaling regime was found
for a viscous drop surrounded by a less viscous liquid.) It
is also shown that the shape of the bubble in the viscous
regime is almost circular [13], which is not always the case
when inertia comes into play, as in the case of a bubble in
water or in a moderately viscous oil [14]. In 2016, another
scaling regime was found in which the dissipation in the
lubricating film governs the dynamics, and the crossover of
this regime to the scaling regime found in [13] was clearly
shown [15] (see also the review paper [16]). In 2018, another
scaling regime closely related to the one found in Ref. [15]
was shown, and possible effects of long-range intermolecular
interactions were discussed [17] (The role of the lubricating
film and molecular interactions were discussed in the different
context of oil droplets surrounded by water in microchannels
in Ref. [18]). When inertia comes into play, the rising motion
of a bubble tends to destabilize, but this is not the focus of the
present study (see Ref. [14] for recent studies in this direction,
which includes considerations of wake [19] and oscillation
[20]). Numerical study including the existence of lubricating
films is still a challenging problem, but this has been dealt with
in the limited case in which the viscosity of the drop and the
surrounding liquid are the same [21] (an empirical numerical
treatment of the effect of dissipation in the lubricating film is
discussed in Ref. [14]).

The capillary tube geometry of Bretherton is relevant to
various problems such as air-liquid two-phase flow and, in
particular, slug flow (see Refs. [22,23] for details), which
has attracted considerable attention by virtue of its numer-
ous practical applications. Gas-liquid slug flow is ubiquitous
in industrial facilities, such as vapor generators, reboilers,
buoyancy-driven fermenters, vaporizers, in the emergency
core cooling of nuclear reactors, in oil extraction from wells
[24], in transport of hydrocarbons in pipelines, and in geother-
mal and thermal power plants [25]. Accordingly, there are
many fundamental studies on the rising dynamics of a single
bubble in a tube with a circular cross-section [26–30]. With
the development of microfluidics [31,32], many studies have
been performed on the transportation of strongly confined
bubbles in a tube with a square or rectangular cross-section
with an aspect ratio close to one, both in the inertial [1,33–36],
and viscous [2,3,35,37–39] regimes. However, in the context
of microfluidics, the length scales of bubble confinement are
smaller than the capillary length, which differentiates these
studies from the present work.

Reviewing the literature to date, we asked what would
happen if a vertically rising bubble was strongly confined in
one direction, as in a Hele-Shaw cell, and weakly confined in
a second direction, by using a vertical tube with a high aspect
ratio rectangular cross-section. This question was briefly ad-
dressed in the viscous regime by Clanet et al. in 2004 [1]. They
used tubes with large cross-sections in which the capillary
effect was suppressed. In addition, their theoretical arguments
on the topic were purely dimensional, with no discussion of
the physical importance of liquid flow around the bubble.

In this study, we focus on the viscous dynamics of a bubble
in a cell with a rectangular cross-section where the short sides

FIG. 1. Experimental setup for (a) the doubly confined regime
(L is small) and (b) the singly confined regime (L is large). (c) Side
view of a rising bubble.

are comparable to the capillary length, and long sides are
much larger. The bubble volume is tuned so that the short
sides strongly confine, and the long sides weakly confine the
bubble. We then find simple laws for the velocity and shape of
a bubble in mathematically closed forms, in which capillarity
comes into play. In particular, we elucidate the importance of
the conservation of liquid flow in determining the bubble’s
velocity, and how considering the downward flow around
the bubble is essential. In addition, the velocity profiles of
the derived expressions are directly confirmed by confocal
imaging on submillimeter scales. To clarify the relationship
of the present work to previous studies on the pure Hele-Shaw
geometry [13], and to the case where there is no influence
of capillarity [1], we demonstrate the crossovers to these
regimes, and provide a phase diagram. Finally, we show that
bubble rising behavior in the present study can be mapped to
a type of viscous fingering using a velocity transformation,
which provides novel insight into the study.

II. EXPERIMENT

As illustrated in Figs. 1(a) and 1(b), experiments were
performed in a cell with a rectangular cross-section, which is
made of transparent acrylic plates. The thickness D and width
L are varied in a range of 0.5 to 3.0 mm and a range of 5
to 135 mm, respectively, where D � L is satisfied, i.e., the
aspect ratio is high. We fill the cell with silicon oil of viscosity
η, density ρ, and surface tension γ (η = 48.3 − 965 mPa s,
ρ = 960∼970 kg/m3, γ = 20 mN/m) and inject air to make
a bubble from the bottom of the cell. The bubble slowly
rises at a constant speed. We investigate the rising velocity
and shape of the bubble (see movie 1 and movie 2 [40]).
As illustrated in Fig. 1(c), a liquid thin film of thickness h
exists between the bubble and a cell wall (see below for more
details).

To characterize the dynamics, we introduce the character-
istic radius of the disk-shaped bubble r defined by πr2D = �

for the bubble volume �:

r =
√

�/πD. (1)

We introduce “the singly confined case” and “the doubly
confined case,” and put more focus on the latter. In both cases,
the bubble is confined in the direction of the cell thickness D:
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FIG. 2. (a) Rising bubble in the doubly confined regime. Cross-sections at the places indicated by two pairs of arrows (A, B) or a dashed line
(C) in the front view are shown on the right-hand side (A, B) and at the bottom (C) of the front view. (b) Rising velocity U as a function of cell
width L for various cell thickness D and oil viscosity η. (Inset) Semilogarithmic plot of the same data. (c) Rising velocity U vs ηgaD2/(ηRT )
on a log-log scale. Dashed line corresponds to Eq. (8) with k1 = 0.196 ± 0.0015.

the condition D � 2r is always satisfied (in addition to the
above-mentioned condition D � L for the cell geometry). In
the singly and doubly confined cases, L is significantly larger
and smaller than 2r, respectively. The singly confined case
corresponds to experiments using Hele-Shaw cells [13,15–
17]. In summary, in this paper, we distinguish the following
two cases as illustrated in Figs. 1(a) and 1(b) and focus on the
latter:

L � 2r � D (singly confined), (2)

2r � L � D (doubly confined). (3)

In the present experimental study, the capillary length κ−1 =√
γ /(ρg) with g the gravitational acceleration is roughly close

to the cell thickness D although it can be larger or smaller than
D (in experiment, it was in the range 0.5–3 mm, as mentioned
before):

D ≈ κ−1 (4)

Equation (4), together with Eqs. (2) and (3) implies that
L is larger than the capillary length (in experiment, it was in
the range 5–135 mm, as mentioned before). In other words,
our study presented below is in contrast with studies such
as [2] that focused on capillary tubes whose cross-section is
characterized by length scales which are all smaller than the
capillary length and, thus, neglected the gravity term in the
Navier-Stokes equation.

III. RESULTS

A. Rising velocity in the doubly confined regime

In the viscous regime, the rising velocity U can be de-
rived from a balance between the gravitational and dissipative
energies. The rising motion is driven by the decrease in
a gravitational energy, which is dimensionally estimated as

ρgRT RLDU per unit time, where RT and RL are the width and
length of bubbles, respectively, as shown in Fig. 2(a).

