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Accuracy of the finite-temperature Lanczos method compared to simple typicality-based estimates
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We study trace estimators for equilibrium thermodynamic observables that rely on the idea of typicality and
derivatives thereof such as the finite-temperature Lanczos method (FTLM). As numerical examples quantum
spin systems are studied. Our initial aim was to identify pathological examples or circumstances, such as strong
frustration or unusual densities of states, where these methods could fail. It turned out that all investigated
systems allow such approximations. Only at temperatures of the order of the lowest energy gap is the convergence
somewhat slower in the number of random vectors over which observables are averaged.
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I. INTRODUCTION

One way to approximate thermodynamic quantities is to
rely on trace estimators. These schemes became very popular
in recent years since they turn out to be rather (or astonish-
ingly) accurate and in addition a valuable alternative in cases
where quantum Monte Carlo suffers from the sign problem.
Trace estimators approximate a trace by a simple evaluation of
an expectation value with respect to a random vector [1–10],
i.e.,

tr(O∼ ) ≈ 〈r| O∼ |r〉 dim(H)

〈r|r〉 . (1)

Here O∼ is the operator of interest, and |r〉 is a vector (pure

state) drawn at random from a high-dimensional Hilbert
space. The factor on the right-hand side takes care of the
dimension. If not mentioned otherwise the vector |r〉 will be
normalized.

The complex components rν of the vector |r〉 with respect
to a chosen orthonormal basis {|ν〉},

|r〉 =
∑

ν

rν |ν〉, (2)

are supposed to follow a Gaussian distribution with zero
mean (Haar measure [11–13]). Under unitary basis transforms
this distribution remains Gaussian, i.e, also in the energy
eigenbasis.
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The latter fact is the essential difference to the eigenstate
thermalization hypothesis (ETH) [14–16], which assumes that
the approximation in Eq. (1) also holds if |r〉 is replaced
by an individual energy eigenstate (with the trace operation
being performed in a microcanonical energy shell). While it
is well established that the ETH is indeed satisfied for few-
body observables in generic nonintegrable models [17,18],
counterexamples are also known to exist, with integrable
models [17] and many-body localized systems [19,20] as
the most prominent ones. However, this discussion does not
interfere with the investigations presented in our paper simply
for the reason that individual energy eigenstates are obviously
not Gaussian random superpositions of energy eigenstates, a
prerequisite we require for (1) to work.

The traces to be dealt with in this article appear in equi-
librium statistical physics, where they are evaluated for static
operators such as exp{−βH∼ } and O∼ exp{−βH∼ }, yielding the

partition function and thermal expectation values of observ-
ables O∼ , respectively. In this context, different schemes rely-

ing on trace estimators, sometimes termed typicality or (mi-
crocanonical) thermal pure quantum states [21–24], have been
very successfully employed in the field of correlated electron
systems to evaluate magnetic observables; see, e.g., [4,24–44],
but also elsewhere [45,46]. Although some estimates for
the accuracy of such schemes have been provided analyti-
cally [2,8–10,47–49] as well as numerically [9,24,32,40,50],
more confidence into the approximation seems to be desirable,
in particular in view of some scepticism [7,51].

We therefore present large scale numerical calculations for
bipartite and geometrically frustrated archetypical spin sys-
tems, together with a detailed analysis of the statistical errors.
The use of conserved quantities (good quantum numbers) and
a related decomposition of the full Hilbert space according to
irreducible representations is addressed as well. We find that
the gross estimation of the relative variance of an observable
O∼ in leading order of system properties (thermally occupied
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levels),

δ〈O∼〉 � 〈O∼〉 α√
Zeff

, Zeff = tr(e
−β(H∼−E0 )

