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Cooper pair polaritons in cold fermionic atoms within a cavity
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We formulate a Bardeen-Cooper-Schriffer (BCS) theory of quasiparticles in a degenerate Fermi gas strongly
coupled to photons in a optical cavity. The elementary photonic excitations of the system are cavity polaritons,
which consist of a cavity photon and an excitation of an atom within the Fermi sea. The excitation of the atom
out of the Fermi sea leaves behind a hole, which together results in a loosely bound Cooper pair, allowing for the
system to be written by a BCS wave function. As the density of the excitations is increased, the excited atom and
hole become more strongly bound, crossing over into the molecular regime. This thus realizes an alternative BCS
to BEC crossover scenario, where the participating species are quasiparticle excitations in a Fermi sea consisting
of excited atoms and holes.
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I. INTRODUCTION

Degenerate atomic gases are a thriving platform for the
realization of highly controllable quantum many-body sys-
tems. Using combinations of various techniques developed
over the last few decades, it is possible to create a wide range
of quantum systems. For example, using optical lattices and
taking advantage of the natural interactions one can realize the
Bose-Hubbard model and observe a quantum phase transition
between a Mott insulator and a superfluid [1]. For fermionic
atoms, the crossover between a molecular Bose-Einstein con-
densate (BEC) and Bardeen-Cooper-Schriffer (BCS) phase
was observed by tuning the Feshbach resonance [2]. Since
these pioneering works, numerous examples of other physical
models have been realized, ranging from those with other lat-
tice geometries, spin-orbit coupling, and artificial gauge fields
[3–6]. The general approach, dubbed “quantum simulation”
allows one to realize and study quantum-many body systems
in engineered, rather than naturally occurring, systems. Due
to the difficulty of theoretically and numerically studying
such systems, this offers a new route toward understanding
such a system, realizing Feynman’s conjecture that quantum
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mechanical systems are suited toward the simulation of other
quantum systems [7]. It also offers opportunities to create and
study systems that do not occur naturally to observe novel
physics.

Spurred on by the observation of BECs in cold atomic
gases, it has been of great interest to reproduce this general
effect in other physical systems. To date, other systems where
BECs have been observed are with magnons [8,9], photons
[10], and exciton-polaritons [11,12]. In particular, exciton-
polaritons are a hybrid quasiparticle in a semiconductor con-
sisting of a superposition of a cavity photon and an exciton
[13,14]. Excitons are bound pairs of electrons and holes,
are created by optical excitations between the valence and
conduction bands, and possess a repulsive interaction [15,16].
Similarly to atomic BECs, polariton BECs can be manipulated
in various ways such as applying periodic potentials of various
geometries [17–19]. One of the interesting aspects of exciton-
polariton BECs is that they can be observed at much higher
temperatures than for atoms, ranging from 10 K to room
temperature.

Another forefront in recent years has been the development
of interfaces between quantum gases and photons by putting
cold atoms in cavities [20]. The first realizations of this
were using degenerate bosons put in optical cavities [21,22],
where strong coupling between photons and the excitations
of the BECs were observed. In addition to optical cavities,
hybrid systems with BECs and superconducting resonators
have also been realized [23,24]. For optical cavities working
in the dispersive regime [25], this can form the foundation of
a long-ranged interaction mediated by the photons [26–30].
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(a) (b)

FIG. 1. Schematic figure of the (a) low- and (b) high-excitation-
density regimes of degenerate fermions in a optical cavity. At low
density most of the atoms occupy the internal ground state which has
an energy-momentum dispersion εk = h̄2k2

2m . The polariton consists of
a superposition of a cavity photon and an excited state atom with a
dispersion ε ′

k = h̄2 |k+k0 |2
2m′ , which leaves behind a hole in the Fermi

sea. At high excitation density, all the atoms participate and are in a
50:50 superposition of the ground and excited states.

More recently, several works have investigated the physics
of degenerate Fermi gases in an optical cavity [26,31–33],
predicting various effects such as fermionic superradiance
[34], chiral states [35], artificial magnetic fields [36], quantum
phase transitions [29,37], and topological edge states [30].

In this paper, we consider a degenerate Fermi gas with two
internal levels coupled to an optical cavity. The excitations
of an optical cavity containing atoms is well known to be
described by vacuum Rabi splitting of the energy levels of the
atoms, where cavity polaritons are the elementary excitations
[22,38–44]. Such a system has almost an exact analogy to
exciton-polaritons in semiconductor systems. The degenerate
gas of fermions in the ground state plays the role of the
valence band, and the excited state plays the role of
the conduction band (Fig. 1). A photon excites an atom to
the excited state, leaving behind a hole. There are, however,
also several differences of the cavity polaritons to exciton-
polaritons, namely for semiconductors supporting excitons the
direct band gap means that the dispersion of the valence band
has negative effective mass (positive curvature of the valence
band). In addition, the fermions are charged electrons and
holes and hence have a Coulomb attraction between them.

