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Airy distribution: Experiment, large deviations, and additional statistics
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The Airy distribution (AD) describes the probability distribution of the area under a Brownian excursion. The
AD is prominent in several areas of physics, mathematics, and computer science. Here we use a dilute colloidal
system to directly measure the AD in experiment. We also show how two different techniques of theory of large
deviations, the Donsker-Varadhan formalism and the optimal fluctuation method, manifest themselves in the AD.
We advance the theory of the AD by calculating, at large and small areas, the position distribution of a Brownian
excursion conditioned on a given area and measure its mean in the experiment. For large areas, we uncover two
singularities in the large-deviation function, which can be interpreted as dynamical phase transitions of third
order. For small areas the position distribution coincides with the Ferrari-Spohn distribution, and we identify the
reason for this coincidence.
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Brownian motion came to prominence in physics and
other sciences with the theoretical works of Einstein [1],
von Smoluchowski [2], and Langevin [3] and the experimen-
tal work of Perrin [4]. Today, more than 100 years since
those remarkable discoveries, Brownian motion is a central
paradigm in a multitude of fields [5,6]. Here we focus on
some interesting properties of conditioned Brownian motions
as described by the Airy distribution and by its extensions that
we will introduce.

Since its discovery nearly four decades ago [7,8], the
Airy distribution (AD) keeps reappearing in seemingly un-
related problems in different fields of science. One of its
first applications was to inventory problems where the AD
describes, for example, the distribution of the time spent
by locomotives in a railway depot [9,10]. The AD appears
in the description of the computational cost of data storage
algorithms [11]. In graph theory the AD is the distribution of
the internal length of a rooted planar tree [10]. More recently,
the AD appeared in physics: as the distribution of the maximal
height of fluctuating interfaces [12–14], the avalanche size
distribution in sandpile models [15], the size fluctuations of
ring polymers [16], and the position distribution of laser
cooled atoms [17]. See Ref. [5] for a review of some of these
examples.

*tal.agranov@mail.huji.ac.il
†roichman@tauex.tau.ac.il
‡meerson@mail.huji.ac.il

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

Despite its importance, the measurement of the AD in an
experiment is lacking. Here we report such measurements
in the simplest setting where the AD was originally discov-
ered [7,8]: the area under a Brownian excursion x(t ) in one
dimension. We also advance the theory of, and experiments
on, the AD by focusing on its large-deviation properties. We
show how two different large-deviation formalisms manifest
themselves in the AD. This allows us to probe an important
quantity: the position distribution of a Brownian excursion
conditioned on a specified area.

Consider a Brownian excursion: a Brownian motion x(t ),
conditioned to start and end at the origin x(t = 0) = x(t =
T ) = 0 and to stay positive x(t ) > 0 for 0 < t < T . The area
under the Brownian excursion

A =
∫ T

0
x(t )dt (1)

is a random variable characterized by the probability distri-
bution P(A, T ): the AD. The only dimensional parameters
entering the problem are A, T , and the particle diffusivity D0,1

and dimensional analysis yields

P(A, T ) = 1√
D0T 3

f

(
A√

D0T 3

)
. (2)

The Laplace transform of the scaling function f , found by
probabilistic methods [7,8], was formally inverted to give the

1The Brownian motion can be formally defined by the equation
ẋ = √

D0ξ (t ), where ξ (t ) is a δ-correlated zero-mean Gaussian noise
〈ξ (t )ξ (t ′)〉 = δ(t − t ′).
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FIG. 1. The solid line shows f (ξ ) from Eq. (3). The symbols
represent the experimentally measured histogram of the area under
12 240 excursions of duration T � 33.3 s. The dashed and dotted
lines show the small- and large-area tails (4) and (5), respectively, but
with account of preexponential corrections, calculated in Ref. [20].

closed analytic form [10]

f (ξ ) = 2
√

6

ξ 10/3

∞∑
k=1

e−βk/ξ
2
β

2/3
k U (−5/6, 4/3, βk/ξ

2), (3)

where U (· · · ) is the confluent hypergeometric function [18],
βk = 2α3

k /27, and αk are the ordered absolute values of the
zeros of the Airy function Ai(ξ ) [19]. The Laplace transform
of f was also obtained by using path-integral techniques [13].
The function f (ξ ) is shown in Fig. 1.

The expression (3) is quite complicated. As a result, cal-
culating the moments of the AD is already challenging [21].
Here we will focus on the AD’s tails [22,23]

− ln P(A, T ) �
{

2α3
1

27
D0T 3

A2 , A �
√

D0T 3

6A2

D0T 3 , A 	
√

D0T 3,

(4)

(5)

which are depicted, with account of preexponential factors,
calculated in Ref. [20], in Fig. 1. They correspond to very
small or very large values of the dimensionless parameter
Ã ≡ AD−1/2

0 T −3/2, which plays a key role in this paper. As
we show here, these tails are intimately connected with two
different large-deviation formalisms of statistical mechanics.
These formalisms provide a physical picture behind these tails
by characterizing the most relevant particle trajectories, which
we were also able to measure in the experiment.

Our experimental setup is made of colloidal suspensions
of silica spheres in water (1.50 ± 0.08 μm in diameter, mass
density of 2.0 g/cm3, Polysciences lot No. A762412), which
are loaded into a sample cell of dimensions 22 × 22 × 0.04
mm3 constructed from a microscope slide and a coverslip.
The particles are then allowed to sediment and equilibrate
and diffuse close to the bottom slide for 30 min at room
temperature before measurements start. Quasi-2D monolayers
of area fractions φ = 0.069 ± 0.005 and φ = 0.062 ± 0.005
are prepared by diluting the original suspension with double-
distilled water (18 M�). Sample walls are coated with bovine
serum albumin to avoid particle attachment to the bottom wall
of the cell. Particle position and motion in the plane per-
pendicular to the optical axis are observed using bright field

microscopy (Olympus IX71). Images are captured by a com-
plementary metal-oxide semiconductor camera (Grasshopper
3, Point Grey Research) at a rate of 30 frames/sec to allow for
easy particle tracking. Conventional single-particle-tracking
techniques were used to extract particle location with an accu-
racy of 6 nm [24]. The particle diffusivity was evaluated from
the particle’s mean-square displacement D0 = 〈�x2(t )〉 /2t
averaged over all particles in the ensemble. Excursions are
constructed from the trajectories using the Vervaat transform
(see Appendix A for details).