), (3)

with E0 being the ground state energy, is indeed roughly ful-
filled for α = 1 and not too low temperatures; see [29,47,48].
While Eq. (3) is found to hold approximately, it is worth
pointing out that additionally an upper bound for δ〈O∼〉 can

be derived; see, e.g., [22]. This upper bound justifies trace
estimators not only for static quantities but also for dy-
namic quantities [12,52] such as time-dependent correlation
functions [37,49,53–55]. The concept of dynamical typicality
further plays a central role in the foundations of statistical
mechanics and thermodynamics [56–58]. In this paper, how-
ever, we focus on static observables such as heat capacity
and susceptibility. For such quantities one can also show that
δ〈O∼〉 = 0 for T = 0 for systems with non-degenerate ground

states [29,47].
For a deeper understanding of the actual numerical method

applied later in this paper it is helpful to note that two rather
different approximations are employed for the evaluation of
thermal averages. The first approximation is provided by the
trace estimator in (1). The second approximation is provided
by the Krylov space expansion of the exponential, which
yields a spectral representation that covers the true spec-
trum in a coarse grained manner [40]. These issues will be
addressed in the following. Note that the second approxi-
mation might be replaced by other approaches which solve
the imaginary-time Schrödinger equation iteratively such as
fourth-order Runge-Kutta [37,54,55] or Chebyshev polynomi-
als [7].

The paper is organized as follows. In Sec. II we recapit-
ulate typicality-based estimators. In Sec. III we present our
numerical examples both for frustrated and unfrustrated spin
systems. The article closes with a discussion in Sec. IV.

II. METHOD

There are many sound motivations and derivations of the
idea that traces can be accurately approximated by expecta-
tion values with respect to several or single random vectors
[2,8–10] as in (1); we do not want to repeat them here. We
want to motivate the older idea of trace estimators using the
more recent concept of typicality. The idea of typicality in the
context of trace estimators for physical quantities such as the
partition function means that the overwhelming majority of
all random vectors that one can draw in a high-dimensional
Hilbert space consist of virtually equivalent vectors and cor-
respond to a situation of infinite temperature, where all ex-
pansion coefficients of the density matrix with respect to an
orthonormal basis would be just about the same. In one of the
very first realizations by Hutchinson [2], this was explicitly
built into the method by generating random vectors with unit
entries but random sign (Rademacher random vectors). Later
it turned out that unbiased estimators can also be set up with
other distributions, for instance Gaussian distributions [10]
(cf. Haar measure [11–13]).

In the ideal case one could compute a typicality-based
expectation value, depending on temperature T and magnetic

field B, using just one single random state |r〉, i.e.,

Or(T, B) ≈
〈r| O∼e

−βH∼ |r〉
〈r| e

−βH∼ |r〉
. (4)

Numerical examples indicate that one single random state
indeed works well for dense spectra and large enough Hilbert
spaces [40], where the notion of “large” clearly depends on
temperature. For high temperatures already dimensions of
order 103 can be sufficient, while for low temperatures the
required dimension increases substantially; see (3).

One could naively assume that this approximation could
be improved by the mean with respect to a set of R different
random states,

Omean(T, B) ≈ 1

R

R∑
r=1

〈r| O∼e
−βH∼ |r〉

〈r| e
−βH∼ |r〉

, (5)

but this is not true, as we will see in the next section.
It is instead more accurate to improve the involved traces

separately, albeit with respect to the same set of random
vectors in numerator and denominator,

OFTLM(T, B) ≈
∑R

r=1 〈r| O∼e
−βH∼ |r〉∑R

r=1 〈r| e
−βH∼ |r〉

. (6)

The latter corresponds to the scheme that is used in the finite-
temperature Lanczos method (FTLM) [4,29,47].

Technical details particularly concern the evaluation of
〈r| e

−βH∼ |r〉, i.e., the application of the exponential. FTLM
employs a Krylov space expansion, i.e., a spectral repre-
sentation of the exponential in a Krylov space grown from
|r〉 as starting vector. A similar idea can be realized using
Chebyshev polynomials [7].

In addition, if the Hamiltonian H∼ possesses symmetries,

these can be employed by decomposing the full Hilbert
space into mutually orthogonal subspaces according to the
irreducible representations of the employed symmetry [32,35]
leading to the partition function

ZFTLM(T, B) ≈
�∑

γ=1

dim(H(γ ))
R

×
R∑

r=1

NL∑
n=1

e−βε (r)
n |〈 n(r) |r〉|2. (7)

H(γ ) denotes the subspace that belongs to the irreducible
representation γ , NL is the dimension of the generated Krylov
space, and | n(r) 〉 is the nth eigenvector of H∼ in this Krylov

space with seed |r〉 and energy eigenvalue ε (r)
n . NL is chosen

such that the ground state energy in the respective subspace
is converged to numerical accuracy. For large subspaces this
requires NL of the order of 300, . . . , 500. The method is
publicly available with the program SPINPACK [59,60].