One of the main results of this paper is that it is possible
to realize a novel type of BEC-BCS crossover, in terms of
the the excited atoms and holes in the Fermi sea. This forms
a different type of BEC-BCS crossover that are quasiparti-
cles within the background Fermi sea rather than the atoms
themselves as has been considered before [2,33]. To see in
what sense a BCS state is possible, consider the excitation
of an atom in the Fermi sea by a photon. In this case, if the
photon has a momentum k0, then this can potentially excite
an excited atom with momentum k0 + k and produce a hole
moving with momentum −k. Thus the relative momentum
between the excited atom and hole is not bound by momentum
conservation and can form a wave function that is describable
by a BCS state. Due to the effect of the cavity and the
interactions, we show that the excited atoms and holes have an
attractive force mediated by the photons. In the regime where
it is energetically favorable for the excited atom and hole to
be loosely bound, a Cooper pair of these fermions form. The
strong coupling of the Cooper pair to light via the cavity cre-
ates a “Cooper pair polariton.” These Cooper pair polaritons
are closely related to what is observed in semiconductor

systems [45–48], but the physics of these systems are yet to be
observed to our knowledge. One major difference to the anal-
ogous case in semiconductors is that the BCS regime is much
more easily observed, due to the lack of Coulomb attraction
between excited atoms and holes. This makes the Cooper pair
polaritons far more easily observed, whereas for excitons the
electrons and holes are generally always strongly bound.

II. FORMALISM FOR FERMIONIC ATOMS IN A CAVITY

A. Theoretical model

We consider a gas of two-level fermionic atoms in a cavity,
described by the Hamiltonian

H =
∑

k

[
h̄2k2

2m
b†

kbk +
(

Ec + h̄2k2

2m′

)
c†

kck + h̄ωka†
kak

]

+
∑
kk′

[gc†
k+k′bkak′ + g∗a†

k′b
†
kck+k′]

+
∑
kk′q

Vbcb†
k+qc†

k′−q
ck′bk. (1)

Here bk, ck are the fermionic annihilation operators for the
ground and excited state of the atoms, and ak is the bosonic
annihilation operator for the cavity mode with momentum
k. For generality, we consider the mass of the atoms for the
ground- and excited-state atoms, respectively, to be given by
m, m′, respectively. Ec is the energy difference between the
internal states of the fermions, g is the cavity-atomic transition
coupling, Vbc is the energy densities for the interspecies inter-
action between the ground and excited states. We henceforth
consider that the cold fermions are placed in a ring cavity
with a resonance momentum k0 with magnitude k0 ≡ |k0| =
2π/λ0, where λ0 is the wavelength of light. The ring cavity
simplifies our analysis such that the light propagation is in a
single direction.

For optical cavities that are tuned to the atomic resonance,
the cavity photon momentum k0 and the Fermi momentum kF

of the atoms are of a similar order. Their energy dispersions
are, on the other hand, highly mismatched. To see this, con-
sider the energy of a photon in the vicinity of the cavity photon
resonance

h̄ωk = h̄c|k| = h̄c|k0 + δk|

= h̄k0c

√
1 + 2k0 · δk + δk2

k2
0

≈ h̄k0c + h̄c

k0

(
k0 + δk

2

)
· δk

= h̄k0c

2
+ h̄2|k0 + δk|2

2mph
, (2)

where we defined δk = k − k0 and expanded the square root
in the second-to-last line. The effective photon mass is mph =
h̄k0/c, which for typical atomic parameters is much lighter
than the atomic mass mph � m, m′. This means that the
only relevant photons that couple with the atoms are those
with momentum δk = 0 (i.e., k = k0), which are tuned on
the atomic resonance, and all other photons will be highly
off-resonant. The extremely light effective photon mass means
that the polaritons also have an extremely light effective mass
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[14]. In the same way as exciton-polaritons, this provides the
conditions for macroscopic condensation of polaritons.

Taking this into account, the Hamiltonian then can be

H =
∑

k

[εkb†
kbk + (Ec + ε′

k)c†
kck] + h̄ωa†a

+
∑

k

[gc†
kbka + g∗a†b†

kck] +
∑
kk′q

Vbcb†
k+qc†

k′−q
ck′bk, (3)

where we have changed the labeling of the excited atoms
according to ck+k0 → ck and abbreviated the photon operator
as ak0 → a. The dispersions of the ground and excited state

atoms are εk = h̄2k2

2m , ε′
k = h̄2|k+k0|2

2m′ , respectively, and h̄ω is the
cavity photon energy.

We also define the atom number and excitation number
operators

N̂ =
∑

k

b†
kbk +

∑
k

c†
kck

nex = a†a +
∑

k

c†
kck, (4)

which commute with the Hamiltonian [H, N] = [H, nex] = 0
and thus have a common set of eigenstates. We assume that
the total number of atoms is N = ∑

|k|�kF
1 and kF defines the

Fermi momentum for the noninteracting system ground state.
We note that the intraspecies interaction never con-

tributes for momentum independent interactions in (1) due to
fermionic statistics∑

kk′q

b†
k+qb†

k′−q
bk′bk

= 1

2

∑
kk′q

b†
k+qb†

k′−q
bk′bk + 1

2

∑
kk′q

b†
k+qb†

k′−q
bkbk′ = 0, (5)

where we have made a transformation of indices k → k′,
k′ → k, q → −k′ + k + q in the second term.

