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Analogy between freezing lakes and the cosmic radiation era
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An equation describing a one-dimensional model for the freezing of lakes is shown to be formally analogous
to the Friedmann equation of cosmology. The analogy is developed and used to speculate on the change between
two hypothetical “spacetime phases” in the early universe.
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I. INTRODUCTION

The study of the freezing of water bodies in the natural
environment has a long history [1–10], appearing also in
pedagogical [11–13] and popular [14] literature. The realistic
problem of freezing of lakes in winter or in cold (for example,
mountainous or polar) regions is difficult when factors such
as the variability of atmospheric conditions, boundaries, and
chemical impurities are taken into account [1–10], but it can
be simplified considerably and reduced to a one-dimensional
model under certain assumptions, which are best spelled out
in the pedagogical literature [13]. These assumptions are
that the lake covers a large area and effects at the margins
can be neglected; the lake is isolated, i.e., not connected to
other lakes, rivers, or bodies of water; there are no chemical
impurities (the lake contains only freshwater); and the lake is
deep (in practice, depths larger than ∼10 m and short periods
of cold weather are considered, but this assumption can be
relaxed to allow for lakes that freeze to the bottom or are
permanently frozen, or for long periods of colder weather as in
polar or subpolar climates or in regions at high elevation). One
further neglects the geothermal input from the lake bottom,
and solar radiation during the day.

The variables and parameters of the model then include
[13] the ice density ρice, the thermal conductivity of ice λice,
the latent heat of fusion of water L f , the ice thickness (mea-
sured from the surface) z, and the water and air temperatures
T1 and T3. The heat losses from the lake ice to the atmosphere
due to convection and radiation are simplified and described
by a single heat flux density linear in the difference between
air and ice temperatures [13] and described by a single heat
coefficient h. This is the main simplification of the model
that makes the phenomenon tractable analytically, since both
of these fluxes are in reality nonlinear and convection is
notoriously difficult to model due to changing air conditions,
wind, etc. We will nevertheless adopt the simplified model
of Ref. [13]. In this model, equating the heat flux density
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from the ice surface to the atmosphere due to radiation and
convection with the flux density from water to air due to
conduction through the ice, a simple equation describing the
time dependence of the ice thickness z(t ) is obtained [13]:

dz

dt
= 2(T1 − T3)

ρiceL f

1
1
h + z

λice

. (1.1)

For our purposes, it is convenient to rewrite this equation in a
different form. By introducing

α ≡ 2(T1 − T3)

ρiceL f λice
, (1.2)

y ≡ z

λice
, y0 ≡ 1

h
, (1.3)

s ≡ y + y0 = z

λice
+ y0, (1.4)

and squaring it, Eq. (1.1) is rewritten as(
ṡ

s

)2

= α2

s4
. (1.5)

This equation is analogous to the Friedmann equation of rel-
ativistic cosmology for a spatially flat Friedmann-Lemaître-
Robertson-Walker (FLRW) universe filled with blackbody
radiation, as discussed in the next section. Indeed, the Fried-
mann equation, which resembles an energy conservation
equation for a conservative mechanical system, lends itself to
analogy with equations arising in the study of many different
and completely unrelated physical systems, ranging from par-
ticles in one-dimensional motion [15–19] to optical systems
[20,21], condensed matter systems [22–25], the transverse
profiles of glacial valleys [20,21,26], and equilibrium beach
profiles [27].

II. COSMOLOGICAL ANALOGY

Let us recall the essential equations of FLRW cosmology
in order to develop the analogy with the freezing of lakes. We
follow the notation of Refs. [28,29], in which the speed of
light is unity and G is Newton’s constant.

A. FLRW cosmology: Basics

The geometry of a spatially homogeneous and isotropic
universe is necessarily given by the four-dimensional FLRW
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line element which, in comoving polar coordinates (t, r, θ, ϕ),
reads

ds2 = −dt2 + a2(t )

[
dr2

1 − Kr2
+ r2(dθ2 + sin2 θ dϕ2)

]
.

(2.1)

In this class of solutions of the Einstein field equations of
general relativity (GR), the scale factor a(t ) embodies the
expansion history of the universe. According to the sign of
the constant K , which describes the constant curvature of
the three-dimensional spatial geometries obtained by setting
dt = 0, the FLRW line element (2.1) describes closed uni-
verses (for K > 0), or Euclidean spatial sections (when
K = 0), or hyperbolic three-spaces (if K < 0), respectively
[28–31]. This classification includes all the possible FLRW
geometries.