Effectively, the method provides a coarse grained coverage
of the density of states by means of energy representatives ε (r)

n
that come together with weight factors wn(r) = |〈 n(r) |r〉|2,
thus emulating the true density of levels in the vicinity of
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FIG. 1. Schematic representation of the approximation of a true
energy spectrum by Lanczos energies εn and their weights wn(r) =
|〈 n(r) |r〉|2; see Eq. (7).

the energy representative. In this respect the method has some
similarities to the classical Wang-Landau sampling [61–63].

Approximations of the type discussed here essentially suf-
fer from two sources of error: (i) the choice of random vectors
in a Hilbert space of large but finite dimension and (ii) the
expansion of the exponential in the respective Krylov spaces
grown from the random vectors. The error due to choosing
a single random vector is upper bounded by O(1/

√
Zeff ). In

addition, one can prove minimal numbers R of random vectors
if a certain minimal probability (1 − δ) is required to stay
below a certain relative deviation ε [9]:

Pr
(∣∣trR

D(A∼) − tr(A∼)
∣∣ � ε tr(A∼)

)
� 1 − δ. (8)

Here trR
D(A∼) denotes a trace with respect to a mathemat-

ical distribution D of random numbers, that is averaged
over R realizations. For the Hutchinson method one ob-
tains R � 6ε−2 ln(2/δ), for a Gaussian distribution R �
8ε−2 ln(2/δ) [9].

The error related to the specific approximation of the
exponential, e.g., Krylov or Chebyshev, is not so simple to
quantify, which is one of the reasons for our numerical study.
The central question is how accurately the coarse grained
Lanczos spectrum represents the true spectrum in the par-
tition function for various temperatures. It is evident from
the schematic representation given in Fig. 1 that the Lanczos
spectrum does not provide accurate resonance frequencies for
more than the lowest energy gaps, even if these are indeed
very accurate thanks to the (in NL) exponentially fast conver-
gence of extremal eigenvalues in the Lanczos method [64].
In addition, symmetries of the Hamiltonian can be used not
only to yield smaller orthogonal subspaces H(γ ) according
to Eq. (7), which helps to access larger system sizes and/or
to make calculations faster and less memory consuming, but
also to generate a larger number of very accurate Lanczos
energy values since they are extremal in their respective
subspaces. However, even if the lowest Lanczos energies
are very accurate, this does not automatically imply that the
related weights wn(r) share the same superb accuracy. The
low-temperature behavior thus remains to be further explored.
Only at T = 0 are the observables bound to be correct, as
long as the the random vector has some overlap with the true

(nondegenerate) ground state [47,57]. One the other hand, for
high temperatures one can show that the expansion of the
exponential in Krylov space up to order NL corresponds to a
high-temperature series expansion of equilibrium expectation
values up to the same order [47]. Overall, relation (3) could
be derived in Ref. [47] under rather reasonable assumptions.
This relation will be our reference in the upcoming part of the
paper.

In the following we estimate the uncertainty of a physical
quantity approximated by a trace estimator by repeating the
numerical evaluation NS times. The generated set of results
is considered as a statistical sample, for which we define the
standard deviation of the observable in the following way:

δ(O) =

√√√√ 1

NS

NS∑
r=1

[Om(T, B)]2 −
(

1

NS

NS∑
r=1

Om(T, B)

)2

=
√

[Om(T, B)]2 − (Om(T, B))2. (9)

Om(T, B) is evaluated according to either Eq. (4) or Eq. (6),
depending on whether the fluctuations of approximations with
respect to one random vector or with respect to an average
over R vectors shall be investigated (see the following exam-
ples).