B. BCS mean-field theory

We now construct a BCS mean-field theory which can
describe both the low- and high-excitation regime of the
cavity-Fermi gas system. We perform a standard BCS mean-
field theory such that only quadratic terms in the Hamiltonian
are present, with a ground state of the form (see Appendix for
details)

|�〉 =
∏

k

[uk + vkc†
kh†

−k]|E0(kF )〉, (6)

where |uk|2 + |vk|2 = 1 and |E0(kF )〉 = ∏
|k|<kF

b†
k|0〉 is the

Fermi sea, and we have defined fermionic hole operators as
hk = b†

−k [49]. In order that this state is the ground state of the
mean-field Hamiltonian, the BCS parameters must obey

2δξkukvk − 	(|vk|2 − |uk|2) = 0. (7)

Solving the quadratic equation we find the BCS equations

v2
k = 〈c†

kck〉 = 1

2

(
1 − δξk

Ek

)
, (8)

ukvk = 〈c†
kh†

−k〉 = 	

2Ek
, (9)

where

δξk = (ξ ′
k − ξk)/2,

ξk = εk + VbcX,

ξ ′
k = Ec + ε′

k + (N + 1 − X )Vbc − μ (10)

	 = VbcD − gλ∗

Ek =
√

(δξk)2 + 	2.

The mean-field values are

X =
∑

k

〈h†
khk〉 =

∑
k

〈c†
kck〉,

D =
∑

k

〈c†
kh†

−k〉, (11)

λ = 〈a〉.
These are solved self-consistently to find the parameters
vk, uk.

III. SOLUTIONS IN LIMITING CASES

A. Low-excitation limit

The BCS formalism allows us to smoothly interpolate
between the low-excitation and high-excitation regimes. Let
us first obtain some limiting cases of the theory. In the low-
excitation regime we expect λ, |vk| � 1, and thus we can
approximate (7) as [47]

2δξkvk −
(

Vbc + |g|2
h̄ω − μ

) ∑
k′

vk′ = 0, (12)

where μ is a chemical potential to control the number of
excitations in the system. The above equation is a Schrodinger
equation in momentum space with a δ-function attractor with
respect to the wave function vk [45]. The cavity provides
provides an effective attractive force between the excited
atoms and holes. The strength of the interaction |g|2/(h̄ω − μ)
suggests that it is a second-order energy shift in a similar
way to the ac Stark shift or Feshbach resonance. Given the
presence of an excited atom and hole, the cavity can induce a
relaxation and re-excitation back to the original state, giving
rise to an energy shift. In addition to the cavity, the inter-
species repulsion Vbc can also produce an effective attractive
interaction. The physical intuition for this is that for a re-
pulsive interspecies interaction, it is energetically favorable
for the excited atom to recombine with the hole, annihilating
each other. In order for this to happen, the excited atom and
hole must have matching momenta, according to the cavity
coupling term b†

kck = h−kck in the Hamiltonian (3), thereby
producing an effective attractive force between them.

In three dimensions the bound states take the form

vk ∝ 1

k2 + α2
, (13)

where α is the parameter that is determined by the boundary
conditions. In three dimensions there are an infinite number
of bound states, making the evaluation of α problematic
using standard techniques [50]. For the self-consistent the-
ory, we can, however, fix α by demanding that the product
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δξkvk in (12) is independent of k. For example, when k0 = 0
we have the condition h̄2α2

2m̃ = Ec + Vbc(N + 1) − μ, where
1/m̃ = 1/m′ − 1/m. The normalization of vk is fixed by the
number of excited atoms, according to (8).

We thus write the polariton creation operator

p† = χa† + ζ√
N0

∑
k

vkc†
kh†

−k, (14)

where χ, ζ are coefficients that satisfy |χ |2 + |ζ |2 = 1 and
N0 = ∑

k |vk|2. This operator obeys approximate bosonic
commutation relations, as can be verified by evaluating the
commutator

[p, p†] = 1 − |ζ |2
N0

∑
k

|vk|2(c†
kck + h†

−kh−k). (15)

As long as the number of excited atomic states (and hence
holes) is small, the second term above gives a small contri-
bution and follows bosonic commutation relations. For the
case that the ground- and excited-state dispersions are the
same ε′

k = εk, it is possible to explicitly write the exact
polariton wave function for low densities without a mean-field
approximation, corresponding to vk = 1. In this case applying
the operator (14) on the Fermi sea gives an exact eigenstate of
(3) with excitation energy (see Appendix)

Ep = Ec + h̄ω

2
∓

√
(Ec − h̄ω)2

4
+ |g|2N . (16)

The Rabi splitting of the polaritons scales with the square root
of the number of atoms as expected.

The polariton operator (14) takes the same form as that
familiar with exciton-polaritons in semiconductors [13,14].
The primary difference here is that in semiconductor systems
the electrons and holes are oppositely charged and have a
Coulomb attraction, which is lacking in this case. This means
that for the case of of equal dispersion ε′

k = εk, there will be
no momentum dependence vk ∝ const. One can view chang-
ing the relative dispersion between the ground and excited
states as tuning the effective mass in the Schrodinger equation
(12)—a larger relative difference in the dispersions produces
a smaller effective mass. The smaller effective mass produces
more strongly bound excited atoms and holes, reducing the
momentum dependence in (14).