The matter content of the universe, which generates the
spacetime curvature, is usually described by a perfect fluid
with energy density ρ(t ) and isotropic pressure P(t ) related
by an equation of state P = P(ρ). The Einstein-Friedmann
equations satisfied by a(t ), ρ(t ), and P(t ) are [28–31]

H2 ≡
(

ȧ

a

)2

= 8πG

3
ρ − K

a2
, (2.2)

ä

a
= − 4πG

3
(ρ + 3P), (2.3)

ρ̇ + 3H (P + ρ) = 0, (2.4)

where an overdot denotes differentiation with respect to the
comoving time t and H (t ) ≡ ȧ/a is the Hubble function
[28–31]. Only two of these three equations are indepen-
dent: given any two, the third one can be derived from
them. Without loss of generality, we adopt the Friedmann
equation (2.2) and the energy conservation equation (2.4) as
primary, while the acceleration equation (2.3) is derived from
them.

B. The analogy

Equation (2.2) with K = 0 is formally the same as Eq. (1.5)
ruling the thickness of ice in freezing lakes if we exchange
the variables (t, s(t )) → (t, a(t )). The analogy holds only if
the energy conservation equation is also satisfied; this happens
if a suitable cosmological fluid fills the analog universe. By
comparing Eqs. (1.5) and (2.2), we see that it must be

ρ(t ) = ρ0

a4(t )
, (2.5)

where ρ0 is a positive integration constant determined by
the initial conditions. This relation is familiar in cosmology
[28–31] and in blackbody thermodynamics (e.g., [32]). More
in general, if the cosmic fluid satisfies the barotropic equation
of state P = wρ for a suitable constant w (“equation of state
parameter”), the conservation equation (2.4) integrates to

ρ(a) = ρ0

a3(w+1)
. (2.6)

Equations (2.5) and (2.6) then imply that the analogy between
the freezing of lakes and cosmology holds if the analog uni-
verse is filled with blackbody radiation with equation of state

parameter w = 1/3 and energy density scaling as ρ ∼ a−4.
The fact that the constant ρ0 in Eq. (2.6) is

ρ0 = 3α2

8πG
(2.7)

[as follows from Eqs. (2.5), (2.2), and (1.5)] is fortunate
because it implies that the analog fluid has always positive
energy density and satisfies the energy conditions. This fact
cannot be taken for granted in such a far-fetched analogy
between physical phenomena that are so distant from each
other.

The acceleration equation (2.3) implies that the expansion
of the radiation-dominated analog universe is always deceler-
ated, ä < 0.

The analogy holds only if K = 0 and

s(t ) = z(t )

λice
+ 1

h
(2.8)

is analogous to the scale factor a(t ), while ṡ/s is analogous to
the Hubble function ȧ/a. It is straightforward to verify that the
energy conservation equation and the acceleration equation
are satisfied with w = 1/3 and ρ(t ) = ρ0/a4 if ρ0 is as in
Eq. (2.7).

The solution of Eq. (1.1) with the initial condition z(0) = 0
is [13]

z(t ) = λice

[√
2αt

λice
+ 1

h2
− 1

h

]
, (2.9)

or

s(t ) =
√

2αt

λice
+ 1

h2
(2.10)

with initial condition

s(0) = 1

h
≡ y0 (2.11)

(the well known square-root solution describes the radiation
era of spatially flat FLRW universes filled with radiation
[28–31]). Freezing begins at t = 0 and z = 0, corresponding
to the finite value a0 = 1/h of the analog scale factor, while
the big bang a = 0 (or s = 0) corresponds to

t0 = − λice

2αh2
, z0 = −λice

h
, y = −y0. (2.12)

It is interesting to speculate what the analogy with freezing
lakes could imply if the state of the universe corresponds
to a “phase of gravity” and the liquid-solid phase transition
of water has some analog in gravity at the high energies
and temperatures found in the early universe. In string gas
cosmology, the early universe is regarded as a gas of strings
and there is a phase transition at the Hagedorn temperature.
Correction terms to the low-energy effective action of string
theory dominate in the Hagedorn phase and, after the temper-
ature of the universe falls below the Hagedorn temperature
following the phase transition, the fundamental string states
become meaningless and one has to study brane states instead
(see Refs. [33,34] for reviews). There is also an extensive
body of separate literature attempting to describe spacetime
as an entity emerging from still unspecified building blocks
(“atoms” or “molecules” of spacetime) [35–43], and another
intriguing idea that has generated a large literature is the
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thermodynamics of spacetime [44–46]. In this view, it makes
sense to speculate about possible phase transitions between
different phases of spacetime, analogous to phase transitions
in water. In the analogy, the phase change analogous to the
liquid water-solid ice transition in freezing lakes begins when
a = a0; then the ice thickness grows in lakes and the universe
described by GR expands to a > a0. For lakes, it does not
make sense to consider negative ice thickness z < 0; in the
cosmological analogy, the spacetime manifold view of the
universe would be meaningless if a < a0 because gravity
and spacetime are in a different phase. If it carried through,
this analogy would eliminate the problem of the big bang
singularity at a = 0 by stating that in the early universe [when
a(t ) is below the critical value a0] spacetime is in a different
phase from the one we know today and it cannot be described
by the classical Einstein-Friedmann equations. Pushing the
analogy, there is no ice and z = 0 at all times before freezing
begins; this analogy leads to the idea of a nonclassical static
“universe” with a = a0 at all early times in a non-GR phase,
with a static asymptotic past. This interpretation is stretched
because GR would not be able to describe the early phase.