The viscous dissipation is mainly written in the following
four forms (dissipation in the dynamic meniscus is discussed
later). First two types of dissipation occur in the regions
outside of a bubble around the top and rear of the bubble.
They are estimated as T Ṡ1

∼= η(U/RT )2R2
T D, which is caused

by the velocity gradient in the x direction (∼U/RT ), and
T Ṡ2

∼= η(U/D)2R2
T D, which is caused by the velocity gradient

in the y direction (∼U/D). [See Fig. 1(a) for the definitions of
the x and y directions.]

The other two types of dissipation occur at the lateral
sides of the bubble. As the bubble rises, downward flows are
generated in the two gaps of width a between side walls and
the bubble (see movie 2 [40]):

a = L − RT

2
. (5)

The average velocity of the flow ū is determined by volume
conservation:

RT DU = 2aDū. (6)

Velocity gradients in the x direction ū/a and in the y direction
ū/D (see Sec. III D for the experimental validation of the exis-
tence of these velocity gradients) cause the energy dissipations
T Ṡ3

∼= η(ū/a)2aRLD and T Ṡ4
∼= η(ū/D)2aRLD, respectively.

Since the oil totally wets the cell plate, two thin films
of thickness h exist between a bubble and cell plates. More
specifically, for example, one of the films develops between
the front surface of a bubble and the back surface of the
front cell wall. These films are visible and dewetting of the
thin film can not be recognized. The measurement of h is
in general difficult as discussed in Ref. [15], because several
reflections are involved although the thickness is typically
on submillimeter scales. Inside these thin films, no flow is
developed in the present case. This was pointed out for a
rising bubble in Ref. [13], and the necessary condition in a
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FIG. 3. (a)RT vs � for fixed D, L, and η. (b) RT vs L for three different liquids. RT increases linearly with L and depends on neither D
nor η. D and η are given in mm and mPa s, respectively. The dotted lines correspond to RT = L/2 + y0 where y0 is determined by fitting.
(c) Capillary length of each liquid κ−1vs y0 obtained in (b), showing the relation y0

∼= κ−1.

more general case in which an air bubble could be replaced
with a fluid bubble was established in Refs. [15,16]. The
underlining physics is the competition between two extreme
cases: one case in which the flow velocity gradient develops
only inside a fluid drop and the other in which it develops
only inside the thin liquid films. In the former extreme, the
flow inside the thin films is suppressed, which is possible
because a downward flow inside the fluid drop can cancel out
the velocity at the liquid-fluid interface defining the surface of
the fluid drop.

When Eq. (3) is “strongly satisfied” under Eq. (4) in a sense
that L � D in Eq. (3) can be replaced with

L � 4D + 2κ−1, (7)

T Ṡ4 dominates over the other three, as explained in
Sec. IV B 1. Under this strong double confinement, from the
balance of this dominant dissipative energy and the gravita-
tional one, i.e., ρgRT RLDU ∼= η(ū/D)2aRLD with the aid of
Eq. (6), we obtain the following rising velocity:

U = k1
ρg

η

a

RT
D2 (doubly confined) (8)

with a numerical coefficient k1 to be determined experimen-
tally. In the following, when discussing velocity, we assume
the condition of the strong double confinement is satisfied in
the doubly confined case.

As shown in Figs. 2(b) and 2(c), Eq. (8) agrees well with
experiment. The results of the measurement of U as a function
of L for various D and η satisfying Eqs. (3) and (7) are shown
in Fig. 2(b). The same data are replotted, with horizontal axis
renormalized according to Eq. (8), in Fig. 2(c), in which a
clear collapse of the data is demonstrated with k1 = 0.196 ±
0.0015. In Fig. 2(c), we used experimentally measured value

of a given in Eq. (5), although we give an expression for RT

in Eq. (9) below. The reason will be explained in Sec. III C.
We did not consider the viscous dissipation in the dynamic

meniscus in the above, which is justified as follows. It is
known that the corresponding viscous dissipation results in
nonlinearity. This is because the thickness of the dynamic
meniscus is comparable to the thickness h discussed above,
which is nonlinearly dependent on the capillary number de-
fined as Ca = ηV/γ when Ca is not much larger than one,
which is the present case: h � κ−1Ca2/3 for Ca � 1 and h �
κ−1 Ca1/2 for Ca � 1 [4,5]. The dissipation in the dynamic
meniscus per unit time scales as η(V/h)2 multiplied by the
volume of the meniscus. The driving force in the present case
is the buoyant force and is independent of viscosity. Thus the
balance of the dissipation force and the driving force results
in the rising velocity that is not inversely proportional η. On
the contrary, our measured velocities are clearly inversely pro-
portional to viscosity as seen above, which justifies ruling out
the possibility that the dissipation in the dynamic meniscus is
predominant.

B. Bubble width in the doubly confined regime

We here discuss how RT , which characterizes the bubble
shape, is selected for a rising bubble. As seen below we
confirm experimentally the following relation for RT in the
confined regime, in which the volume of the bubble � is large:

RT (�) = 1
2 L + κ−1 (doubly confined). (9)

This relation, which holds up to the numerical coefficients,
is shown in the following three steps. First, as shown in
Fig. 3(a), for fixed L, D, and η, the transverse bubble size
RT is independent of �. Second, three plots in Fig. 3(b)
show that RT linearly increases with L, with a slope 1/2 and
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that RT is independent of D and η. This is shown for three
liquids, PDMS, olive oil (γ = 32 mN/m, ρ = 914 kg/m3)
and glycerol (γ = 63.4 mN/m, ρ = 1260 kg/m3). Finally, we
determine y0 in Fig. 3(b) as the intercept of an extrapolated
line with the vertical axis by fitting the data with RT =
1/2L + y0 and show that y0

∼= κ−1 as follows. In Fig. 3(c), the
vertical axis is y0 extracted from Fig. 3(b) as above, and the
horizontal axis is the capillary length of each liquid, which are
calculated from the definition κ−1 = √

γ /(ρg) (the calculated
values are κ−1 = 1.45, 2.01, and 2.31 mm for PDMS, olive oil,
and glycerol, respectively). The straight line that fits the three
data points in Fig. 3(c) establishes the relation y0

∼= κ−1 and,
thus, Eq. (9).

Equation (9) is satisfied even if Eq. (7) is not satisfied
as long as Eqs. (3) and (4) are satisfied. In fact, Fig. 3(b)
contains such cases, in which a is comparable to, but is not less
than, the capillary length. In the present study, a is typically
larger than, and is even in the smallest case comparable to, the
capillary length.

However, since a could be of the order of the capillary
length as D is, we need to clarify our definition of RT , or
equivalently, how we determined a. In the present study, we
measured the outer edge of a bubble, corresponding to the tip
of menisci to define RT .

In microfluidics, a bubble is frequently confined strongly
in a rectangular capillary tube whose short and long sides of
the cross-section are both smaller than the capillary length.
In such a case, the confined bubble tends to touch walls
through thin lubricating films, making menisci at the four
corners [2,3]. The thickness h of such lubricating films is
much smaller than the capillary length. This is in contrast
with the present case, because h corresponds to a in the
strongly confined microfluidics case: Eq. (9) is replaced with
RT = L − 2h, i.e., h = (L − RT )/2, which parallels Eq. (5).