Figure 1 presents the measured histogram of the area under
excursions of the colloidal particles. It shows good agreement
with Eqs. (2) and (3). The histogram is a bit broader than
the theoretical distribution in the region of the maximum.
This effect is explained by the small but finite polydispersity
of the particle diameters, leading to small variations of their
diffusivity.

To start our large-deviation analysis, let us define the
rescaled area a = A/T , which is the time-averaged position
of the Brownian excursion. At fixed a, the small-A limit (4)
corresponds to very long times T 	 a2/D0, whereas the
large-A limit (5) corresponds to very short times T � a2/D0.

Let us start with the small-A (or long-time) limit. We argue
that the distribution of a obeys a large-deviation principle
due to Donsker and Varadhan [25–28], where the long-time
probability of observing any finite a decays exponentially
with time:

− ln P(a � √
D0T ) � T I (a). (6)

From dimensional analysis, the rate function I (a) scales
as D0/a2, already reproducing the correct scaling behav-
ior (4) of the small-A tail. Reproducing the numerical factor
2α3

1/27 takes slightly more effort. It requires determining
the ground state energy of a Schrödinger-type tilted operator,
obtained from the generator of the constrained Brownian
excursion [25,26]. We present this calculation in detail in Ap-
pendix B. The trajectories x(t ), which mostly contribute to the
small-A tail (4), stay close to the origin, without ever crossing
it, for a long time. As we show below, the position distribution,
characterizing these trajectories, is stationary for most of the
time, which explains the exponential decay of P with time [see
Eq. (6)]. Figure 2(a) presents the experimentally measured
average position of trajectories with small A, which is almost
constant in time, as expected.

The large-A tail (5) is markedly different. It is dominated
by a single most probable excursion which realizes the pre-
scribed large A by straying far away from the origin during
a very short time. Other trajectories with the same A have
exponentially smaller probabilities. This optimal trajectory
x∗

A(t ) can be found by the optimal fluctuation method (OFM).
For the Brownian motion, the OFM becomes geometrical
optics [30–36]. The starting point of the OFM is the path
probability measure of a Brownian trajectory x(t ). It is given,
up to preexponential factors, by the Wiener action P[x(t )] ∝
exp(−s/D0), where

s[x(t )] = 1

2

∫ T

0
dt ẋ2(t ). (7)

The optimal trajectory can be found by minimizing the ac-
tion (7) along excursions x(t ) subject to the constraint (1).
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FIG. 2. (a) Rescaled position averages of the experimentally
measured excursions, conditioned on a moderately large area Ã =
1.2 ± 0.05 (closed circles) and small area Ã = 0.3 ± 0.05 (closed di-
amonds). The top and bottom lines are theoretical predictions: Eq. (8)
with Ã = 1.2 for the large area and the constant 〈xA〉 /(D0T )1/2 �
Ã = 0.3 for the small area. Also shown is the rescaled average
position of all (that is, unconstrained) excursions (open circles) and
the theoretical prediction [29] 〈x(t )〉 /(D0T )1/2 = √

8/π [(t/T )(1 −
t/T )]1/2 (middle line). Out of a total of 12 240 unconditioned excur-
sions, there were 22 excursions within the large-area window and
200 within the small-area window. (b) Rescaled variance of simu-
lated excursions, conditioned on a moderately large area Ã = 1.2 ±
0.0075 (closed circles). The line is the theoretical prediction (18).
An accurate estimation of the variance requires a very large number
of trajectories. These were easier to generate in simulations than in
experiment.

The latter can be accommodated via a Lagrange multiplier λ,
leading to an effective Lagrangian L(x, ẋ) = ẋ2/2 − λx. The
optimal trajectory is a parabola,

x∗
A(t ) = (6At/T 2)(1 − t/T ), (8)

where we have imposed x(0) = x(T ) = 0 and set λ =
12A/T 3 to obey Eq. (1). Further, x∗

A(t ) is also the average
position over all trajectories with the large prescribed A. Fig-
ure 2(a) compares Eq. (8) with the experimentally measured
average position of excursions with large A. Although the
OFM becomes asymptotically exact only in the limit of Ã 	
1, good agreement is observed already for Ã � 1.

Plugging Eq. (8) into the action (7), we exactly reproduce
Eq. (5) (see also Refs. [36,37]). The large-A tail (5) is shared
by other Brownian motions (such as the Brownian bridge and
its absolute value [38]) which start at x = 0 at t = 0 and return
to x = 0 at t = T , but are allowed to reach or even cross x = 0

at 0 < t < T . The large-A tails coincide because the optimal
trajectory (8) is unaffected by the noncrossing constraint.