In the following numerical examples two observables are
considered: zero-field susceptibility and heat capacity. Both
are evaluated as variances of magnetization and energy, re-
spectively, i.e.,

χ (T ) = (gμB)2

kBT
{〈(S∼

z )2〉 − 〈S∼
z〉2}, (10)

C(T ) = kB

(kBT )2
{〈H∼

2〉 − 〈H∼ 〉2}. (11)

III. NUMERICAL RESULTS

In this section we investigate various spin systems. They
are of finite size and modeled by Heisenberg Hamiltonians
augmented with a Zeeman term, i.e.,

H∼ = −2
∑
i< j

Ji j �s∼i · �s∼ j + gμB B
∑

i

s∼
z
i , (12)

where the first sum runs over ordered pairs of spins (“−2J”
convention used). Our original intention was to identify sys-
tems and circumstances where the approach of Eq. (6) fails.
But none of the investigated systems turned out to be (system-
atically) intractable.

A. Spin ring

As a first example we examine a spin ring with N = 10
spins s = 5/2 and nearest-neighbor antiferromagnetic interac-
tion. This system exists as a magnetic molecule (abbreviated
Fe10), and it is called a “ferric wheel” [65]. Although the
dimension of the total Hilbert space is 60 466 176, the Heisen-
berg Hamiltonian can be diagonalized completely thanks to
the high symmetry [SU(2) and C10] [66].

Figure 2 shows NS = 100 calculations of the differential
susceptibility as well as the heat capacity according to Eq. (4),
i.e., using a single random vector for each estimate together
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FIG. 2. Spin ring N = 10, s = 5/2: The light-blue curves depict
100 different estimates of the differential susceptibility as well as the
heat capacity using single vectors. Mean values as well as the exact
result are also presented.

with the means according to Eqs. (5) and (6). For the cal-
culation, S∼

z symmetry was employed. In addition the exact

result is depicted. One can clearly see that the estimates using
a single random vector fluctuate largely for temperatures less
than ten times the coupling. Nevertheless, if the estimates
are joined in an FTLM fashion according to Eq. (6), the
result for R = 100 can hardly be distinguished from the exact
calculation. A simple mean according to Eq. (5) fails.

A statistical analysis of the set of estimates Or(T, B) in
Fig. 3 reveals that the error estimate (3) with α = 1 indeed
accurately describes the standard deviation. Only for tempera-
tures smaller than the exchange coupling can larger deviations
be observed, but they do not exceed the error estimate much
(e.g., by orders of magnitude).

B. Cuboctahedron and icosidodecahedron

As a second example we choose two frustrated polytopes:
the cuboctahedron as well as the icosidodecahedron with anti-
ferromagnetic nearest-neighbor interactions. Not only do both
exist as magnetic molecules [67–73], they are also intimately

FIG. 3. Spin ring N = 10, s = 5/2: Standard deviation (red) of
the differential susceptibility as well as the heat capacity compared
to the error estimate (black).

related to the kagomé lattice antiferromagnet [74–76]. In
contrast to the bipartite spin ring discussed above, these spin
systems possess a rather dense spectrum with, for instance,
several to many singlet states below the first triplet state (a
hallmark of geometric frustration).

For the cuboctahedron, that has 12 spin sites, we choose
a single-spin quantum number of s = 3/2 since we can
still completely diagonalize the Hamiltonian using symme-
tries, although the dimension of the total Hilbert space is
16 777 216 [77]. As can be seen in Fig. 4, the magnetic
observables fluctuate below a temperature of five times the
coupling when evaluated with respect to a single random
vector. Aggregating them into an FTLM estimate with R =
100 again yields a very good approximation compared to the
exact result.

Since the system is not too big, we repeated this analysis
for NS = 100 samples of FTLM estimates with R = 100 each
[in this case Om(T, B) of Eq. (9) equals OFTLM(T, B) of
Eq. (6)]. The result is shown in Fig. 5. One immediately
recognizes the much smaller spread of the estimates. Only
at (sharp) features of the respective functions are deviations
still visible. The origin can be found in strong variations
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FIG. 4. Cuboctahedron N = 12, s = 3/2: The light-blue curves
depict 100 different estimates (R = 1) of the differential susceptibil-
ity as well as the heat capacity. Mean values as well as the exact
result are also presented.

of the true density of states with energy and/or external
magnetic field; such variations seem to be hard to emulate by
the coarse grained coverage through the trace estimator. The
related standard deviations are expected to further decrease in
a Monte Carlo fashion by a factor of 1/

√
R; see [47]. This is

indeed found, as depicted in Fig. 6. The solid curves display
the true standard deviation as well as the estimate for R = 1,
whereas the dashed curves do the same but for R = 100. Since√

100 = 10, the fluctuations of the trace estimator should be
ten times smaller, which agrees with the numerical study.