The BCS parameter vk affects the spontaneous emission
rate of the excitations. Excitons in semiconductors have a
much shorter lifetime than free conduction electrons due to
superradiant effects [49]. The excited atom in Fig. 1(a) can
only relax to its lower energy state if spatially overlaps with
the hole. Using Weisskopf-Wigner theory for the exciton part
χ = 0, ζ = 1 of the polariton operator (14), we find that the
spontaneous emission rate is modified according to

 = 0

∣∣∣∣∣ 1√
N0

∑
k

vk

∣∣∣∣∣
2

, (17)

where 0 is the spontaneous emission of a single atom.
Depending on the distribution vk, the spontaneous emission
rate will thus be modified. For a constant distribution vk,
corresponding to strongly bound excited atom and holes, the
factor |∑k vk/

√
N0|2 = N , and we recover Dicke superradiant

spontaneous emission. The opposite limit of vk ∝ δ(k), corre-
sponding to very different dispersions between the ground and
excited states gives a factor |∑k vk/

√
N0|2 = 1. This reduces

the spontaneous emission rate due the delocalization of the
electron and hole in real space, suppressing the spontaneous
emission.

B. High-excitation limit

We now examine the reverse regime when the photon pop-
ulation is large. In this limit we may set the photonic operator
to a classical field a → λ and neglect the interaction terms. A
straightforward diagonalization reveals that the ground state
consists of a Fermi sea of a superposition of ground and
excited state atoms d†

k = ukb†
k + vkc†

k. Such a state can be
written in terms of the BCS wave function (6). In the limit
of λ → ∞ the coefficients tend toward uk = vk = 1/

√
2. The

energy of an atom d†
k in a superposition is

Eλ
k = Ec + h̄ω + ε′

k + εk

2

±
√

(Ec − h̄ω + ε′
k − εk)2

4
+ |gλ|2. (18)

This takes a similar form to the polariton excitation energy
(16) except that the the enhancement factor of the cavity-
atom coupling g scales with the square root of the photon
number. In addition, in the bright cavity limit the excitations
possess momentum dependence. Despite this similarity, we
note that the ground state in each limit is rather different, with
the bright cavity limit consisting of a superposition of many
excited states, whereas the low-excitation limit is primarily
the undisturbed Fermi sea.

IV. NUMERICAL EVALUATION AT
INTERMEDIATE EXCITATIONS

A. BCS equations

In Fig. 2 we show the self-consistent evaluation of the BCS
equations for various intermediate excitation densities. We
choose parameters consistent with those provided in Ref. [43].
We control the excitation density by varying the difference
between the chemical potential δμ = μ − h̄ω, which must be
always a negative quantity since at μ = h̄ω the photon popula-
tion becomes infinite. For cavities that are on resonance with
the atomic transition h̄ω = Ec, in the low-excitation regime
we find that the vk distribution follows the predictions of (13)
as shown in Fig. 2(a). As the excitation density is increased,
the distribution flattens out, approaching the high-density
limit v2

k = u2
k = 1/2. From (12) it is apparent that the strength

of the effective δ-function attractor is larger with a larger
photon population, which results in a more strongly bound
state between the excited atom and the hole. In momentum
space this results in a broader momentum space distribution
for higher excitation densities δμ̃ → 0−.

Another way to see the effect of the attractive force be-
tween the excited atom and hole is from the BCS gap energy.
We see in Fig. 2(b) that the gap energy increases as the
chemical potential approaches the photon energy. We observe
that one can tune the gap energy from a negligible amount,
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(a)

(c) (d)

(b)

FIG. 2. Crossover from low to high density for cold fermions
in a cavity. [(a) and (b)] Solutions of BCS equations found by
self-consistent iteration. (a) The BCS wave-function parameter v2

k for
zero detuning Ec = ω. Dashed line shows the low-density solution
of the BCS equations (13) with α/kF ≈ 0.12. (b) Same as (a) but for
detuning Ec − ω = E0. The BCS gap 	 for the detunings as marked.
Here we measure all momenta relative to the Fermi momentum
kF and the energy scale is E0 = h̄2k2

F /2m. Parameters used are
m = 2m′, k0 = 0, g/E0 = 0.01, Vbc/E0 = 10−3. The dimensionless
chemical potential is defined as δμ̃ = 103(μ − ω)/E0. [(c) and (d)]
The photon amplitude |〈a〉|2 in the Tavis-Cummings model with loss
and pumping, corresponding to the limit Vbc = 0 and ε ′

k = εk in the
Hamiltonian (3). Here ξ is the pumping strength and γ is the pump
frequency. We take the cavity to be resonant with the atoms Ec = h̄ω

and κ/g = 0.1. The number of atoms and the photon number cutoff is
(c) N = 1, nmax = 20; (d) N = 3, nmax = 15. At each pumping ξ the
spectrum is normalized to the same maximum intensity for clarity.

which consists of loosely bound excited atoms and holes, to a
large gap energy, consisting of strongly bound excited atoms
and holes. The former can be considered to be a BCS-like
regime and the latter a BEC regime. The excitation density
is therefore one way of controlling the effective strength of
attraction between the excited atoms and holes, where the
cavity photons act to mediate an attractive force. Another way
is to change the interspecies interaction strength Vbc. From
(12) it is apparent that a larger (repulsive) Vbc consists of a
strong attractive force between excited atoms and holes. It is
interesting to observe that in (12) there is the possibility of
the cavity induced energy shift |g|2/(h̄ω − μ) and interaction
Vbc to cancel each other if the signs are opposed. Thus using
a combination of tuning the excitation density, the strength of
the interspecies interaction, one can explore a wide range of
the BEC-BCS crossover with excited atoms and holes.