A more detailed characterization of the trajectories with
specified area is given by the position distribution of the ex-
cursion p[xA(t ) = X |A, T ] ≡ pA(X, t ) conditioned on a given
area

∫ T
0 xA(t )dt = A. This important distribution has been

previously inaccessible.2 As we show now, the two large-
deviation techniques that describe the two tails of f (ξ ) allow
one to evaluate pA at small and large A. From dimensional
analysis, the distribution must have the scaling form

pA(X, t ) = T

A
p̃Ã

(
XT

A
,

t

T

)
. (9)

At Ã � 1, the conditional distribution can be found with the
Donsker-Varadhan (DV) formalism [45] (see Appendix B).
Apart from narrow temporal boundary layers at t = 0 and t =
T , this formalism predicts the stationary position distribution

p̃Ã

(
z,

t

T

)
� 2α1

3

Ai2
( 2α1

3 z − α1
)

[Ai′(−α1)]2
, Ã � 1, (10)

where Ai′(z) ≡ (d/dz)Ai(z). The first moment of the distribu-
tion (10) is equal to unity, which gives 〈xA(t )〉 � A/T in the
dimensional variables. Figure 3(a) shows good agreement be-
tween the distribution of simulated excursions, conditioned by
the small area, and Eq. (10). Simulation details are described
in Appendix A. See also Fig. 2(a) for a comparison of the
mean which we measured in the experiment.

The distribution (10) is known as the Ferrari-Spohn (FS)
distribution. It first appeared in the studies of position fluctua-
tions of a Brownian excursion, conditioned to stay away from
a wall xw(t ) which moves, sufficiently fast, back and forth so
that xw(0) = xw(T ) = 0 and xw(0 < t < T ) > 0 [46–48]. For
a parabolic xw(t ),

xw(t ) = Ct (1 − t/T ), (11)

the small-A distribution (10) and the FS distribution [48]
coincide. This unexpected coincidence can be explained by
an exact mapping that we found between the two systems.
The details of calculation are presented in Appendix C.
The mapping involves a biased ensemble [49]: an ensemble
of excursions, where the probability of each excursion is
reweighted by the exponential factor e−μA[x(t )], where A[x(t )]
is the area of the excursion. This ensemble and the ensem-
ble of excursions conditioned on A are equivalent and they
obey the same relation as the one between the canonical
and microcanonical ensembles, respectively, in equilibrium
statistical mechanics [49]. If we denote by p(X, t ; μ) the
position distribution in the biased ensemble and by pC (X, t )
the position distribution of the particle relative to the parabolic
wall (11) in the FS problem, the mapping reads p(X, t ; μ =
2C/D0T ) = pC (X, t ) (see Appendix C). The FS distribution
has also appeared in other systems [35,50–53], which is
indicative of a universality class.

2Methods like Doob’s h-transform [39] are hard to use due to
the conditioning on both X and A [40,41]. An alternative method,
proposed for a generalized Brownian bridge [42–44], could not be
extended to excursions, as it is restricted to Gaussian processes.
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FIG. 3. Closed circles represent the position histograms
p̃Ã(z, 1/2) of simulated excursions conditioned on A for (a) small
area Ã = 0.3 ± 0.0075 and (b) large area Ã = 1.2 ± 0.0075. Lines
are the theoretical predictions from (a) (10) and (b) (14) and (15).
In the latter prediction the normalization factor was accounted for.
Panel (a) also shows the histogram at t/T = 3/4 (open squares),
confirming the time independence of the position distribution at
small areas.

At Ã 	 1 the conditional distribution p̃Ã(z, t/T ) is time
dependent and it can be found with the OFM (see Ap-
pendix D). The probability of an excursion to reach a specified
position x(t ) = X and to have a given large area A comes from
the optimal trajectory which minimizes the action (7) under
the two constraints. The optimal trajectory consists of two
parabolic segments, joined at time t with a corner singularity
there, which originates from conditioning on the specified
position at time t (see Appendix D). For the particular case
of conditioning on the position x = X at t = T/2, the optimal
trajectory is

x(t ′) = X + (6a − 4X )

∣∣∣∣1 − 2t ′

T

∣∣∣∣ − (6a − 3X )

(
1 − 2t ′

T

)2

(12)

(recall that a = A/T ). This trajectory is shown, for several
values of X , in Fig. 4(a).

However, the solution (12) is a legitimate Brownian excur-
sion only when X is smaller than a critical value Xc1 = 3a. For
X > 3a, x(t ′) from Eq. (12) would cross the origin, which

FIG. 4. Optimal paths conditioned on x(t = T/2) = X and the
area A, in the (a) subcritical and (b) supercritical regimes [see
Eqs. (12) and (13)]. The parameters are (a) XT/A = 1, 3/2, 2, and
5/2 (dashed, solid, dotted, and dot-dashed lines, respectively) and
(b) XT/A = 3 and 5 (solid and dashed lines, respectively). Circles
show the points |T/2 − t ′| = 3A/2X .

is forbidden. The correct solution for X > 3a is provided by
the tangent construction of the calculus of one-sided varia-
tions [54] and we obtain

x(t ′) =
{

4X 3

9A2

(
3A
2X − ∣∣ T

2 − t ′∣∣)2
,

∣∣ T
2 − t ′∣∣ � 3A

2X

0,
∣∣ T

2 − t ′∣∣ � 3A
2X

(13)

[see Fig. 4(b)]. The conditional distribution is given by �s:
the difference between the action (7) along the additionally
constrained trajectory (12) or (13) and the action along the
optimal trajectory (8) constrained by the area alone. As a
result,

− ln p̃Ã

(
z,

1

2

)
� �s

D0
= A2

D0T 3
g(z), Ã 	 1. (14)

The large-deviation function

g(z) =
{

8(z − 3/2)2, 0 < z � 3
(8/9)z3 − 6, z � 3

(15)

(16)

has a singularity: Its third derivative is discontinuous at z =
3. This singularity can be interpreted as a dynamical phase
transition of the third order. Similar singularities have been
recently found in other Brownian motions pushed into large-
deviation regimes by constraints [33–36]. A sharp transition,
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however, appears only in the limit of Ã → ∞ and is smoothed
out at finite Ã.

