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Wrinkle patterns in active viscoelastic thin sheets
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We show that a viscoelastic thin sheet driven out of equilibrium by active structural remodeling, such as
during fast growth, develops a rich variety of shapes as a result of a competition between viscous relaxation and
activity. In the regime where active processes are faster than viscoelastic relaxation, wrinkles that are formed due
to remodeling are unable to relax to a configuration that minimizes the elastic energy and the sheet is inherently
out of equilibrium. We argue that this nonequilibrium regime is of particular interest in biology as it allows the
system to access morphologies that are unavailable if restricted to the adiabatic evolution between configurations
that minimize the elastic energy alone. Here, we introduce activity using the formalism of evolving target metric
and showcase the diversity of wrinkling morphologies arising from out-of-equilibrium dynamics.
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I. INTRODUCTION

Thompson set the mathematical foundation for describing
and classifying the astonishing diversity of shapes and form
in the living world [1]. A century later, our understanding
of biological processes at the molecular level has been vastly
improved [2], yet it is still largely unknown how the formation
of large, functional structures such as tissues and organs arises
from these molecular processes [3]. A unifying feature of
all higher organisms is that they start as a single cell, a
zygote, and autonomously develop into an individual, without
external input. The genome provides a template that steers
development towards the desired body plan [3]. The formation
of large structures such as tissues and organs is a result of a
complex set of guided collective mechanochemical processes.
To select a specific morphology, the phase space of possible
shapes has to be large. Furthermore, transition between shapes
should be possible at a reasonably low cost, which is hard to
achieve at equilibrium.

Out-of-equilibrium biological processes are naturally de-
scribed within the framework of active matter physics, where
the system is driven out of equilibrium by a constant in-
put of energy at the microscopic scale [4]. Despite great
progress in understanding the behavior of active fluids, much
less is known about how activity affects the behavior of
solid and viscoelastic materials, such as tissues [5–7]. Nu-
merical simulations of dense self-propelled elastic disks, for
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example, showed that part of the energy intake is diverted into
local elastic deformations leading to prominent spatial and
temporal heterogeneities in observed velocity fields [8]. Such
dynamical heterogeneity is a hallmark of an active glassy state
[9], with epithelial cell monolayers being prime examples of
such behavior [10–13]. The biological significance of dynam-
ical heterogeneity is only starting to emerge. When it comes
to describing bending deformations in active systems, only re-
cently has a theoretical description been proposed [14,15] and
applied to the systems with axisymmetric geometry [16]. Sim-
ilarly, new in vitro experiments on active buckling in poroe-
lastic contractile actin sheets [17] and kinesin-driven two-
dimensional (2D) microtubule sheets [18] have been reported.

In this paper, we study thin elastic and viscoelastic sheets
with activity introduced as a dynamical change of the refer-
ence shape, with the simplest example of such process being
growth. Recently, it has been argued that the imbalance of
surface and volume growth and the rate of relaxation can
account for a morphological diversity of prebiotic organisms
[19]. Physically, activity provides structural remodeling that
acts as a local time-dependent source of strain. The time-
dependent reference shape can be either stress free (em-
beddable metric) or contain residual stress (nonembeddable
metric) [20]. While the distinction between the two cases has
important consequences for the elastic ground state [20,21],
it is not essential for the present discussion. As shown in
Fig. 1, bending out of plane can fully or partly remove the
residual stresses due to remodeling, depending on whether
or not the particular reference state is embeddable in R3. It
has been recently argued [22] that viscoelastic relaxation can
stabilize cell shapes during morphogenesis. Such viscoelastic
effects remove all stresses over a sufficiently long time. Here,
we focus on the regime where active remodeling is faster
than both elastic and viscoelastic relaxation, leading to the
system being inherently out of equilibrium. This regime is
expected to be of particular importance to early embryonic
development.
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FIG. 1. (a) Insertion of an elastic disk into an aperture smaller
than the disk’s size (top) induces residual stress in the disk due
to compression. This residual stress can be released by buckling
out of plane (bottom). (b) In a discrete picture where an elastic
sheet is represented as a triangulation of a surface, the geometric
incompatibility leading to the residual stress (i.e., nonembeddable
metric) can be understood as two triangles that share an edge having
mutually incompatible preferred shapes, e.g., the red (lower) and
blue (upper) triangles are the preferred shapes for the corresponding
gray mesh triangle shown underneath it.