B. Cavity spectrum

Another observable that is experimentally relevant is the
spectrum of the cavity in response to photon pumping. A
calculation of the steady-state photon amplitude |〈a〉|2 in a
Tavis-Cummings model with photon pumping ξ at frequency
γ and photon loss of rate κ is shown in Figs. 2(c) and 2(d).

In using a Tavis-Cummings model we have neglected the
atom-atom interactions and assumed that the difference be-
tween the ground and excited dispersions play a minimal role
(see Appendix). For a single atom limit N = 1 we see that
at low pumping the spectrum corresponds to vacuum Rabi
splitting at frequencies γ = ω ± g. As the pumping increases,
the peaks move toward the cavity resonance ω and broaden.
For larger number of atoms, we see that at low density the
vacuum Rabi splitting at frequencies γ = ω ± g

√
N . Again

the peaks move toward the cavity resonance and broaden.
This effect of the peaks moving toward the cavity frequency
was discussed in several works previously [41,43,45,51–53].
One might naively expect from the result (18) that the Rabi
splitting of the system grows from low to high density as
|g√N | → |gλ|. This is not the effect that is seen in the cavity
spectrum because in the high-excitation regime, the state is
dominated by a large photonic population, whereas the atomic
population is always limited to N . Hence the state of the
system is more dominated by the cavity photons, rather than
the atomic states, and the superposition of atom states do not
contribute relatively to the spectrum [45].

V. EXPERIMENTAL IMPLEMENTATION

To observe the physics discussed in this paper, the main
experimental ingredients in addition to a cold fermion gas at
quantum degeneracy are (i) a cavity coupling in the strong
coupling regime and (ii) a different dispersion of the ground
and excited state atoms εk, ε

′
k. The different dispersions can be

achieved by having different effective masses of the ground
and excited atoms m, m′, a momentum displacement via the
cavity photons k0, or both. In order to have differing masses
of the ground and excited state atoms, an optical lattice can
be used on resonance with either the ground or excited state.
This will modify the mass of the atoms within the optical
lattice leaving the other atom unaffected. We note that the
optical lattice should only be made strong enough to modify
the dispersion, and the atoms should still be free to move
within the lattice, without entering a Mott insulator phase.
With a mass difference between the ground- and excited-state
atoms, the difference between the dispersions takes a typi-
cal quadratic form ε′

k − εk ∝ |k − k0|2. Without the optical
lattice, due to the momentum displacement of the cavity
photons k0 there will be a linear momentum dependence of
ε′

k − εk = h̄2k0(2k + k0)/2m along the direction of the cavity,
which can also be used as the basis of the dispersion in
(12). The cavity transmission can be probed to observe the
transition from vacuum Rabi splitting to the cavity resonance
energy. Time-of-flight measurements of the fermion cloud
should directly reveal the momentum distribution, where the
distribution flattens out at higher densities. This is similar to
the way that the BEC-BCS crossover was detected by tuning
the Feshbach resonance between pairings of a cold Fermi gas
[54]. Here the difference is that the cavity has the reverse
effect with respect to increasing the density.

The BEC-BCS crossover described in this paper is strongly
related to that described in exciton-polariton systems in
semiconductors [45,46]. Several experiments in the high-
excitation regime for exciton-polaritons have been reported,
for example in Refs. [55,56]. Although in principle these

013184-5



AMAURY DODEL et al. PHYSICAL REVIEW RESEARCH 2, 013184 (2020)

experiments access a similar regime, it has proved difficult
so far to conclusively identify these results with the polariton
BEC-BCS crossover. One of the difficulties with semicon-
ductor exciton-polariton systems is that the primary measure-
ment method is via photoluminescence, which occurs due
to electron-hole recombination. This involves the relaxation
of the electron in the conduction band to the valence band,
and the photon carries the center-of-mass momentum of the
electron and the hole. Thus the individual (relative) momenta
of the electrons and holes are never observed, making it
difficult to directly obtain the distribution such as in Fig. 2(a).
The ability to observe the momentum distribution of the atoms
directly is a great advantage in atomic systems, in addition to
the nearly defect-free realization that is attainable in modern
ultracold atomic systems.

VI. SUMMARY AND CONCLUSIONS

We have shown that the quasiparticle excitations of a cold
fermion system coupled to a cavity can be described by a BCS
formalism. Depending on the excitation density and atomic
interaction, the excited atoms and holes and in the Fermi sea
can form either loosely bound Cooper pairs or exciton-like
bound states that strongly couple with cavity photons. The
crossover occurs in the reverse way to the exciton BEC-BCS
crossover [47], where a larger excitation density leads to a
stronger attractive force between the excited atoms and holes.
The BCS wave function approach captures the crossover from
the low-excitation regime where vacuum Rabi splitting is
observed to the high-excitation regime where all atoms are in
the superposition of ground and excited states. Our approach
allows one to take into account of the effect of interactions at
the same time as the cavity coupling at all excitation densities
and hence is a powerful way to track the states of the system
across a wide range of parameters. The BEC-BCS crossover
is exactly analogous to the physics of high density exciton-
polaritons [45,46] and can be considered an analog quantum
simulator for this system. Cooper pair polaritons are yet to
be directly observed due to the difficulty of measurement
and other technical complications in semiconductor systems.
Using cold fermions may allow for a simpler route to observ-
ing these particles, thanks to measurement techniques which
can directly observe the momentum of the atoms and clean
implementation of the system.
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APPENDIX A: BCS THEORY