The subcritical result (15) describes Gaussian fluctuations
around the mean value z̄ = 3/2 which corresponds to an
excursion conditioned on A but not on X . This result is in good
agreement with simulations [see Fig. 3(b)]. In the supercritical
regime (16), the support of the optimal trajectory is shorter
than T [see Fig. 4(b)]. As a result, the time T cannot enter the
final result. This and the scaling relation (14) explain the fact
that the first term in Eq. (16) [which comes from the action
along the supercritical trajectory (13)] is cubic.

If the condition x(t ) = X is specified at t �= T/2, the
solution becomes a bit more involved; we present it in Ap-
pendix D. Here the third-order dynamical phase transition
occurs at a critical line Xc1(t ). Furthermore, the optimal
trajectory becomes asymmetric around T/2 and an additional
third-order transition occurs at a higher critical value Xc2(t ) >

Xc1(t ), similarly to the third-order transition, recently found in
a different constrained Brownian motion [34]. In the subcriti-
cal regime X � Xc1(t ), Eqs. (14) and (15) give way to

− ln p̃Ã

(
z,

t

T

)
� A2

D0T 3

[z − z̄(t )]2

2σ 2(t/T )
, (17)

where z̄(t ) = T x∗
A(t )/A [see Eq. (8)] and

σ 2(ξ ) = ξ (1 − ξ )(3ξ 2 − 3ξ + 1). (18)

These predictions also agree with simulations [see Fig. 2(b)].
As the excursions start and end at x = 0, the variance vanishes
at t = 0 and t = T . More surprisingly, the variance (18) has
a local minimum at t = T/2 and is maximal at t = T (3 ±√

3)/6. The appearance of the local minimum of σ 2(t/T ) at
t = T/2 is not exclusive to the large-A limit: We observed it
in simulations for all values of Ã, but it is most prominent in
the large-A tail.

As shown in Appendix D, in the subcritical regime X �
Xc1(t ), the optimal trajectory is unaffected by the constraint
at the origin for any t . This explains the coincidence of the
Gaussian fluctuations in this regime [Eqs. (17) and (18)] with
those of a Brownian bridge conditioned on A [42,43].

The two large-deviation formalisms, the DV method and
the OFM, can be applied to other stochastic processes and dy-
namical observables. One example is the distribution P(B, T )
of the area under the square of a Brownian excursion B =∫ T

0 x2(t )dt . This distribution exhibits the scaling behavior
P(B, T ) = D−1

0 T −2h(B/D0T 2). We show in Appendix E how
one can use the DV method and the OFM to obtain the tails of
the scaling function h(· · · ), which were previously derived by
probabilistic methods [22].

In conclusion, we presented the direct experimental mea-
surements of the Airy distribution and of some of its large-
deviation extensions. By exploiting the connection with two
different large-deviation formalisms, we uncovered a relation
of the AD with the Ferrari-Spohn distribution and found two
dynamical phase transitions.

A promising future direction is to study the statistics of
time-integrated quantities in multiparticle systems. For a large
number of particles such systems can be efficiently probed
with still another large-deviation technique: the rapidly devel-
oping macroscopic fluctuation theory [55].

B.M. was supported by the Israel Science Foundation
(Grant No. 807/16). N.R.S. was supported by the Clore Israel
Foundation.

APPENDIX A: EXPERIMENT, SIMULATIONS, AND
THE VERVAAT TRANSFORM

Experiment and numerical simulations produce free Brow-
nian trajectories rather than Brownian excursions. We ob-
tained the latter from the former by applying two successive
transformations (see, e.g., Ref. [40]). First, we employ a well-
known mapping which transforms a free Brownian motion
xBm(t ) into a Brownian bridge xBr(t ) of duration T [56]:

xBr(t ) = xBm(t ) − t

T
xBm(T ). (A1)

Next we employ the Vervaat transform [57] which transforms
a Brownian bridge into a Brownian excursion xex(t ). The
Vervaat transform can be realized in three steps. First, place
the origin at the absolute minimum attained by the bridge such
that it is positive at all times. Next, shift the time by τ , the time
at which the minimum was attained: t → t + τ . Finally, glue
the first part of the trajectory from t = 0 to t = τ with the
remainder of the trajectory from t = τ to t = T :

xex(t ) = xBr(t + τ modT ) − xBr(τ ). (A2)

This procedure yields, in experiment and simulations, an
ensemble of excursions with a prescribed duration T .

The mean position of excursions with a large and small
area A was measured in the experiment and was found to agree
well with the theoretical prediction as shown in Fig. 2(a). The
full position distribution of excursions, conditioned on a given
area, requires a considerably larger number of trajectories.
It was easier to meet this requirement in simulations. In our
simulations with the relatively large area under excursion, we
used 5324 trajectories whose areas fit into the window Ã =
1.2 ± 0.0075. These were extracted from a total of 2 × 107

Brownian excursions unconditioned by a specified area. Each
trajectory was sampled along 1000 equally spaced points
during its dynamics. For the small-area simulations, in the
window Ã = 0.3 ± 0.0075, we used 1885 trajectories. These
were extracted from a total of 2 × 106 unconditioned Brown-
ian excursions. Each trajectory here was sampled along 5000
equally spaced points. We verified the simulation method
by measuring the area distribution of the excursions and
comparing the results with the theoretical predictions (2) and
(3). Very good agreement was observed. Very good agreement
between the theory and the simulations is also evident for the
mean position conditioned on the large and small area A, as
shown in Fig. 5. On account of the very large number of
simulated trajectories, the agreement here is better than that
observed in Fig. 2(a).