Equation (9) is analogues to a result known for a viscous
finger created in a Hele-Shaw cell. The finger width has
been experimentally shown to be the half of the cell width,
L/2 (instead of L/2 + κ−1), for a cell of width L, when the
capillary number is not too small. The reason was theoreti-
cally explained in Ref. [41]. However, it is possible that the
precision of the previous experiments cannot distinguish the
difference between L/2 and L/2 + κ−1 (see Sec. V for more
details).

C. Closed form for the velocity and drag friction

From Eqs. (8) and (9), the rising velocity in the doubly
confined regime can be expressed using only experimentally
controllable parameters, i.e., without using the quantity RT

[note that RT in Eq. (8) cannot be controlled experimentally,
if we do not know Eq. (9)]:

U = k1

2

ρg

η

L − 2κ−1

L + 2κ−1
D2 (doubly confined). (10)

We explain the reason we used experimentally mea-
sured value of a = (L − RT )/2 in Fig. 2(c), as announced.
Equation (8) can be explained theoretically (with treating a
or RT as an experimentally given quantity) and can be con-
firmed experimentally, whereas Eq. (9) cannot be explained
theoretically but can be confirmed experimentally in a rather

clear manner. The two confirmations presented in the above
have clear meanings: one for the confirmation of a theoretical
consideration leading to Eq. (8) and the other for the confirma-
tion of the experimentally emerged relation in Eq. (9). If we
provided instead a single confirmation of Eq. (10) [using the
RT value from Fig. 3 and Eq. (9)], the meaning of confirmation
becomes less clear.

We can now derive the viscous drag friction acting on a
bubble in the doubly confined regime, an generalized formula
of the well-known Stokes’ drag friction. (For other forms
of generalization in different regimes, see Refs. [13,15,16].)
In Sec. III A, the rising velocity in Eq. (8) is obtained by
an energy balance. The same velocity should be reproduced
from the force balance Fg = Fη, where Fg = ρg� is the grav-
itational force and Fη is the drag force in question. From
this balance, with the aid of Eq. (10), we readily obtain the
following drag force acting on a rising bubble:

Fη = 2

k1
η

�(L + 2κ−1)

D2(L − 2κ−1)
U (doubly confined). (11)

D. Velocity profile inside the cell by Particle
tracking velocimetry (PTV)

Particles (techpolymer MBX-20, SEKISUI PLASTICS)
are added into the oil to visualize the flow in the gap between
the rising bubble and the side walls to justify the assumption
we made in obtaining the scaling laws. We use a micro-
scope lens (PLN10 × or PLN4 ×, OLYMPUS) such that the
depth of the focus in the magnified movie is approximately
50-100 μm. We measure the velocity by tracking particles
at different distances between the cell and camera using
an optical stage equipped with a micrometer (BXT06013-
C, Surugaseiki, Japan), which allows confocal imaging on
submillimeter scales. The density and diameter of the particles
are respectively given by ρb = 1.20 g/cm3 and d = 20 μm.
Although the density is not perfectly matched with that of the
oil, this does not affect the precision of the PTV measurement.
This is because the descending velocity of the small particles,
scaling as (ρb − ρ)gd2/η with ρ and η the density and viscos-
ity of the oil, is much smaller than a typical velocity of the
measured flow.

Figure 4(a) shows the velocity of particles as a function of
the distance from the side wall �x in the presence of a bubble.
Different colors of markers indicate the velocity of particles
at different distance from the front wall �y. The profile of the
flow in the gap shown in this plot is qualitatively consistent
with a Poiseuille flow developed over the distance a (a =
1.57 mm) with the boundary conditions, zero velocity at the
side wall and zero velocity gradient at the free surface of the
bubble (�x ∼= 1.6 mm). The latter condition is expected be-
cause the liquid does not contain any surfactants. Figure 4(b)
shows the velocity of particles in the region outside of the
bubble. The profiles are given at the distance �x = 1.2, 0.5,
and 0.3 mm from the side wall, as a function of the distance
from the front wall �y. The flow profile shown in the plot is
again qualitatively consistent with a Poiseuille flow developed
over the distance D (D = 1.5 mm).

For a technical reason, we selected the case of relatively
large D and fairly small a for the confocal analysis. This case

013188-5



MAYUKO MURANO AND KO OKUMURA PHYSICAL REVIEW RESEARCH 2, 013188 (2020)

FIG. 4. (a) Flow plofile over the distance a (= 1.57 mm): particle velocity vs. distance from the side wall at the depth �y = 0.2, 0.4, 0.6,
and 0.8 mm (L = 8.96 mm, D = 1.5 mm, and η = 0.098 mPa s) (b) Flow plofile over the distance D (= 1.5 mm): particle velocity vs. depth
from the front wall at the distance �x = 1.2, 0.5, and 0.3 mm from the side wall.

does not satisfy Eq. (7), equivalent to the relation D � a in eq.
(15) below. The data obtained in this case was not categorized
as the one in the doubly confined regime when discussing
velocity. For example, the corresponding data was not plotted
in Fig. 2(b), which collect the velocity data in the doubly
confined regime. Nonetheless, Fig. 4 supports our theory. This
is because our theory assumes the existence of the above two
types of Poiseuille flows, irrespective of magnitude relation
between D and a, and this assumption is consistent with Fig. 4.

IV. RELATIONS TO OTHER DYNAMIC REGIMES

A. Small-capillarity limit of the doubly confined regime

Our velocity law given in Eq. (10) generalizes and thus
contains a previous result established in Ref. [1] as shown
below. Equation (10) can be recast into the following form

U = k1

2

ρg

η
D2 1 − 2

√
1/Bo

1 + 2
√

1/Bo
(doubly confined) (12)

by introducing Bond number:

Bo = ρgL2/γ . (13)

In the large Bo limit of small capillarity effect, Eq. (12)
becomes

U = k1

2

ρg

η
D2. (14)

This expression was found to describe the viscous regime of
the bubble rising in tubes with large rectangular cross-sections
when the aspect ratio becomes large but the bubble is still
confined from two directions (L < r) [1]. In Ref. [1], Eq. (14)
is confirmed for Bo ∼104, which is much larger than values
of Bo(∼102) in Fig. 2.

B. Crossover of rising dynamics to the singly confined regime

We next consider the crossover of the velocity and bubble
shape to the singly confined regime.

1. Velocity crossover

We now justify the velocity law given in Eq. (8) in the
doubly confined regime, in which Eqs. (3) and (7) are valid,

by showing the relation T Ṡ4 � T Ṡ3, T Ṡ2, and T Ṡ1, which
respectively correspond to

D � a, a � RL, (D/RT )2 � RL/a. (15)

The first relation is satisfied because this is equivalent to
Eq. (7). To examine the second relation, we note that, from the
condition L � 2r in Eq. (3), the bubble is generally elongated:

RL � 2r � RT . (16)

From Eq. (5), a < L/2 (because RT > 0), which means a <

L � 2r � RL and thus proves the second relation in Eq. (15),
a � RL. This last relation tells that the third relation in
Eq. (15) is satisfied if D < RT , which can be checked from
D � a, with the aid of Eq. (9) found to be valid exper-
imentally: a = L/4 − κ−1/2 < RT = L/2 + κ−1. The above
arguments lead to the relation D � a < RT < L � 2r � RL,
where RT < L comes from the condition a > 0.