The icosidodecahedron—a Keplerate molecule—could be
synthesized with various ions leading to single spin quan-
tum numbers of s = 1/2 [69,72], s = 3/2 [70,71], and s =
5/2 [67,68]. Only the spin-1/2 version can be calculated
by means of trace estimators (typicality methods) since the
dimension of the total Hilbert space is 1 073 741 824. For
s = 1 it would already be ∼2 × 1014 and thus out of reach
for such methods.

The spectrum of the icosidodecahedron features proper-
ties similar to those of the cuboctahedron or of finite-size
realizations of the kagomé lattice [40,74,78]: the spectrum

FIG. 5. Cuboctahedron N = 12, s = 3/2: The light-blue curves
depict 100 different estimates (R = 100) of the differential suscepti-
bility as well as the heat capacity. Mean values as well as the exact
result are also presented.

is rather dense, which in particular means that many singlets
populate the energy spectrum below the lowest triplet level.
This has a stark impact on the low-temperature behavior of
the heat capacity. On the other hand, for a given temperature
a dense spectrum leads to a much larger effective partition
function Zeff in (3) compared to, e.g., a bipartite spin system
with pronounced low-lying energy gaps and thus to smaller
fluctuations at this temperature. Comparing Figs. 2 and 7,
one notices that the fluctuations of the estimators were visible
below kBT ≈ 10|J| for the ferric wheel, whereas this value is
only kBT ≈ 1|J| for the icosidodecahedron. This means that
a single random vector is sufficient for the evaluation of these
observables kBT � 1|J|, which constitutes a drastic reduction
of the computational effort. One could thus sloppily say that
frustration works in favor of trace estimators; cf. Ref. [41].

The respective standard deviations, see Fig. 8, sup-
port these impressions. Only at the lowest temperatures—
corresponding to the low-lying level structure, in particular
of the singlet states—do the specific heat estimates express
large fluctuations. The susceptibility is not affected, since the
low-lying singlets are nonmagnetic.
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FIG. 6. Cuboctahedron N = 12, s = 3/2: Standard deviation of
the differential susceptibility as well as the heat capacity compared
to the error estimate for two sets of estimates: one with R = 1 (solid
curves) and one with R = 100 (dashed curves).

C. Delta chain

The above discussed spin systems have a pretty regular
(dome-shaped, close to Gaussian) density of states. As our
next example we would like to investigate a delta chain (also
sawtooth chain) close to the quantum critical point [79,80].
We choose a chain of N = 32 sites with a ferromagnetic
nearest-neighbor interaction J1 and a next-nearest neighbor
antiferromagnetic interaction J2 between spins on adjacent
odd sites, i.e., i and i + 2 with i = 1, 3, 5, . . . . Periodic
boundary conditions are applied. At the quantum critical
point (QCP), |J2/J1| = 1/2, the system features a massive
degeneracy due to multimagnon flat bands. Therefore, close
to the QCP an additional small energy scale is created, around
which the density of states exhibits an additional low-energy
maximum. It is worth mentioning that such a compound, that
is very close to the QCP, was synthesized recently [81].

When evaluating the estimates one notices that fluctuations
of observables appear only for temperatures of the order of the
emergent small energy scale, as can be seen in Fig. 9. This en-
ergy scale, which is approximately 10−2|J1| and corresponds
to the low-temperature maximum, is much smaller than the

FIG. 7. Icosidodecahedron N = 30, s = 1/2: The light-blue
curves depict 100 different estimates of the differential susceptibility
as well as the heat capacity. Mean values are also presented.

dominant scale |J1|, that corresponds to the high-temperature
Shottky peak.