APPENDIX B: THE DV FORMALISM AND
THE SMALL-A TAIL

The DV formalism [25] reduces the problem of finding
the rate function I (a), defined in Eq. (6), in the large-T (or
small-A) limit, to an effective eigenvalue problem. According
to Gärtner and Ellis [26], the rate function I (a) is given by a
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FIG. 5. Rescaled empirical position averages over simulated ex-
cursions, conditioned on a moderately large area Ã = 1.2 ± 0.0075
(closed circles) and small area Ã = 0.3 ± 0.0075 (closed diamonds).
The top and bottom lines are theoretical predictions: Eq. (8) with
Ã = 1.2 for the large area and the constant 〈xA〉 /(D0T )1/2 � Ã = 0.3
for the small area. Also shown is the rescaled empirical average
position of all (that is, unconstrained) excursions (open circles) and
the theoretical prediction [29] 〈x(t )〉 /(D0T )1/2 = √

8/π [(t/T )(1 −
t/T )]1/2 (middle line).

Legendre-Fenchel transform

I (a) = max
k

[ka − Ĩ (k)] (B1)

of the scaled cumulant generating function (SCGF)

Ĩ (k) = lim
T →∞

1

T
ln 〈eT ka〉 , (B2)

where 〈· · ·〉 denotes averaging over values of a with respect to
the Airy distribution (2). According to the DV method,

Ĩ (k) = ξmax(L̂(k) ), (B3)

where ξmax is the maximal eigenvalue of the operator L̂(k) ≡
L̂ + kx, which is a tilted version of the Fokker-Planck genera-
tor L̂, defined by the Fokker-Planck equation

∂P(x, t )

∂t
= L̂P(x, t ), (B4)

corresponding to the Langevin equation for the stochastic pro-
cess in question. For Brownian excursions the Fokker-Planck
generator is just L̂ = (D0/2) ∂2

x for x > 0 and L̂ = −∞ for
x � 0. It is convenient to convert the Fokker-Planck problem
into an effective quantum mechanical one by considering the
negative Fokker-Planck generator as an effective Hamiltonian,
Ĥ ≡ −L̂, and look for the ground-state energy Emin of the
latter [27]. As a result,

Ĩ (k) = −Emin(Ĥ (k) ). (B5)

The effective Schrödinger equation for the Brownian excur-
sion reads

−D0

2

d2ψ (k)

dx2
− kxψ (k) = E (k)ψ (k), (B6)

with the boundary conditions ψ (k)(0) = ψ (k)(∞) = 0. The
(discrete) spectrum, corresponding to Eq. (B6) with k < 0,
is E (k)

n = (D0/2)1/3k2/3αn, where n = 1, 2, . . . and αn are the

absolute values of the zeros of the Airy function [19]. The
corresponding eigenfunctions are

ψ (k)
n (x) ∝ Ai[(−2k/D0)1/3x − αn].

The SCGF is given by

Ĩ (k) = −(D0/2)1/3k2/3α1. (B7)

Plugging this result into Eq. (B1) (and again assuming k < 0),
we see that the maximum is achieved for

k(a) = −4D0(α1/3a)3, (B8)

and Eq. (B1) yields the small-A asymptotic (4) of the main
text.

The solution of the tilted-generator problem also pro-
vides the conditional position distribution, associated with
a prescribed rescaled area a. This distribution is given by
the product of the left and right eigenfunctions of the tilted
operator L̂(k), corresponding to the maximal eigenvalue [45].
In our case the left and right eigenfunctions coincide due to the
Hermiticity of the tilted operator and are both given by ψk

1 (x).
Their properly normalized product gives the conditional posi-
tion distribution that appears in Eq. (10), after the substitution
of k(a) from Eq. (B8).

APPENDIX C: MAPPING TO THE FERRARI-SPOHN
MODEL

Ferrari and Spohn [48] studied the statistics of the position,
at an intermediate time t = t ′, of a Brownian bridge x(t ),
when the process is constrained on staying away from an ab-
sorbing wall, that is x(t ) > xw(t ), where xw(t ) is a semicircle,
xw(t ) = Ct1/2(T − t )1/2. They also extended their results to
other concave (that is, convex upward) functions. Ferrari and
Spohn proved that at T → ∞, typical fluctuations of �X =
x(t ′) − xw(t ′) away from the moving wall obey a universal
distribution which depends only on the second derivative
ẍw(t ′). This universal distribution can be represented as

P(�X ) = � Ai2(��X − α1)

Ai′(−α1)2
, (C1)

where Ai(· · · ) is the Airy function, α1 = 2.338 107 . . . is
the magnitude of its first zero, Ai′ is the derivative of
the Airy function with respect to its argument, and � =
[−2ẍw(t ′)/D2

0]1/3. Equation (C1) is valid in the limit CT 	√
D0T , which is when the wall “pushes” the Brownian bridge

into the large-deviation regime.
Remarkably, Eq. (10), which describes the single-point

distribution of a Brownian excursion conditioned on its cov-
ering a very small area A � D1/2

0 T 3/2, coincides with the
distribution (C1) with � = 2α1/3a. This suggests that the
model studied in the main text is related to the FS model.
Indeed, we now establish a formal mapping between the two
models and explain this coincidence.