Following the BCS procedure, we start by simplifying the
interaction terms in the Hamiltonian such that a Hartree-Fock
approximation is made on the intraspecies interaction and
the interspecies interaction produces transitions on the same
momenta (i.e., set q = k′ − k, 0). The Hamiltonian under this
approximation then reads

H =
∑

k

[εkb†
kbk + (Ec + ε′

k + Vbc)c†
kck]

+ h̄ωa†a +
∑

k

[gc†
kbka + g∗b†

kcka†]

+ Vbc

∑
kk′

[b†
kbkc†

k′ck′ − c†
kbkb†

k′ck′]. (A1)

In the above Hamiltonian, we assume that the summation only
involves momenta up to the Fermi level |k| � kF . We justify
this simplification by observing that in the low- and high-
excitation limits no atoms are transferred beyond the Fermi
momentum. Hence we expect that at intermediate excitation
densities the Fermi surface is also preserved.

At this point we make a particle-hole transformation, defin-
ing fermionic operators hk = b†

−k [49]. We thus represent the
excitations of the ground state of the atoms in terms of holes
in a Fermi sea. In terms of hole operators, the Hamiltonian
now reads

H =
∑

k

[εk − εkh†
khk + (Ec + ε′

k + (N + 1)Vbc)c†
kck]

+ h̄ωa†a +
∑

k

[gc†
kh†

−ka + g∗h−kcka†]

− Vbc

∑
kk′

[h†
khkc†

k′ck′ + c†
kh†

−kh−k′ck′]. (A2)

Next we perform a mean-field expansion with respect to the
operators c†

kh†
−k, a, h†

khk and c†
kck and keep only linear terms.

The mean-field approximated Hamiltonian is

H − μnex = E0 + (h̄ω − μ)a†a + gDa + g∗D∗a†

+
∑

k

[−ξkh†
khk + ξ ′

kc†
kck − 	c†

kh†
−k − 	∗h−kck],

(A3)

where we defined ξk = εk + VbcX , ξ ′
k = Ec + ε′

k + (N + 1 −
X )Vbc − μ, 	 = VbcD − gλ∗, and E0 = Vbc(X 2 + |D|2) −
2Re(gDλ) + ∑

k εk. The mean-field values are X =∑
k〈h†

khk〉 = ∑
k〈c†

kck〉, D = ∑
k〈c†

kh†
−k〉, λ = 〈a〉. The

number of excited states and holes are equal due to the
symmetry of the Hamiltonian. We have added a chemical
potential term which controls the number of excitations
in the system. The photon part of the Hamiltonian can be
diagonalized by making a transformation B = a − λ, which
yields the condition

λ = − gD

h̄ω − μ
. (A4)

The fermionic part of the Hamiltonian is equivalent to a
BCS Hamiltonian and can be diagonalized in the same way.

013184-6



COOPER PAIR POLARITONS IN COLD FERMIONIC … PHYSICAL REVIEW RESEARCH 2, 013184 (2020)

The ground state corresponds to a BCS wave function

|�〉 =
∏

k

[uk + vkc†
kh†

−k]|E0(kF )〉, (A5)

where |uk|2 + |vk|2 = 1 and |E0(kF )〉 = ∏
|k|<kF

b†
k|0〉 is the

Fermi sea. In order that this state is the ground state, appli-
cation of (A3) on the above state must give an eigenstate. This
gives the constraint

2δξkukvk − 	(|vk|2 − |uk|2) = 0, (A6)

where δξk = (ξ ′
k − ξk)/2. Solving the quadratic equation we

find the BCS parameters must obey

v2
k = 〈c†

kck〉 = 1

2

(
1 − δξk

Ek

)
, (A7)

ukvk = 〈c†
kh†

−k〉 = 	

2Ek
, (A8)

where Ek =
√

(δξk)2 + 	2. The fully diagonalized Hamilto-
nian then is given by

H − μnex = ε0 + (h̄ω − μ)B†B +
∑

k

Ek(γ †
k0γk0 + γ

†
k1γk1),

(A9)

where ε0 = ∑
k[εk − Ek + δξk] + Vbc(|D|2 + |X |2) + |gD|2

h̄ω−μ

and the Bogoliubov transformed operators are ck = u∗
kγk0 +

vkγ
†
k1, h†

−k = −v∗
kγk0 + ukγ

†
k1.

The BCS equations are solved in a self-consistent manner,
demanding that

δξk = Ec

2
+ ε′

k − εk

2
+ Vbc

(
N + 1

2
− X

)
− μ

2

	 =
(

Vbc + |g|2
h̄ω − μ

)
D. (A10)

The mean-field values X = ∑
k v2

k , D = ∑
k ukvk depend on

δξk and 	 so that by self-consistent iteration one obtains the
ground-state parameters.