The reason for this behavior can be traced back to the enor-
mous number of low-lying levels assembled at the low-energy
scale—see density of states in Fig. 9—that at temperatures
elevated above the low-temperature scale contribute to the
effective partition function (3) and thus lead to a very small
estimate for the fluctuations of any observable. This is clearly
seen for δ(C) in Fig. 9, which virtually drops to zero above
the low-temperature scale. Also in this case a single random
vector suffices to evaluate the thermal behavior above the
low-temperature scale.

D. An integrable spin system

We already mentioned that the use of the concept of typi-
cality for trace estimators is not connected to the question of
whether or not ETH holds for the respective quantum system.
Here we present a simple example of a spin-1/2 chain with
nearest-neighbor antiferromagnetic interaction that would be
integrable via the Bethe ansatz [82–85]. We investigate a
spin chain of N = 24 spins s = 1/2 with periodic boundary
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FIG. 8. Icosidodecahedron N = 30, s = 1/2: Standard deviation
(red) of the differential susceptibility as well as the heat capacity
compared to the error estimate (black).

conditions that can also be solved numerically exactly when
employing the symmetry groups SU(2) and CN [86]. For the
FTLM investigation a reduced symmetry was used, namely Sz

∼
symmetry as well as translational symmetry CN .

In Figs. 10 and 11 we present our results for the heat
capacity. The susceptibility (not shown) behaves similarly.
The results are very similar to the already discussed examples.
The largest deviations again occur at and below a temperature
scale of the order of the exchange interaction |J|. A sharp peak
of the standard deviation δ(C) at very low temperatures occurs
at temperatures corresponding to the lowest (singlet-triplet)
gap. However, one would expect for this class of spin sys-
tems that the temperature above which the approximation is
good drops with increasing system size since the lowest gaps
shrink for this system that is gapless in the thermodynamic
limit.

E. A Haldane spin system

The question of how the lowest gap influences the low
temperature quality of the approximation will be addressed
in this section. To this end we choose a Haldane spin chain

FIG. 9. Delta chain N = 32, s = 1/2, |J2/J1| = 0.45: Heat ca-
pacity, standard deviation and density of states (from top to bottom).
The light-blue curves depict 100 different estimates of the heat
capacity. Mean values are also presented. The density of states is
presented for excited levels with excitation energy E∗.

of N = 20 and s = 1 with nearest neighbor antiferromagnetic
exchange as an example for systems where the lowest gap is
sizable and does not even close in the thermodynamic limit.
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FIG. 10. Spin ring N = 24, s = 1/2: The light-blue curves depict
100 different estimates of the heat capacity. Mean values as well as
the exact result are also presented.

As one can see in Fig. 12 both susceptibility as well as
heat capacity fluctuate greatly about and below a temperature
scale that is provided by the lowest energy gap (dashed
vertical line). In essence this means—here and for all previous
examples—that a single random vector, Eq. (4), does not
work for temperatures of this order and below, except for
T = 0 where the method is bound to be exact [29,47]. This
is also clearly reflected by the respective standard deviations
shown in Fig. 13. In addition, here we encounter an exam-
ple where the standard deviation δ(dM/dB) assumes values
much larger than our estimator (3) for T > 0.

The reason for the strong fluctuations of low-temperature
observables lies in a poor coverage of wn(r) for the lowest
energy eigenvalues. Although the lowest eigenvalues, thanks
to the properties of power methods, are very accurate—i.e.,
they possess a standard deviation of <10−4 or better—the
corresponding weight factors fluctuate greatly. This can be
seen in Fig. 14 where the weigths wn(r) are displayed for the

FIG. 11. Spin ring N = 24, s = 1/2: Standard deviation (red) of
the heat capacity compared to the error estimate (black).