On the contrary, in the singly confined limit, as seen in
Fig. 5(b) below, we have the following approximate relation
[instead of Eq. (9)]:

RT ≈ RL ≈ 2r (singly confined). (17)

Since L � 2r in the singly confined limit, this means that
a is of the order of L, and we see that a � RL, for which
T Ṡ2 � T Ṡ4, while we have D � a (T Ṡ3 � T Ṡ4 and thus
T Ṡ2 � T Ṡ3) and D � RT (T Ṡ1 � T Ṡ2) from Eq. (2), i.e.,
T Ṡ2 � T Ṡ4, T Ṡ3, and T Ṡ1. In other words, in the singly
confined regime, from the balance between the gravitational
energy ρgRT RLDU and the dissipation energy T Ṡ2, we
obtain

U = k2
ρg

η

RL

RT
D2 (singly confined). (18)

This is experimentally confirmed in Ref. [13] even under the
existence of a lubricating film with coefficient k2

∼= 0.08. Note
here that in the singly confined regime we have

2r � κ−1. (19)

This is because RT � D is required for T Ṡ1 � T Ṡ2 to be
valid, while RT ≈ r and D ≈ κ−1.
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FIG. 5. (a) Renormalized velocity U vs a/RL on a log-log scale, which shows the velocity crossover. The dotted line corresponds to
ηURT

ρgRLD2 = k2 (here, taken to be 0.08 as established in Ref. [13].) D, η, and � are given in the units mm, mPa s, and mm3, respectively.
(b) Bubble width RT vs volume � (D = 1.0 mm and η = 483 mPa s) for different cell width L, which shows the bubble-shape crossover. The
cross-point of the line with slope 1/2 with the horizontal line for each L defines the crossover volume r2D ∼ (L/2 + κ−1)2D (or r ∼ L for
L > κ−1).

It is convenient to recast the velocity laws in Eqs. (8) and
(18) into the following dimensionless form:

ηURT

ρgRLD2
=

{
k1a/RL (doubly confined: a/RL � 1)

k2 (singly confined: a/RL � 1)
.

(20)

This is because, as seen above, important relations differen-
tiating the velocity laws in the doubly and singly confined
regime are the following: under Eq. (3), r � L ⇔ a/RL � 1
while, under Eq. (2), r � L ⇔ a/RL � 1.

Figure 5(a) shows the relation between ηURT /(ρgRLD2)
and a/RL on a log-log scale, which clearly shows the
crossover predicted in Eq. (20). In order to confirm this
crossover from the doubly to singly confined regime, we
experimentally change the ratio of a to RL by changing L
extensively (L = 9.06–135 mm) with the bubble volume �

fixed. All experiments are conducted for D � a and D � RT ,
so that T Ṡ1 and T Ṡ3 are negligibly small.

As for the coefficient k2, there is a theoretical predic-
tion k2 = 1/12 under the assumption that the fluid shape is
circular. This is significantly close to the value k2

∼= 0.08,
confirmed in Ref. [13] for slightly elongated bubbles. The
prediction was given implicitly in Ref. [19], more explicitly
given in Ref. [42] through a different method, and further
confirmed by experiment in Ref. [43].

2. Bubble-shape crossover

The crossover between the two regimes of the bubble shape
from Eq. (9) to Eq. (17) is indirectly confirmed in Fig. 5(b).
This figure shows RT as a function of the volume � for three
different values of L. It reveals two regimes for RT : (i) For
small �, corresponding to the singly confined regime, RT

increases with �, in agreement with Eq. (17); (ii) For large �,
corresponding to the doubly confined regime, RT is constant
and independent of �, in agreement with Eq. (9). Note here
that, in the singly confined regime, in which a rising bubble
is not affected by side walls, RT scales as r as announced
in Eq. (17); this corresponds to the straight line observed for
small � in Fig. 5(b).

Equation (17) means that a bubble in the singly confined
regime basically keeps a circular shape (RL/RT

∼= 1); how-
ever, this is an approximate relation. In fact, when r � κ−1,
bubbles are slightly elongated and RL/RT becomes slightly
larger than one although it is not clear when plotted on a
log-log scale. An effect of this asymmetric factor RL/RT

is discussed in Ref [13]: although the relation RL/RT ≈ 1
holds even in this previous study, the experimental data agree
quite well with the velocity law in Eq. (18), which takes into
account the ratio RL/RT , while the agreement clearly deteri-
orates when compared with Eq. (18) with setting RL/RT = 1
neglecting the asymmetric effect (see Ref. [13] for the details).

C. Phase diagram clarifying crossover

The crossover discussed in Secs. IV B 1 and IV B 2 can
be summarized in Fig. 6. The horizontal axis is the cell

FIG. 6. Phase diagram for the dynamics of a rising bubble in the
cell whose cross-section has a high aspect ratio (L > D). The vertical
axis is

√
Bo(L̃) = L̃/κ−1 with the characteristic length L̃ (see the

details for the text), while the horizontal axis is L/(2r). The doubly
confined regime established in the present study [Eqs. (8)–(10)]
corresponds to the left-hand side region in which L̃/κ−1 > 1 and
L/r � 1. The labels “Clanet 2004” and “Eri 2011” refer to Refs. [1]
and [13], respectively.
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FIG. 7. [(a) and (b)] Correspondence between the two-dimensional model of viscous fingering and bubble rising in the cell thickness D,
seen from a coordinate system fixed to the cell. The positive direction of z is taken as the advancing direction of the finger or the bubble.
The rising bubble is subjected to gravitational force pointing in the negative direction of z, while gravity is irrelevant to viscous fingering
because the cell is kept horizontal. The advancing viscous finger is considered to be the same as the rising of a bubble under the transformation
U = Uf /(1 − λ). (b) Ca(Uf ) vs λ for D = 0.08 cm and L = 2.54 cm. The data labeled “Present result,” “Pitts 1980,” and “McLean 1981” are
based on Eq. (24), Refs. [44], and [45], respectively. The curve of Pitts practically represents all the experimental data in Refs. [7,44]. The data
from Ref. [45] are based on a table given in Ref. [45], and the error bars are added because some of the data have only one significant figure.

width L normalized by the characteristic bubble diameter r:
L/(2r). The vertical axis is the square root of Bond number
Bo(L̃) = ρgL̃2/γ as a function of the characteristic length
L̃ = L f (L/(2r)). Here, the dimensionless function f (L/(2r))
is defined as follows:

f (x) =
{

1 (x � 1; doubly confined)

x−1 (x � x; singly confined)
. (21)

In other words, L̃ is the smaller length scale of the two scales L
and 2r: L̃ = L for L � 2r (doubly confined), while L̃ = 2r for
L � 2r (singly confined). As announced in Eqs. (7) and (19),
the condition L̃/κ−1 � 1 is always satisfied both in the singly
and doubly confined cases. With the introduction of the length
scale L̃, we can show in Fig. 6 the doubly and singly confined
regimes on the region L̃/κ−1 � 1; the doubly confined regime
on the left-hand side, in which L/(2r) � 1, and the singly
confined regime on the right-hand side, in which L/(2r) � 1.
The crossover from the doubly to singly confined regime,
discussed in Sec. IV B, is observed when we go from the left
to the right on the phase diagram. As shown in Sec. IV A,
our general formula given in Eq. (10) exhibits crossover to
Eq. (14) as L̃/κ−1 increases; this is observed when we go
from the bottom to the top on the left-hand side of the phase
diagram.