APPENDIX B: THE POLARITON OPERATOR

First let us write the ground state for the Hamiltonian (2).
In the zero excitation sector nex|ψ〉 = 0, the zero temperature
ground state consists of a Fermi sea

|E0(kF )〉 =
∏

|k|<kF

b†
k|0〉, (B1)

with energy E0(kF ) = ∑
|k|<kF

εk, and kF is the Fermi mo-
mentum defined as the magnitude of the momentum satisfying
εk = μat.

We examine the special case where the dispersion of the
ground and excited states are the same ε′

k = εk. We show in
this section that in this case the polariton operator

p† = ua† + v
1√
N

∑
k

c†
kbk, (B2)

creates a single-particle excitation of the Hamiltonian
(2). Here u, v are coefficients that satisfy |u|2 + |v|2 = 1.

Applying the polariton operator to the ground state (B1)
produces the state

|p〉 ≡ p†|E0(kF )〉 = u|a〉 + v|e〉
|a〉 = a†

∏
|k|<kF

b†
k|0〉 (B3)

|e〉 = 1√
N

∑
|k|<kF

c†
k

∏
|k′|<kF ;k′ �=k

b†
k′ |0〉.

Applying the Hamiltonian (2) to the normalized states |a〉, |e〉
produces a 2×2 matrix

Hp =
[

E0(kF ) + h̄ω g
√

N
g∗√N E0(kF ) + Ec

]
,

which can be diagonalized to give the coefficients

u = Ec − h̄ω ±
√

(Ec − h̄ω)2 + 4|g|2N√
N

v = −2g
√

N√
N

, (B4)

where N is a suitable normalization factor. The excitation
energy is

Ep = Ec + h̄ω

2
∓

√
(Ec − h̄ω)2

4
+ |g|2N . (B5)

The two solutions are called the lower and upper polariton,
respectively, and are eigenstates of the Hamiltonian (2) ac-
cording to

H |p〉 = (E0(kF ) + Ep)|p〉. (B6)

APPENDIX C: HIGH-EXCITATION LIMIT

In this section we solve model in the limit that the photon
population in the cavity is very large. In this limit, the photons
can be treated classically, i.e., a → λ = 〈a〉. Starting from (2),
we assume that the photon population is large enough that
the interaction terms may be ignored λ � Vbc. The effective
Hamiltonian for the fermions can be written as

Hλ =
∑

k

[εkb†
kbk + (Ec − h̄ω + ε′

k)c†
kck]

+
∑

k

[gλc†
kbk + g∗λ∗b†

kck], (C1)

where we have made a transformation of the operators to
the rotating frame c†

k → e−iωt c†
k. This describes normal mode

splitting of the cavity resonance frequencies [38].
The diagonalized operators for (C1) can be defined as

d†
k = ukb†

k + vkc†
k, (C2)

where |uk|2 + |vk|2 = 1. These can be solved to give the
values

uk = Ec − h̄ω + ε′
k − εk ± √

(Ec − h̄ω + ε′
k − εk)2 + 4|gλ|2√

N ′

vk = − 2gλ√
N ′ , (C3)
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where N ′ is a suitable normalization factor. Reinstating the
photonic energy energies are

Eλ
k = Ec + h̄ω + ε′

k + εk

2
±

√
(Ec − h̄ω + ε′

k − εk)2

4
+ |gλ|2,

(C4)

which is the same as (18). The ground state then is described
by a Fermi sea of the dk states

|Eλ(kF )〉 =
∏

|k|<kF

[ukb†
k + vkc†

k]|0〉 (C5)

with energy Eλ(kF ) = ∑
|k|<kF

Eλ
k . This state can be equiva-

lently be written

|Eλ(kF )〉 =
∏

k

[uk + vkc†
kh†

−k]|E0(kF )〉, (C6)

which is exactly the form of the BCS wave function.

APPENDIX D: SPONTANEOUS EMISSION
FOR AN EXCITON

In this section we derive the spontaneous emission rate for
an exciton state

|ex, 0〉 = 1√
N

∑
k

vkc†
kh†

−k|E0(kF )〉 ⊗ |0〉, (D1)

where |0〉 denotes the vacuum of the electromagnetic field.
Following Weisskopf-Wigner theory [57], we assume that
such an excited state is unstable against decay by emit-
ting a photon in a continuum of electromagnetic fields. The
Hamiltonian reads

HW/h̄ = ωex|ex, 0〉〈ex, 0| +
∑
q,s

ωqa†
qsaqs

−
∑
q,s

∑
k

(gqsc
†
kh†

−kaqs + g∗
qsh−kcka†

qs), (D2)

where the atom-field coupling coefficient is

gqs = id · εqs

√
ωq

2h̄ε0V
. (D3)

Here h̄ωex is the exciton energy, h̄ωq is the energy of the
electromagnetic field, ε0 is the permittivity, d is the dipole
moment of the atom, and εqs are the polarization vectors
s ∈ {1, 2}.