FIG. 12. Spin ring N = 20, s = 1: The light-blue curves depict
100 different estimates of the differential susceptibility as well as
the heat capacity. Mean values as well as the exact result are also
presented.

ground state and the first excited state as they are evaluated
in the respective Hilbert subspaces H(M ). These fluctuations
of the weights are conserved by a power method; this is par-
ticularly important for the low-lying levels. In order to yield
an accurate low-temperature partition function, the weights of
the lowest states should equal 1 in (7). The naturally occurring
variation of the weights in a random vector are amplified at
low temperature by the Boltzmann factor. One can derive an
estimate for the relative error of the specific heat assuming
(for simplicity) that at low temperatures only the ground state
as well as the first excited state contribute to the partition
function:

δ(C)

C
≈

∣∣∣∣∣
w1
w0

(1 + d exp[−β�])2(
1 + w1

w0
d exp[−β�]

)2 − 1

∣∣∣∣∣ (13)

→
∣∣∣∣w1

w0
− 1

∣∣∣∣ for β → ∞. (14)

Here � is the gap between ground and first excited states, d
the degeneracy of the first excited state, and w0 and w1 the
weights of the ground and the first excited states. The ratio of
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FIG. 13. Spin ring N = 20, s = 1: Standard deviation (red) of
the differential susceptibility as well as the heat capacity compared
to the error estimate (black).

the weights dominates the relative error at low temperatures;
it can assume large values. This problem is independent of
the observable at hand: it stems from the fluctuations that are
intrinsic to the random vector. Therefore, Eq. (14) does not
only hold for the heat capacity, which is a variance 〈H∼

2〉 −
〈H∼ 〉2, but for 〈H∼

2〉 and 〈H∼ 〉 separately.

Although every random vector possesses these fluctua-
tions, a proper averaging as outlined in (7) decreases the
fluctuations drastically. Figure 14 demonstrates that, after
averaging over 100 random vectors, the averaged weights
(thick red bars) approach an equal magnitude, although not
yet 1 but ∼1.2. For most observables it is sufficient that the
averaged weights of the lowest states are about the same since
they appear simultaneously in the numerator and denominator
of Eq. (6). Quite recently new ideas have been formulated
to improve the low-temperature estimates of FTLM also for
small numbers R of random vectors by taking special care of
the weights for low-lying levels [87].

The investigation of the averaged weights of low-lying lev-
els also sheds light on the failure of the naive mean according
to Eq. (5). This kind of mean does not average the individual

FIG. 14. Spin ring N = 20, s = 1: Weights wn(r) of the ground
state singlet and the first excited triplet (black bars). Mean weights
are depicted by thick red bars. Technically, the weights for M = −1
are a simple copy of those for M = +1 thanks to symmetry.

weights, but the individual single-vector expectation values,
which converges either very slowly or even to a different
function at low temperatures.

IV. DISCUSSION AND CONCLUSIONS

Finally, we can conclude that typicality-based methods
allow an astonishingly accurate approximation of static ther-
modynamics observables, sometimes using just one random
vector. This qualifies methods such as FTLM for a reliable
treatment of large quantum systems, in particular of those
that cannot be dealt with by quantum Monte Carlo due to the
sign problem and of those where approximations using matrix
product states converge slowly such as the two-dimensional
kagomé lattice [40].

The simple idea of typicality, to replace a trace by an
expectation value with respect to just one random vector,
works indeed for large enough temperatures. 1/

√
Zeff provides

the estimate for the relative error to be expected for temper-
atures well above the lowest excitation gap. An additional
average over many random vectors according to (6) further
increases the accuracy in a Monte Carlo fashion and reduces
the error by another factor 1/

√
R, where R is the number of

employed random vectors. The simple average (5) of single-
vector approximations does not converge properly, especially
at low temperatures.

Although power methods such as the Lanczos method
yield exact ground state expectation values for systems with
nondegenerate ground states, and should thus be accurate
at T = 0, the large fluctuations of estimates using a single
random vector are surprising. We could clarify this problem
by elucidating the important role jointly played by the energy
gap between the ground state and first excited state as well as
the weight factors of both states. Although both energies are
spectroscopically accurate, one needs sufficient averaging to
tame the strongly fluctuating weight factors. In view of this,
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and with 1/
√

Zeff in mind, one can state that the discussed
approximations work better for systems with small gap and
larger density of low-lying states. Therefore, frustration works
in favor of trace estimators.

Overall, we conclude that methods such as FTLM, which
rely on trace estimators, are astonishingly accurate. We could
demonstrate with several prototypical examples that the stan-
dard deviations of observables can be systematically reduced
via averaging. In addition, we are convinced that we could
provide a valuable contribution in order to trust these methods
by presenting realistic standard deviations [88].
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