V. CORRESPONDENCE OF BUBBLE RISING
TO VISCOUS FINGERING

Scaling laws we found in the doubly confined regime will
lead to a new perspective to the study of a particular type

of viscous fingering studied in Refs. [7,44,45]. Figure 7(a)
illustrates the two-dimensional model of viscous fingering and
rising bubble. λ is the normalized width of finger or bubble
(λ = RT /L). When the viscous finger proceeds at the speed
Uf in the coordinate system fixed to the cell, the flux in the z
direction (the direction in which the finger advances) averaged
over the section of area LD is λUf at places far from the finger
on the basis of the volume conservation λLDUf = LDU (z =
∞), while the flux is zero in the gap (of area aD) between the
bubble and the side walls. On the other hand, in the case of
the bubble rising at the speed U , the volume conservation in
Eq. (6) with a = (L − RT )/2 lead the downward flux −ū =
− λ

1−λ
U in the gap between the bubble and the side walls (of

area aD) and the flux is zero at places far from the bubble. We
notice that the rising bubble problem is mapped to the viscous
fingering problem under the transformation:

U = Uf (1 − λ). (22)

This is because, for example, if we observe the rising bubble
in the reference moving at the speed ū in the positive direction
of z, the bubble tip moves at U + ū = 1

1−λ
U and the flux far

from the bubble is ū = λ
1−λ

U , which are respectively mapped
to Uf and λUf under the transformation in Eq. (22).

A. Relation between relative width λ and capillary number

The relative width of a viscous finger λ has been discussed
as a function of the capillary number Ca(Uf ) = ηUf /γ in
the previous studies [7,44,45]. This issue continues to be
unresolved since the pioneering work by Saffman and Taylor,
i.e., more than 60 years ago, as discussed below. (In all the
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three previous, models were two-dimensional and did not take
into account the existence of lubricating films of thickness h.)

Saffman and Taylor [7] showed experimentally that λ

was a decreasing function of Ca(Uf ). In their paper, λ ap-
proaches one as Ca(Uf ) decreases while λ approaches one-
half as Ca(Uf ) increases for a cell with D = 0.08 cm and
L = 2.54 cm.

In 1980, Pitts [44] proposed an empirical expression that
fits quite well experimental data obtained in Ref. [7] as well
as obtained by himself for cells of the same geometry (D =
0.08 cm and L = 2.54 cm) in the range Ca(Uf ) � 0.001 to
0.1. He introduced an empirical assumption based on exper-
imental observation to obtain the expression, and indicated
that λ was given as a function of Ca(Uf ) (L/D) rather than
of Ca(Uf ) itself. The agreement between his empirical ex-
pression, shown in Fig. 7(b), and all the experimental data
in Refs. [7,44] are so good that his curve in the plot can
practically be considered as representing the experimental
data.

In 1981, McLean and Saffman [45] proposed a nu-
merical result indicating that λ is given as a function of
Ca(Uf ) (L/D)2. However, their results deviate from the ex-
perimental data, represented by the Pitts curve, as shown in
Fig. 7(b). Note that these deviated data points are reproduced
from a table in Ref. [45], which shows a set of values of λ

and an “uncorrected version” of Ca(Uf ). They also calculated
“corrected” data. However, the improvement was so slight that
the data labeled “McLean 1981” practically represents the two
of their results.

We stress here that McLean and Saffman could not give
analytical expression, as in the form Ca(Uf ) (L/D)2 = F (λ).
They only give a set of values F (λ) for a discrete set of λ

via numerical calculations and the explicit functional form of
F (x) was not obtained in Ref. [45].

In the doubly confined regime in the present study,
Ca(U ) = ηU/γ multiplied by (L/D)2 is given explicitly as
a function of λ from Eqs. (8), (5), and (9):

Ca(U )
L2

D2
≡ G(λ) = k1

2

1 − λ

λ(λ − 1/2)2
. (23)

Equations (22) and (23) suggest the following relation for the
viscous fingering problem:

Ca(Uf )
L2

D2
≡ H (λ) = k1

2

1

λ(λ − 1/2)2
. (24)

In other words, the analytical expression for F (λ), which
was not available in Ref. [45] is now given as H (λ). How-
ever, it should be noted that the function has not been de-
termined solely by theoretical considerations. This is be-
cause this is based on the experimentally established relation
Eq. (9) and the dimensionless coefficient k1 has been de-
termined through agreement between theory and experiment
in Eq. (8).

The present result in Eq. (24) is in favor of the re-
sult of Ref. [45] in that λ is given as a function of
Ca(Uf ) (L/D)2 rather than Ca(Uf ) (L/D). In Fig. 7 (b),
Ca(Uf ) = H (λ) (D/L)2 is plotted for D/L = 0.08/2.54. In-
terestingly, our prediction in Eq. (24) is in excellent agreement
with the results of Ref. [45] at small λ and with the results

of the Ref. [44] at large λ. In the small γ limit, in which
Ca(Uf ) diverges, λ is predicted as λ = 1/2, in agreement
with a well-known relation for viscous fingering. However,
Eq. (24) predicts λ − 1/2 ∼ (Ca(Uf ))−1/2 as Ca(Uf ) → ∞,
with a exponent −1/2, and this scaling is different form an
exponent −2/3 predicted in Ref. [41]. It is worth noting that
this approaches to λ = 1/2 in the corresponding viscous fin-
gering comes out form Eq. (9) for the bubble rising problem,
which predicts that λ approaches not 1/2 but 1/2 + κ−1/L.

It the context of viscous fingering, it is practically es-
tablished that λ increases toward one as Ca(Uf ) decreases.
This fact may be consistent with the already-mentioned well-
known relation in microfluidics RT = L − 2h, which means
λ is close to one because h is much smaller than L. In
microfluidics, η tends to be small and this implies Ca(Uf )
tends to be small.

This consideration leads to a possibility that Eq. (9) for
the bubble rising problem could be violated for significantly
small Ca(U ) because Eq. (24) does not predict λ approaches
one as Ca(Uf ) decreases. To be sure, the well-known law
RT = L/2 or λ = 1/2 is already violated significantly when
Ca(Uf ) is about 0.01 and this violation is well described by
Eq. (24). However, we should note that in the present study we
established Eq. (9) in a limited range of Ca(U ) approximately
from 0.01 to 0.1. This issue is an open question at the present,
and it would be worth studying whether Eq. (9) could be
violated for smaller Ca(U ).