The analogy should be regarded with a grain of salt: for
freezing lakes, the phase change is accompanied by a heat flux
from the cooling body of water, which is clearly not isolated.
The cosmological spacetime manifold, instead, is necessarily
isolated, but cooling occurs because the universe expands.

III. A SYMMETRY OF THE EQUATIONS
AND OF THEIR SOLUTIONS

A radiation fluid is a conformally invariant form of matter
since the Maxwell equations are conformally invariant in
four spacetime dimensions [28,29,47], and it is in principle
conceivable that some form of conformal symmetry may hold.
However, this is not trivial because the Einstein equations are
not conformally invariant even when conformally invariant
matter sources them. Nevertheless, a symmetry (vaguely)
related to conformal invariance does exist and it translates in
a previously unknown symmetry of Eq. (1.1) describing the
freezing of lakes and of its solution.

Consider the line element of a spatially flat FLRW universe
and perform a conformal rescaling of the spacetime metric
gab → g̃ab = �2 gab with conformal factor �(xα ). In general,
the new metric g̃ab is not a solution of the Einstein equations
with the same form of matter (when the transformed equations
are rewritten as effective Einstein equations, the effective
stress-energy tensor generated by the conformal transforma-
tion contains first and second covariant derivatives of � and
does not satisfy any energy condition [28,48]). Nevertheless,
some residual conformal symmetry remains, as explained
below.

Using conformal time η defined by dt ≡ adη [28,29], the
two line elements related by the conformal rescaling gab →
g̃ab = �2 gab are

ds2 = a2(η)(−dη2 + d�x2) → ds̃2 = �2a2(−dη2 + d�x2).

(3.1)

In general, ds̃2 is no longer a FLRW line element. However,
a special situation arises if the conformal factor � depends
only on the time coordinate η, in which case the FLRW line

element remains FLRW with scale factor ã(η) = �(η)a(η):

ds̃2 = ã2(η)(−dη2 + d�x2). (3.2)

However, in general this new scale factor ã(η) does not satisfy
the Einstein-Friedmann equation with a radiation fluid. An
even more special situation occurs when � = a: in this case
[using s(t ) as a synonym of a(t ) in the rest of this work], the
transformation

s → s̃ = s2, s = √
s̃, (3.3)

dt → dt̃ = s2dt, (3.4)

preserves the form of the radiation fluid. In fact, we have

ds

dt
= ds

dt̃

dt̃

dt
=

√
s̃

2

ds̃

dt̃
, (3.5)

and Eq. (1.5) becomes

ds̃

dt̃
= α̃

s̃
(3.6)

with α̃ = 2α, i.e., it is invariant in form. The Friedmann
equation is mapped into(

1

s̃

d s̃

dt̃

)2

= α̃2

s̃4
, (3.7)

i.e., it remains a Friedmann equation for a radiation fluid. The
mapping

ρ = ρ0

s4
→ ρ̃ = ρ

s̃4
= ρ̃

s8
(3.8)

leaves invariant the energy conservation equation for a radia-
tion fluid [48]

ρ̇ + 4Hρ = 0, (3.9)

which is now mapped into

dρ̃

dt̃
+ 4

s̃

d s̃

dt̃
ρ̃ = 0. (3.10)

It is well known in the formalism of conformal transforma-
tions in FLRW space that, under the conformal transforma-
tion g̃ab → �2gab, the energy density and pressure in these
spaces transforms as ρ̃ = �−4ρ, P̃ = �−4P, preserving the
barotropic and constant equation of state P = wρ, i.e., it is
still P̃ = wρ̃ after the conformal rescaling. For a radiation
fluid and � = a, we have

ρ → ρ̃ = �−4 ρ = �−4 ρ0

s4
= ρ0

s8
= ρ0

s̃4
. (3.11)

To summarize, the change of variables

s → s̃ = s2, (3.12)

dt → dt̃ = s2dt, (3.13)

ρ → ρ̃ = ρ

s4
= ρ

s̃2
, (3.14)

leaves unchanged the form of the Einstein-Friedmann equa-
tions for a spatially flat, radiation-dominated, FLRW universe.