The path integral that corresponds to the FS model is∫
Dx(t )e−s[x(t )]/D0 , (C2)

constrained by x(t = 0) = x(t = T ) = 0 and x(t ) > xw(t ),
where s[x(t )] is the Wiener action, given by Eq. (7). Let us
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define y(t ) = x(t ) − xw(t ). Rewriting Eq. (C2) in terms of y(t )
(the Jacobian of this transformation is equal to 1), we obtain∫

Dy(t )e−s̃[y(t )]/D0 , (C3)

where y(t ) are Brownian excursions, y(t = 0) = y(t = T ) =
0 and y(t ) > 0, and the action is

s̃[y(t )] = s[xw(t ) + y(t )] = s0 + 1

2

∫ T

0
(ẏ2 + 2ẋwẏ)dt

= s0 + 1

2

∫ T

0
(ẏ2 − 2ẍwy)dt, (C4)

where we used integration by parts and defined

s0 = 1

2

∫ T

0
ẋ2

w dt, (C5)

which is independent of y(t ). For the particular case of
a parabolic wall xw(t ) = Ct (1 − t/T ), we have ẍw(t ) =
−2C/T , so Eq. (C4) becomes

s̃[y(t )] = s[y(t )] + 2C

T

∫ T

0
y(t )dt + s0. (C6)

The distribution of �X is given by

PC (�X ) =
∫

Dy(t )e−s̃[y(t )]/D0δ(y(t ′) − �X )∫
Dy(t )e−s̃[y(t )]/D0

, (C7)

where the C dependence enters through s̃. The constant s0 is
of no importance because its contributions cancel out. Equa-
tion (C7) is exact. In the large-deviation limit CT 	 √

D0T ,
PC (�X ) is given by the FS distribution (C1) with

� =
(

4C

D2
0T

)1/3

. (C8)

We now wish to find a connection between the FS model
and the model studied in the present work. Let us begin by
defining the canonical or biased ensemble [49]. This is an
ensemble of excursions which is unconstrained by a specified
A, but where the probability of each excursion is reweighted
by the exponential factor e−μA[x(t )], where A[x(t )] is the area of
the excursion. The distribution of X in the canonical ensemble
is given by

p(X ; μ) =
∫

Dx(t )e−sμ[x(t )]/D0δ(x(t ′) − X )∫
Dx(t )e−sμ[x(t )]/D0

, (C9)

where we defined the biased action

sμ[x(t )] = s[x(t )] + μD0

∫ T

0
x(t )dt . (C10)

Comparing Eqs. (C6) and (C7) with (C9) and (C10), we arrive
at

PC (�X ) = p

(
�X ; μ = 2C

D0T

)
. (C11)

On the other hand, the canonical ensemble and the con-
ditioned on A (or microcanonical) ensemble are equivalent
and share the same relation as the one between canonical
and microcanonical ensembles in equilibrium statistical me-
chanics [49]. In order to write this relation explicitly, we first

consider the joint probability density P (X, A) of X = x(t ′)
and A. It is related to the conditional probability via

P (X, A) = P(A)p(X |A), (C12)

where P(A) is given by the Airy distribution [see Eq. (3)].
Next we note that, up to a normalization constant, the joint
probability of X and A in the canonical ensemble is simply
Pμ(X, A) ∝ e−μAP (X, A). As a result, the relation between
the two ensembles can be written as

p(X ; μ) = F (X, μ)

N (μ)
, (C13)

where

F (X, μ) =
∫ ∞

0
e−μAP (X, A)dA (C14)

is the Laplace transform of P (X, A) with respect to A and

N (μ) =
∫ ∞

0
e−μAP(A)dA (C15)

enforces the normalization condition
∫ ∞

0 p(X ; μ)dX = 1.
Note that N (μ) is the Laplace transform of P(A) and it is
known exactly [7,8]. Equations (C11)–(C15) provide an exact
connection between the conditional probability distribution
p(X |A) and the distribution PC (�X ) in the Ferrari-Spohn
model with a parabolic wall.

In the limit of T → ∞ at fixed values of A/T and X
(note that this limit implies a small area A � D1/2

0 T 3/2) the
inverse Laplace transforms, which give P (X, A) and P(A)
from F (X, μ) and N (μ), respectively, can be evaluated using
the saddle-point approximation. This approximation is the
basis of the DV formalism which we described in Appendix B.
As a result, the conditional distribution can be written as

p(X |A) = P (X, A)

P(A)
� eμ∗AF (X, μ∗)

eμ∗AN (μ∗)
= F (X, μ∗)

N (μ∗)
, (C16)

where μ∗ = μ∗(A) is found from the solution of the DV
eigenvalue problem [see Eq. (B8)]:

μ∗ = −k = 4D0

(
α1T

3A

)3

. (C17)

Putting together Eqs. (C11), (C13), (C16), and (C17), we
obtain

p(X |A) � PC∗ (X ), (C18)

where

C∗ = μ∗D0T

2
= 2α3

1D2
0T 4

27A3
. (C19)

Now, since

C∗T√
D0T

= 2α3
1

27

(
D1/2

0 T 3/2

A

)3

	 1,

PC∗ (X ) in Eq. (C18) is given by the FS distribution (C1), with
� = 2α1T/3A, which is found by plugging Eq. (C19) into
Eq. (C8). This indeed leads to a coincidence of Eq. (C18) with
Eq. (10). We recall that the coincidence occurs in the limit of
T → ∞ at fixed values of A/T and X . Larger deviations in the
two models (when T is fixed and we consider the large-�X
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0 T/2 T
0

X

Xc1

Xc2

t

x

FIG. 6. Optimal paths conditioned on x(t = 0.4T ) = X and the
area A, in the subcritical (solid), intermediate (dashed), and su-
percritical (dotted) regimes [see Eqs. (D2), (D4), and (D6)]. The
parameters are XT/A = 2.5, 3.4, and 5 (solid, dashed, and dotted
lines, respectively). Circles show the times when x(t ) vanishes:
t ′ = τ for the intermediate trajectory [see Eqs. (D4) and (D5)] and
|t − t ′| = 3A/2X for the supercritical trajectory.

or large-X limit) behave differently [see Eqs. (14)–(16) and
Ref. [34]].