In summary, the correspondence between the present bub-
ble rising and viscous fingering give insight for the unre-
solved problem concerning the viscous fingering. The cor-
responding previous experiments on viscous fingering have
been performed not by systematically changing the ratio
D/L nor by carefully checking the difference between L/2
and L/2 + κ−1. Further experiments in this direction to-
gether with theoretical studies could be discussed in the near
future.

B. Shape profile of the rising bubble

To our surprise, as shown in Fig. 8(a), we found that the
shape profile near the front tip of a rising bubble scales with
RT , and that the bubble shape normalized by RT coincides
with the shape profile of a viscous finger normalized by the
finger width. Figure 8(a1) shows top shapes of the rising
bubble for various D and L. By normalizing both axes with
each RT , all shapes collapse on a single master shape as shown
in Fig. 8(a2). More surprisingly, the collapsed profile of rising
bubbles is the same with the normalized profile of viscous
fingers. The function describing the shape profile of a viscous
finger is studied both experimentally [44] and numerically
(with a two-dimensional model) [45], and both agree well
with experimental results. In Fig. 8(a2), the black solid line
represents the shape profile of the viscous finger normalized
by the finger width given in Ref. [44], showing that the shape
profiles at the tip of the rising bubble and the viscous finger
match almost perfectly with each other.

However, the same scenario is not applicable for the rear
profile of a rising bubble. Curvature at the rear tip of a rising
bubble is smaller than that at the front tip. Figure 8(b1) shows
the rear shape profile for various D and L. Different from the
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FIG. 8. (a1) Shape profiles near the front tip of bubbles in a viscous liquid of η = 0.48 Pa s. (a2) Front shapes normalized by RT . Solid
line indicates the shape of the viscous finger shown in Ref. [44]. (b1) Shape profiles near the rear tip of bubbles in a viscous liquid of η = 0.48
Pa s. (b2) Rear shapes normalized by RT . Solid line corresponds to the (inverted) shape of the viscous finger shown in (a2).

front case, the rear shapes normalized by each RT in both the
horizontal and vertical directions do not collapse on a single
master curve as shown in Fig. 8(b2). The black line indicates
the shape of the viscous finger normalized by the finger width
[the same one shown in Fig. 8(a2) but here with the top and
bottom inverted], which shows that the curvature of the rear
profile is smaller than that of the front profile.

VI. CONCLUSION

Rising dynamics of a bubble confined in a vertical cell
with a high aspect ratio rectangular cross-section was dis-
cussed, where the bubble is strongly confined in one hori-
zontal direction and is weakly confined or is not confined
in the remaining one horizontal direction. The length scales
concerning the rectangular cross-section of the cell and the
confined bubble involve both scales that are comparable to,
and larger than, the capillary length. We focused on the case
in which the inertial effect is negligible compared with the
viscous effect under the influence of capillarity. We focused
the doubly confined regime to find a new velocity scaling
in a closed form. In deriving the velocity law in Eq. (8),

we assume the conservation of the flow as in Eq. (6), which
emphasizes the downward flow around the bubble (see movie
2 [40]) is essential in determining the velocity. The velocity
profiles of Poiseuille flows obtained via confocal imaging
on submillimeter scales were consistent with our theoretical
considerations, as shown in Fig. 4. We demonstrated the
crossover from this scaling regime to the singly confined
regime discussed in the previous study [13]. We showed that
the present doubly confined regime contains and thus reduces
to the scaling regime discussed in another previous study in
which capillarity is negligible [1]. These interrelationships
were summarized on a phase diagram.

We also uncovered that bubble rising in the present study
can be mapped to a viscous fingering [45] under a simple
transformation associated with the bubble (of finger) veloc-
ity and the bubble (or finger) width. This mapping pro-
vides novel insight into the physics of viscous fingering.
We showed quantitative matching of the shapes of the tips
of finger and bubble, together with an analytical expression
for the relative width λ and capillary number, which has
not been available in the literature since more than 60 years
ago [45].

013188-10



RISING BUBBLE IN A CELL WITH A HIGH ASPECT RATIO … PHYSICAL REVIEW RESEARCH 2, 013188 (2020)

ACKNOWLEDGMENTS

This research was partly supported by JSPS KAKENHI
(Grant Numbers JP24244066 and JP19H01859) and by the
ImPACT Program of the Council for Science, Technology

and Innovation (Cabinet Office, government of Japan) (Grant
No.2014-PM01-02-01). M.M. is supported by a JSPS Sci-
ence Research Fellowship for Young Scientists (Grant No.
16J00871). The authors thank Edward Foley (Ochanomizu
University) for valuable comments on the English.

[1] C. Clanet, P. Héraud, and G. Searby, On the motion of bubbles
in vertical tubes of arbitrary cross-sections: some complements
to the Dumitrescu–Taylor problem, J. Fluid Mech. 519, 359
(2004).

[2] H. Wong, C. J. Radke, and S. Morris, The motion of long
bubbles in polygonal capillaries. Part 1. Thin films, J. Fluid
Mech. 292, 71 (1995).

[3] V. S. Ajaev and G. M. Homsy, Modeling shapes and dynamics
of confined bubbles, Annu. Rev. Fluid Mech. 38, 277 (2006).

[4] P.-G. De Gennes, F. Brochard-Wyart, and D. Quéré, Capillar-
ity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves
(Springer Science & Business Media, 2013).

[5] I. Cantat, Liquid meniscus friction on a wet plate: Bubbles,
lamellae, and foams, Phys. Fluids 25, 031303 (2013).

[6] P. Aussillous and D. Quéré, Bubbles creeping in a viscous liquid
along a slightly inclined plane, Europhys. Lett. 59, 370 (2002).

[7] P. G. Saffman and G. Taylor, The penetration of a fluid into a
porous medium or Hele-Shaw cell containing a more viscous
liquid, Proc. R. Soc. London A 245, 312 (1958).

[8] F. P. Bretherton, The motion of long bubbles in tubes, J. Fluid
Mech. 10, 166 (1961).

[9] S. Tanveer, The effect of surface tension on the shape of a Hele–
Shaw cell bubble, Phys. Fluids 29, 3537 (1986).

[10] T. Maxworthy, Bubble formation, motion and interaction in a
Hele-Shaw cell, J. Fluid Mech. 173, 95 (1986).

[11] A. R. Kopf-Sill and G. M. Homsy, Bubble motion in a Hele–
Shaw cell, Phys. Fluids 31, 18 (1988).

[12] S. R. K. Maruvada and C.-W. Park, Retarded motion of bubbles
in Hele–Shaw cells, Phys. Fluids 8, 3229 (1996).

[13] A. Eri and K. Okumura, Viscous drag friction acting on a
fluid drop confined in between two plates, Soft Matter 7, 5648
(2011).

[14] X. Wang, B. Klaasen, J. Degrève, B. Blanpain, and F.
Verhaeghe, Experimental and numerical study of buoyancy-
driven single bubble dynamics in a vertical Hele-Shaw cell,
Phys. Fluids 26, 123303 (2014).

[15] M. Yahashi, N. Kimoto, and K. Okumura, Scaling crossover in
thin-film drag dynamics of fluid drops in the Hele-Shaw cell,
Sci. Rep. 6, 31395 (2016).