This symmetry transfers to the solution of Eq. (1.1). The
solution of Eq. (1.5),

s(t ) =
√

2αt

λice
+ 1

h2
, (3.15)
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is mapped into

s̃(t ) = s2(t ) = 2αt

λice
+ 1

h2
, (3.16)

but we need to express this in terms of the rescaled time using
s̃(t̃ ) = s̃(t (t̃ )). By integrating dt̃/dt = s̃, one obtains

t̃ =
∫

s̃dt =
∫

s2(t )dt =
∫ (

2αt

λice
+ 1

h2

)
dt = αt2

λice
+ t

h2
,

(3.17)

where an additive integration constant has been set to zero by
imposing that t and t̃ have the same origin t = t̃ = 0. We can
now solve the algebraic equation

αt2

λice
+ t

h2
− t̃ = 0 (3.18)

for t , obtaining

t (t̃ ) = λice

2α

(
− 1

h2
±

√
4αt̃

λice
+ 1

h4

)
, (3.19)

and we choose the positive sign in front of the square root so
that t̃ = 0 corresponds to t = 0, consistently with what said
above. Now

s̃(t̃ ) = 2αt (t̃ )

λice
+ 1

h2
=

√
2α̃t̃

λice
+ 1

h̃2
, (3.20)

where α̃ = 2α and h̃ = h2. In terms of the ice thickness,

z(t ) = λice

[
s(t ) − 1

h

]
= λice

[√
2αt

λice
+ 1

h2
− 1

h

]
(3.21)

is mapped to

z̃(t̃ ) = λice

⎡
⎣

√
2α̃t̃

λice
+ 1

h̃2
− 1

h̃

⎤
⎦, (3.22)

i.e., the solution is invariant in form under the symmetry
operation (3.12)–(3.14).

IV. CONCLUSIONS

The Friedmann equation (2.2) of FLRW cosmology, which
is a first-order constraint on the cosmic dynamics [28] and is
similar to an energy integral for a conservative system [49],
lends itself to many analogies with various physical sys-
tems (usually in steady state), including particles in one-
dimensional motion [15–19], condensed matter systems
[22–25], optical systems [20,21], glaciology [20,21,26], equi-
librium beach profiles [27], and possibly other systems. Here
we point out the analogy between the freezing of lakes
and spatially flat, radiation-dominated FLRW universes. This

analogy inspires an intriguing view of the very early universe
as corresponding to an unknown phase of spacetime. If this
phase is real, it cannot yet be described given our complete
ignorance of the building blocks of spacetime and of the rules
they obey, which could be determined by a complete theory
of emergent gravity [35–43], semiclassical or corpuscolar
gravity [50–56], quantum gravity, or quantum cosmology
[57–60]. In the simple analogy highlighted here, the early
phase of the universe would remove the problem of the big
bang singularity, which would simply be inappropriate to
describe with the incorrect phase of spacetime, the same way
that at high temperatures it is nonsensical to talk about the
properties of ice that has long been converted into liquid water
or even steam.

The analogy of the freezing of lakes with cosmology
uncovers a symmetry property of the relevant equation for the
ice thickness and of its solution. This symmetry is completely
hidden in the treatment of freezing lakes and is uncovered only
thanks to a residual conformal symmetry of the analogous
radiation-dominated universe in FLRW cosmology.

Another aspect of the analogy lends itself to further de-
velopment: as described, the above model for the freezing
of lakes necessarily contains a simplification of the compli-
cated processes that occur in the natural environment. The
simplifying conditions assumed in the model, however, can
be recreated easily in the artificial, controlled environment
of a laboratory. Specifically, factors such as the presence
or absence of impurities in the water and their nature and
concentration, the atmospheric temperature and its variation
in time, the temperature at the bottom of the “lake” (in
practice, a deep tank), the lack of winds, and the depth of
the “lake” can all be controlled in a laboratory setting. The
equipment necessary to conduct an analog gravity experiment
based on the physics of water is common in cold laboratories
studying snow and ice, while the equipment required is not
sophisticated in comparison with that used in conventional
analog gravity in which black holes, cosmological spacetimes,
and curved space phenomena such as Hawking radiation,
superradiance, and false vacuum decay require the use of
Bose-Einstein condensates [22–25,61], ultracold atoms [62],
optical systems [63,64], or at least very finely controlled water
flows and vortices (e.g., [65–68]). Likewise, the experimental
study of the analogy between freezing lakes and cosmology
would require a much simpler laboratory setting than would
be necessary to study the analogy between cosmology and
large geological systems such as glaciers and beaches, which
also exhibit analogies with cosmology [26,27].
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