APPENDIX D: THE OFM AND THE LARGE-A TAIL

The conditional probability distribution p(X, t |A 	√
D0T 3) is given by the ratio of the probability of

the Brownian excursion realizing a specified area A
and the constraint x(t ) = X and the probability of it realizing
the area A alone. Within the OFM, these probabilities
are given by the path probability measures of the optimal
Brownian excursion x(t ′) realizing the large A with and
without the additional constraint x(t ) = X . The latter is
accommodated into the OFM minimization problem via an
additional Lagrange multiplier λ2 leading to the effective
Lagrangian L[x(t ′), ẋ(t ′)] = ẋ2/2 − λx − λ2δ(t ′ − t ), where
δ(· · · ) is the delta function [34]. There are three regimes of
interest, the subcritical, the intermediate, and the supercritical,
separated by two third-order dynamical phase transitions, as
we now describe.

In the subcritical regime 0 < X � Xc1, where

Xc1(t ) = 6
(

T
2 + ∣∣ T

2 − t
∣∣)2

A(
3
∣∣ T

2 − t
∣∣ + T

2

)
T 2

, (D1)

the optimal trajectory is composed of two parabolic segments
with a discontinuous derivative at t ′ = t . For 0 � t ′ � t the
trajectory is given by

x(t ′) = t ′[X (T 2 − 3tT ) + 6at2 − t ′(6at − 3Xt )]

t (T 2 − 3tT + 3t2)
. (D2)

For t � t ′ � T one should replace here t and t ′ by T − t and
T − t ′, respectively. This trajectory is shown by the solid line
in Fig. 6.

In the particular case of t = T/2 the trajectory is symmet-
ric around T/2 [see Eq. (12)]. The conditional probability
is given by the difference in the actions [Eq. (7)] along the
trajectory (D2) and the trajectory given by Eq. (8), which is

conditioned by the area A alone. Here we obtain a Gaussian
distribution

− ln p(X, t |A 	
√

D0T 3) � �s

D0
= [X − x∗

A(t )]2

2D0T σ 2(t )
, (D3)

where σ 2(t ) and x∗
A(t ) are given by Eqs. (18) and (8), respec-

tively.
When X exceeds Xc1, x(t ′) from Eq. (D2) would cross the

origin. For t < T/2 (t > T/2) this happens first at the right
(left) end of the trajectory t ′ = T . A solution crossing the ori-
gin is not allowed and the correct solution in this intermediate
regime is given by the tangent construction of the calculus of
one-sided variations [54]. This solution vanishes identically
past a point τ which we now determine. For concreteness,
let us assume that 0 < t < T/2. (The case T/2 < t < T is
obtained from symmetry.) In this regime, Xc1 � X � Xc2 ≡
3A/2t , the optimal trajectory is

x(t ′) = X

(τ − t )2
×

⎧⎪⎨
⎪⎩

0, τ � t ′ � T
(τ − t ′)2, t � t ′ � τ

t ′2 + (τ−t )2−t2

t t ′, 0 � t ′ � t,

(D4)

where τ is given by

τ

t
= (2ã − 1)2

2[
√

(2ã − 1)3 + 1 + 1]2/3

+ 1

2
[
√

(2ã − 1)3 + 1 + 1]2/3 + ã + 1

2
, (D5)

where ã ≡ A/Xt . This trajectory is shown by the dashed line
in Fig. 6.

In the supercritical regime X � Xc2, the trajectory (D4)
also becomes invalid, as it crosses the origin. Now this hap-
pens immediately: at t ′ = 0. Again, the tangent construction is
needed in order to find the valid optimal trajectory. This time
the correct x(t ) vanishes at two points along the trajectory:

x(t ′) =
{

4X 3

9A2

(
3A
2X − ∣∣t − t ′∣∣)2

, |t − t ′| � 3A
2X

0, |t − t ′| � 3A
2X .

(D6)

This expression, which is a simple extension of Eq. (13) to
t �= T/2, is shown by the dotted line in Fig. 6.

At each of the two critical lines X = Xc1(t ) and X = Xc2(t )
a third-order dynamical phase transition occurs, correspond-
ing to a jump in the third derivative of the large-deviation
function with respect to X . At Xc1 � X � Xc2 the large-
deviation function is given by

− ln p(X, t |A 	
√

D0T 3)

� �s

D0
= 6A2

D0

[
3τ 2 − 8tτ + 6t2

tτ 2(2τ − 3t )2
− 1

T 3

]
,

(D7)

where τ is given by (D5), while at X � Xc2 the large-deviation
function is given by

− ln p(X, t |A 	
√

D0T 3) � �s

D0
= A2

D0

(
8X 3

9A3
− 1

T 3

)
.

(D8)

For the particular case t = T/2 the two dynamical phase tran-
sitions merge into a single third-order transition, as described
in the main text.
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APPENDIX E: AREA UNDER THE SQUARE OF
BROWNIAN EXCURSION

Here we study the probability distribution P(B, T ) of the
area under the square of a Brownian excursion

B =
∫ T

0
dt x2(t ). (E1)

Dimensional analysis yields the scaling form

P(B, T ) = 1

D0T 2
h

(
B

D0T 2

)
.

For convenience we will set D0 = 1 and restore the D0 depen-
dence in the final results. The Laplace transform of P(B, T ),
P̃(λ, T ) = ∫ ∞

0 P(B, T )e−λBdB, was derived in Ref. [58] by
probabilistic methods. For completeness, we present here a
simpler and more physical derivation by using path-integral
methods. Our main focus, however, is the small- and large-B
tails of P(B, T ) and their intrinsic connections to the DV
method and the OFM, respectively.