[16] K. Okumura, Viscous dynamics of drops and bubbles in Hele-
Shaw cells: Drainage, drag friction, coalescence, and bursting,
Adv. Colloid Interface Sci. 255, 64 (2018).

[17] L. Keiser, K. Jaafar, J. Bico, and É. Reyssat, Dynamics of non-
wetting drops confined in a Hele-Shaw cell, J. Fluid Mech. 845,
245 (2018).

[18] A. Huerre, O. Theodoly, A. M. Leshansky, M.-P. Valignat, I.
Cantat, and M.-C. Jullien, Droplets in Microchannels: Dynam-
ical Properties of the Lubrication Film, Phys. Rev. Lett. 115,
064501 (2015).

[19] J. W. M. Bush, The anomalous wake accompanying bubbles
rising in a thin gap: A mechanically forced Marangoni flow,
J. Fluid Mech. 352, 283 (1997).

[20] M. Kawaguchi, S. Niga, N. Gou, and K. Miyake, Buoyancy-
driven path instabilities of bubble rising in simple and polymer
solutions of Hele–Shaw cell, J. Phys. Soc. Jpn. 75, 124401
(2006).

[21] L. Zhu and F. Gallaire, A pancake droplet translating in a Hele-
Shaw cell: Lubrication film and flow field, J. Fluid Mech. 798,
955 (2016).

[22] J. Fabre and A. Liné, Modeling of two-phase slug flow, Annu.
Rev. Fluid Mech. 24, 21 (1992).

[23] A. O. Morgado, J. M. Miranda, J. D. P. Araújo, and J. B. L. M.
Campos, Review on vertical gas–liquid slug flow, Int. J.
Multiphase Flow 85, 348 (2016).

[24] S. Shad, M. Salarieh, B. Maini, and I. D. Gates, The velocity
and shape of convected elongated liquid drops in narrow gaps,
J. Pet. Sci. Eng. 72, 67 (2010).

[25] L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, and G. Xu, Poly-
mer nanocomposite foams, Compos. Sci. Technol. 65, 2344
(2005).

[26] R. M. Davies and G. Taylor, The mechanics of large bubbles
rising through extended liquids and through liquids in tubes,
Proc. R. Soc. London, Ser. A 200, 375 (1950).

[27] E. T. White and R. H. Beardmore, The velocity of rise of single
cylindrical air bubbles through liquids contained in vertical
tubes, Chem. Eng. Sci. 17, 351 (1962).

[28] K. W. Tung and J.-Y. Parlange, Note on the motion of long bub-
bles in closed tubes-influence of surface tension, Acta Mech.
24, 313 (1976).

[29] E. E. Zukoski, Influence of viscosity, surface tension, and
inclination angle on motion of long bubbles in closed tubes,
J. Fluid Mech. 25, 821 (1966).

[30] H. L. Goldsmith and S. G. Mason, The movement of single
large bubbles in closed vertical tubes, J. Fluid Mech. 14, 42
(1962).

[31] T. M. Squires and S. R. Quake, Microfluidics: Fluid physics at
the nanoliter scale, Rev. Mod. Phys. 77, 977 (2005).

[32] G. M. Whitesides, The origins and the future of microfluidics,
Nature (London) 442, 368 (2006).

[33] M. Sadatomi, Y. Sato, and S. Saruwatari, Two-phase flow in
vertical noncircular channels, Int. J. Multiphase Flow 8, 641
(1982).

[34] K. Mishima, T. Hibiki, and H. Nishihara, Some characteristics
of gas-liquid flow in narrow rectangular ducts, Int. J. Multiphase
Flow 19, 115 (1993).

[35] Q. C. Bi and T. S. Zhao, Taylor bubbles in miniaturized circular
and noncircular channels, Int. J. Multiphase Flow 27, 561
(2001).

[36] S. Bhusan, S. Ghosh, G. Das, and P. K. Das, Rise of Taylor
bubbles through narrow rectangular channels, Chem. Eng. J.
155, 326 (2009).

[37] W. B. Kolb and R. L. Cerro, Coating the inside of a cap-
illary of square cross section, Chem. Eng. Sci. 46, 2181
(1991).