Given that (D1) is the initial state, the Hamiltonian evolves
the system according to

|ψ (t )〉 = χ (t )e−iωext |ex, 0〉 +
∑
q,s

ξqs(t )e−iωqt |E0(kF ), 1qs〉,

(D4)

where

|E0(kF ), 1qs〉 = |E0(kF )〉 ⊗ a†
qs|0〉. (D5)

Substituting (D4) and (D2) into the Schrodinger equation

ih̄
d|ψ (t )〉

dt
= HW |ψ (t )〉, (D6)

we then have

ih̄e−iωext dχ

dt
|ex, 0〉 + ih̄

∑
q,s

e−iωqt dξqs

dt
|E0(kF ), 1qs〉

= −χ (t )e−iωext

(
1√
N

∑
k

vk

)∑
q,s

h̄g∗
qs|E0(kF ), 1qs〉

−
∑
q,s

h̄gqsξqs(t )e−iωqt
∑

k

c†
kh†

−k|E0(kF ), 0〉. (D7)

Multiplying (D7) by 〈ex, 0|, we have

dχ

dt
= i

(
1√
N

∑
k

v∗
k

)∑
q,s

gqsξqs(t )e−i(ωq−ωex )t . (D8)

Multiplying (D7) by 〈E0(kF ), 1qs|, we have

dξqs

dt
= i

(
1√
N

∑
k

vk

)
g∗

qsχ (t )e−i(ωex−ωq )t . (D9)

Combining (D8) and (D9), we obtain

dχ

dt
= −

∣∣∣∣∣ 1√
N

∑
k

vk

∣∣∣∣∣
2 ∑

q,s

|gqs|2
∫ t

0
χ (t ′)e−i(ωex−ωq )(t ′−t )dt ′.

(D10)

Under the Markov approximation and assuming that the vari-
ation of χ (t ) is much slower than the rate ωex, we can take

dχ

dt
≈ −

∣∣∣∣∣ 1√
N

∑
k

vk

∣∣∣∣∣
2 ∑

q,s

|gqs|2χ (t )
∫ ∞

0
e−i(ωex−ωq )(t ′−t )dt ′

= −
∣∣∣∣∣ 1√

N

∑
k

vk

∣∣∣∣∣
2

π |gqexs|2χ (t ) (D11)

since
∫ ∞

0 e−i(ωex−ωq )t ′
dt ′ = πδ(ωex − ωq), and qex is the mo-

mentum associated with ωex = ωq.
A standard calculation of the coupling yields

|gqexs|2 = |d|2ω3
ex

6π2ε0 h̄c3
. (D12)

The decay of the amplitude χ (t ) is then written

dχ

dt
= −

2
χ (t ), (D13)

where the spontaneous emission rate is

 = 0

∣∣∣∣∣ 1√
N

∑
k

vk

∣∣∣∣∣
2

(D14)

and

0 = |d|2ω3
ex

3πε0 h̄c3
. (D15)

To a very good approximation the exciton frequency is the
same as the atomic transition energy ωex ≈ ω0. Therefore we
can approximate

0 ≈ |d|2ω3
0

3πε0 h̄c3
, (D16)

which is the single atom spontaneous emission rate.
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APPENDIX E: SPECTRUM OF NONINTERACTING
FERMIONS IN A CAVITY

In this section we derive the spectrum of the two-level
fermion under photonic driving and cavity loss. We are
particularly interested in how the spectrum evolves in the
high-excitation limit, since in the low-excitation limit it is
well established that vacuum Rabi splitting is observed. In
this limit, we expect that the physics is dominated by the
photon-atom coupling term [i.e., the third term of Eq. (3)],
and the interactions and the difference in the ground- and
excited-state dispersions do not play a major role. This is
because in the high-excitation regime the BCS solution always
approaches uk = vk = 1/

√
2 independent of the interactions

and dispersion. We first derive the effective Tavis-Cummings
model accounting for driving and loss and then show the
master equation from which the cavity spectrum can be found.

1. Effective Tavis-Cummings model

We start with (3) neglecting the interaction terms and
setting ε′

k = εk gives

HC =
∑

k

[εkb†
kbk + (Ec + εk)c†

kck] + h̄ωa†a

+
∑

k

[gc†
kbka + g∗b†

kcka†]. (E1)

We now define effective spin operators as

S− =
∑

k

σ−
k =

∑
k

b†
kck

S+ =
∑

k

σ+
k =

∑
k

c†
kbk (E2)

Sz =
∑

k

σ z
k =

∑
k

b†
kbk − c†

kck.

The Hamiltonian is then written

HC = E0 + Ec

2
Sz + h̄ωa†a + gS+a + g∗S−a†, (E3)

where

E0 =
∑

k

(
εk + Ec

2

)
. (E4)

This takes the form of a Tavis-Cummings model.
Driving the cavity corresponds to adding a photon dis-

placement term

HP = h̄ξ (a†e−iγ t + aeiγ t ), (E5)

where ξ is the drive amplitude and γ is the phase of the
coherent light. The master equation for the system is then
given by

dρ

dt
= − i

h̄
[HC + HP, ρ] + κD[a]ρ, (E6)

where the loss of the photons from the cavity is taken into
account by the Lindblad superoperator

D[A]ρ = AρA† − 1
2 A†Aρ − 1

2ρA†A. (E7)

Following Ref. [58], we derive the spectrum of the cav-
ity by evaluating the steady-state expectation value |〈a〉|2.
This is performed by directly evolving the master equa-
tion (E6) for a sufficiently long time such that |〈a〉|2 sta-
bilizes. The total Hamiltonian HC + HP conserves the atom
number

b†b + c†c = N, (E8)

but the photon number is not conserved due to the pump and
loss. We impose a maximum number of photons nmax in the
density matrix and calculate results for sufficiently large nmax

such that the results converge.
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