The probability distribution P(B, T ) is given by a sum
over all the Brownian excursions on the interval 0 < t < T ,
conditioned by Eq. (E1). There is a subtlety here: A Brownian
particle, starting at the origin, would cross it infinitely many
times immediately afterward and would not stay positive as
required. This difficulty is circumvented by introducing a
cutoff: assuming that x(0) = x(T ) = ε > 0 and sending ε to
zero at the end of the calculation (see, e.g., Ref. [13]). That is,

P̃(λ, T ) = lim
ε→0

〈
exp

(
−λ

∫ T

0
dτ x2(τ )

)〉
ε

, (E2)

where 〈· · ·〉ε denotes the expectation value over realizations
of Brownian motions which satisfy x(0) = x(T ) = ε and stay
positive for 0 < t < T . The expectation value is given by

〈
exp

(
−λ

∫ T

0
dτ x2(τ )

)〉
ε

= 1

Z (ε, T )

∫ x(T )=ε

x(0)=ε

Dx(τ )

× exp

{
−

∫ T

0
dτ

[
1

2

(
∂x

∂τ

)2

+ λx2(τ )

]}

×
T∏

τ=0

θ [x(τ )] = Gλ(ε, T |ε, 0)

Z (ε, T )
, (E3)

where the normalization constant Z (ε, T ) = P̃(0, T ) is the
probability of a Brownian excursion unconstrained by B. The
propagator Gλ(ε, T |ε, 0) is given by the quantum mechan-
ical expectation value 〈ε|e−Ĥ (λ)T |ε〉, with the Hamiltonian
Ĥ (λ) = −(1/2) ∂2

x + λV (x), where the potential is given by
V (x > 0) = x2 and V (x � 0) = ∞. The normalization con-
stant Z (ε, T ) can be obtained either by solving the diffusion
equation with an absorbing boundary condition at the ori-
gin [59] or by applying the Feynman-Kac formula [12], which

reduces the problem to finding the propagator G0(ε, T |ε, 0) =
〈ε|e−Ĥ1 |ε〉, where Ĥ1 = −(1/2)∂2

x + V (x), with V (x > 0) =
0 and V (x � 0) = ∞. Both methods yield

Z (ε, T ) = 1√
2πT

(1 − e−2ε2/T ). (E4)

Let us calculate the propagator Gλ(ε, T |ε, 0). Here Ĥ (λ) is the
Hamiltonian of a harmonic oscillator, where h̄ = m = 1 and
ω2 = 2λ > 0. Because of the absorbing boundary condition
at x = 0, only the odd eigenfunctions (the Gauss-Hermite
functions [60]) are present. The spectrum is given by E2k+1 =√

2λ(2k + 3/2). The propagator Gλ can be expanded in this
basis

Gλ(ε, t |ε, 0) = 〈x = ε|e−Ĥ (λ)T |x = ε〉

=
∞∑

k=0

|ψ2k+1(ε)|2e−√
2λ(2k+3/2)T , (E5)

where the Gauss-Hermite functions, normalized to unity over
the region x ∈ [0,∞), are [60]

ψ2k+1(ε) =
√

2√
22k+1(2k + 1)!

(ω

π

)1/4
e−ωε2/2H2k+1(

√
ωε),

(E6)

where H2k+1(· · · ) are the Hermite polynomials and ω2 = 2λ.
Before we send ε to zero, we evaluate Eq. (E6) at small ε. The
small-argument asymptotic of H2k+1 [61] can be written as

H2k+1(ε) � (−1)k (2k + 2)!

(k + 1)!
ε. (E7)

Plugging this asymptotic into the Gauss-Hermite func-
tions (E6), we obtain

ψ2k+1(ε) � (−1)k
√

(2k + 1)!

2k−1k!

(ω

π

)1/4√
ωε. (E8)

Using this expression in (E5), we can perform the summation
exactly:

Gλ(ε, T |ε, 0) � ε2
∞∑

k=0

(2k+ 1)! e−√
8λT k

22k−2(k!)2
e−√

9λ/2 T

[
(2λ)3

π2

]1/4

= ε2 4e−√
9λ/2 T

(1 − e−√
8λ T )3/2

[
(2λ)3

π2

]1/4

. (E9)

Using Eq. (E4), we can now calculate the propagator
P̃(λ, T ) = limε→0[Gλ(ε, T )/Z (ε, T )]. Restoring the D0 de-
pendence, we finally obtain

P̃(λ, T ) =
[ √

2D0λT

sinh(
√

2D0λT )

]3/2

, (E10)

in agreement with Ref. [58]. To our knowledge, the inverse
Laplace transform of Eq. (E10) is unknown in analytical form.
We performed the inversion numerically (see Fig. 7) using
a multiprecision inverse Laplace transform algorithm [62],
realized in Mathematica.

We will now derive the small- and large-B tails of the
distribution P(B, T ). Instead of extracting them from the exact
Laplace transform (E10), we will directly employ the DV
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FIG. 7. Rescaled probability distribution P(B, T ) of the area B
under the square of a Brownian excursion.

formalism for small B and the OFM for large B. As we will
see, these calculations turn out to be quite simple.

1. Small-B tail of P(B, T )

By virtue of Eq. (B5) for Ĥ (k) ≡ Ĥ (−λ), we obtain

Ĩ (k) = −
√

−9k

2
, (E11)

where k < 0. The Legendre-Fenchel transform (B1) yields the
DV rate function

I (b) = 9

8b
, (E12)

where b ≡ B/T . This leads to

− ln P(B � D0T 2) � 9D0T 2

8B
, (E13)

in agreement with Ref. [22].

2. Large-B tail of P(B, T )

The constrained Lagrangian of the OFM is now
L[x(t ), ẋ(t )] = ẋ2/2 − λx2. The optimal trajectory is

x(t ) =
√

2B

T
sin

(
πt

T

)
, (E14)

where we set λ = π2/2T 2 to obey the constraint B =∫ T
0 x2(t )dt . Calculating the action from Eq. (7), we finally

obtain

− ln P(B 	 D0T 2) � π2B

2D0T 2
, (E15)

in agreement with Ref. [22].
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