013188-11

https://doi.org/10.1017/S0022112004001296
https://doi.org/10.1017/S0022112004001296
https://doi.org/10.1017/S0022112004001296
https://doi.org/10.1017/S0022112004001296
https://doi.org/10.1017/S0022112095001443
https://doi.org/10.1017/S0022112095001443
https://doi.org/10.1017/S0022112095001443
https://doi.org/10.1017/S0022112095001443
https://doi.org/10.1146/annurev.fluid.38.050304.092033
https://doi.org/10.1146/annurev.fluid.38.050304.092033
https://doi.org/10.1146/annurev.fluid.38.050304.092033
https://doi.org/10.1146/annurev.fluid.38.050304.092033
https://doi.org/10.1063/1.4793544
https://doi.org/10.1063/1.4793544
https://doi.org/10.1063/1.4793544
https://doi.org/10.1063/1.4793544
https://doi.org/10.1209/epl/i2002-00204-2
https://doi.org/10.1209/epl/i2002-00204-2
https://doi.org/10.1209/epl/i2002-00204-2
https://doi.org/10.1209/epl/i2002-00204-2
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1098/rspa.1958.0085
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1017/S0022112061000160
https://doi.org/10.1063/1.865831
https://doi.org/10.1063/1.865831
https://doi.org/10.1063/1.865831
https://doi.org/10.1063/1.865831
https://doi.org/10.1017/S002211208600109X
https://doi.org/10.1017/S002211208600109X
https://doi.org/10.1017/S002211208600109X
https://doi.org/10.1017/S002211208600109X
https://doi.org/10.1063/1.866566
https://doi.org/10.1063/1.866566
https://doi.org/10.1063/1.866566
https://doi.org/10.1063/1.866566
https://doi.org/10.1063/1.869113
https://doi.org/10.1063/1.869113
https://doi.org/10.1063/1.869113
https://doi.org/10.1063/1.869113
https://doi.org/10.1039/c0sm01535k
https://doi.org/10.1039/c0sm01535k
https://doi.org/10.1039/c0sm01535k
https://doi.org/10.1039/c0sm01535k
https://doi.org/10.1063/1.4903488
https://doi.org/10.1063/1.4903488
https://doi.org/10.1063/1.4903488
https://doi.org/10.1063/1.4903488
https://doi.org/10.1038/srep31395
https://doi.org/10.1038/srep31395
https://doi.org/10.1038/srep31395
https://doi.org/10.1038/srep31395
https://doi.org/10.1016/j.cis.2017.07.021
https://doi.org/10.1016/j.cis.2017.07.021
https://doi.org/10.1016/j.cis.2017.07.021
https://doi.org/10.1016/j.cis.2017.07.021
https://doi.org/10.1017/jfm.2018.240
https://doi.org/10.1017/jfm.2018.240
https://doi.org/10.1017/jfm.2018.240
https://doi.org/10.1017/jfm.2018.240
https://doi.org/10.1103/PhysRevLett.115.064501
https://doi.org/10.1103/PhysRevLett.115.064501
https://doi.org/10.1103/PhysRevLett.115.064501
https://doi.org/10.1103/PhysRevLett.115.064501
https://doi.org/10.1017/S0022112097007350
https://doi.org/10.1017/S0022112097007350
https://doi.org/10.1017/S0022112097007350
https://doi.org/10.1017/S0022112097007350
https://doi.org/10.1143/JPSJ.75.124401
https://doi.org/10.1143/JPSJ.75.124401
https://doi.org/10.1143/JPSJ.75.124401
https://doi.org/10.1143/JPSJ.75.124401
https://doi.org/10.1017/jfm.2016.357
https://doi.org/10.1017/jfm.2016.357
https://doi.org/10.1017/jfm.2016.357
https://doi.org/10.1017/jfm.2016.357
https://doi.org/10.1146/annurev.fl.24.010192.000321
https://doi.org/10.1146/annurev.fl.24.010192.000321
https://doi.org/10.1146/annurev.fl.24.010192.000321
https://doi.org/10.1146/annurev.fl.24.010192.000321
https://doi.org/10.1016/j.ijmultiphaseflow.2016.07.002
https://doi.org/10.1016/j.ijmultiphaseflow.2016.07.002
https://doi.org/10.1016/j.ijmultiphaseflow.2016.07.002
https://doi.org/10.1016/j.ijmultiphaseflow.2016.07.002
https://doi.org/10.1016/j.petrol.2010.03.005
https://doi.org/10.1016/j.petrol.2010.03.005
https://doi.org/10.1016/j.petrol.2010.03.005
https://doi.org/10.1016/j.petrol.2010.03.005
https://doi.org/10.1016/j.compscitech.2005.06.016
https://doi.org/10.1016/j.compscitech.2005.06.016
https://doi.org/10.1016/j.compscitech.2005.06.016
https://doi.org/10.1016/j.compscitech.2005.06.016
https://doi.org/10.1098/rspa.1950.0023
https://doi.org/10.1098/rspa.1950.0023
https://doi.org/10.1098/rspa.1950.0023
https://doi.org/10.1098/rspa.1950.0023
https://doi.org/10.1016/0009-2509(62)80036-0
https://doi.org/10.1016/0009-2509(62)80036-0
https://doi.org/10.1016/0009-2509(62)80036-0
https://doi.org/10.1016/0009-2509(62)80036-0
https://doi.org/10.1007/BF01190380
https://doi.org/10.1007/BF01190380
https://doi.org/10.1007/BF01190380
https://doi.org/10.1007/BF01190380
https://doi.org/10.1017/S0022112066000442
https://doi.org/10.1017/S0022112066000442
https://doi.org/10.1017/S0022112066000442
https://doi.org/10.1017/S0022112066000442
https://doi.org/10.1017/S0022112062001068
https://doi.org/10.1017/S0022112062001068
https://doi.org/10.1017/S0022112062001068
https://doi.org/10.1017/S0022112062001068
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1103/RevModPhys.77.977
https://doi.org/10.1038/nature05058
https://doi.org/10.1038/nature05058
https://doi.org/10.1038/nature05058
https://doi.org/10.1038/nature05058
https://doi.org/10.1016/0301-9322(82)90068-4
https://doi.org/10.1016/0301-9322(82)90068-4
https://doi.org/10.1016/0301-9322(82)90068-4
https://doi.org/10.1016/0301-9322(82)90068-4
https://doi.org/10.1016/0301-9322(93)90027-R
https://doi.org/10.1016/0301-9322(93)90027-R
https://doi.org/10.1016/0301-9322(93)90027-R
https://doi.org/10.1016/0301-9322(93)90027-R
https://doi.org/10.1016/S0301-9322(00)00027-6
https://doi.org/10.1016/S0301-9322(00)00027-6
https://doi.org/10.1016/S0301-9322(00)00027-6
https://doi.org/10.1016/S0301-9322(00)00027-6
https://doi.org/10.1016/j.cej.2009.07.006
https://doi.org/10.1016/j.cej.2009.07.006
https://doi.org/10.1016/j.cej.2009.07.006
https://doi.org/10.1016/j.cej.2009.07.006
https://doi.org/10.1016/0009-2509(91)85119-I
https://doi.org/10.1016/0009-2509(91)85119-I
https://doi.org/10.1016/0009-2509(91)85119-I
https://doi.org/10.1016/0009-2509(91)85119-I


MAYUKO MURANO AND KO OKUMURA PHYSICAL REVIEW RESEARCH 2, 013188 (2020)

[38] J. Bico and D. Quéré, Rise of liquids and bubbles in an-
gular capillary tubes, J. Colloid Interface Sci. 247, 162
(2002).

[39] Q. Liao and T. S. Zhao, Modeling of Taylor bub-
ble rising in a vertical mini noncircular channel filled
with a stagnant liquid, Int. J. Multiphase Flow 29, 411
(2003).

[40] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevResearch.2.013188 for movies.

[41] R. Combescot, T. Dombre, V. Hakim, Y. Pomeau, and A. Pumir,
Shape Selection of Saffman-Taylor Fingers, Phys. Rev. Lett. 56,
2036 (1986).

[42] F. Gallaire, P. Meliga, P. Laure, and C. N. Baroud, Marangoni
induced force on a drop in a Hele Shaw cell, Phys. Fluids 26,
062105 (2014).

[43] I. Shukla, N. Kofman, G. Balestra, L. Zhu, and F. Gallaire,
Film thickness distribution in gravity-driven pancake-shaped
droplets rising in a Hele-Shaw cell, J. Fluid Mech. 874, 1021
(2019).

[44] E. Pitts, Penetration of fluid into a Hele–Shaw cell: The
Saffman–Taylor experiment, J. Fluid Mech. 97, 53 (1980).

[45] J. W. McLean and P. G. Saffman, The effect of surface tension
on the shape of fingers in a Hele Shaw cell, J. Fluid Mech. 102,
455 (1981).

013188-12

https://doi.org/10.1006/jcis.2001.8106
https://doi.org/10.1006/jcis.2001.8106
https://doi.org/10.1006/jcis.2001.8106
https://doi.org/10.1006/jcis.2001.8106
https://doi.org/10.1016/S0301-9322(03)00004-1
https://doi.org/10.1016/S0301-9322(03)00004-1
https://doi.org/10.1016/S0301-9322(03)00004-1
https://doi.org/10.1016/S0301-9322(03)00004-1
http://link.aps.org/supplemental/10.1103/PhysRevResearch.2.013188
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1103/PhysRevLett.56.2036
https://doi.org/10.1063/1.4878095
https://doi.org/10.1063/1.4878095
https://doi.org/10.1063/1.4878095
https://doi.org/10.1063/1.4878095
https://doi.org/10.1017/jfm.2019.453
https://doi.org/10.1017/jfm.2019.453
https://doi.org/10.1017/jfm.2019.453
https://doi.org/10.1017/jfm.2019.453
https://doi.org/10.1017/S002211208000242X
https://doi.org/10.1017/S002211208000242X
https://doi.org/10.1017/S002211208000242X
https://doi.org/10.1017/S002211208000242X
https://doi.org/10.1017/S0022112081002735
https://doi.org/10.1017/S0022112081002735
https://doi.org/10.1017/S0022112081002735
https://doi.org/10.1017/S0022112081002735