II. MODEL

A. Thin active viscoelastic sheet

We study a thin sheet of size L and uniform thickness
h � L with linear elastic response [23]. We assume that
the surrounding fluid provides damping, but ignore all other
hydrodynamic effects. The sheet is represented by the two-
dimensional midsurface, initially in the xy plane. The de-
formed midsurface with no overhangs can be parametrized
as r = r(x, y) = [x, y,w(x, y)], where w(x, y) is a sufficiently
smooth height function. One defines the metric, gαβ = ∂αr ·
∂βr, and curvature, cβ

α = gβγ bαγ , tensors, where bαβ = −∂αr ·
∂βn (α, β ∈ {x, y}) is the second fundamental form and
n = (∂xr × ∂yr)/|∂xr × ∂yr| is the unit normal vector [24]
[Fig. 2(a)]. The elastic energy of the midsurface is [20,25]

E =
∫

dAAαβγ δ

(
h

2
uαβuγ δ + h3

24
bαβbγ δ

)
, (1)

where uαβ = 1
2 (gαβ − gαβ ) is the strain tensor, gαβ is a ref-

erence metric tensor, dA = √
det gdxdy is the area element,

Aαβγ δ is the elastic tensor, and summation over pairs of
repeated indices is assumed. Latin indices refer to the com-
ponents of vectors in the embedding Euclidean R3 space,
while Greek indices are used to label intrinsic curvilinear
coordinates. For an isotropic material,

Aαβγ δ = Y

1 + ν

(
ν

1 − ν
gαβgγ δ + gαγ gβδ

)
, (2)

where Y is the Young’s modulus, ν is the Poisson ratio, and
gαγ gγ β = δα

β . The first term in Eq. (1) is the stretching energy
and the second term accounts for bending. For an isotropic
material, stretching and bending energies simplify to

Es = h

2

∫
dA

Y

1 + ν

(
ν

1 − ν
uα

αuβ

β + uβ
αuα

β

)
(3)

and

Eb = h3

24

∫
dA

Y

1 + ν

(
ν

1 − ν
cα
αcβ

β + cβ
αcα

β

)
, (4)

with uβ
α = gβγ uαγ and cβ

α = gβγ bαγ [20]. With the mean
curvature H = 1

2 cα
α ≡ 1

2 Tr(ĉ) and the Gaussian curvature

FIG. 2. (a) The sheet is represented as a two-dimensional
midsurface, parametrized by (x, y) coordinates, with two tan-
gent vectors (e1 ≡ ∂xr, e2 ≡ ∂yr) and a unit-length normal
[n = (e1 × e2)/|e1 × e2|] assigned to each point of the surface.
For numerical implementation, the surface is discretized in terms
of triangles. (b) Red (outer) vectors form the reference metric
tensor, ḡαβ = āα · āβ , and blue (inner) vectors form the realized
metric tensor, gαβ = aα · aβ . The strain tensor is defined as uαβ =
1
2 (gαβ − gαβ ). (c) Viscoelasticity is modeled as a relaxation of the
reference metric towards the realised metric, with a characteristic
timescale τv .

K = det (cβ
α ), the bending energy given by Eq. (4) becomes

Eb =
∫

dAκ[2H2 − (1 − ν)K], (5)

where κ = h3Y/12(1 − ν2) is the bending stiffness (B). The
timescale of bending elastic deformations is τel ∼ 1/κ .

Material properties and the reference metric can be posi-
tion dependent and the sheet can have a spontaneous curva-
ture, H0. Here we assume that H0 = 0 and the active remod-
eling does not affect elastic parameters. In reality, material
properties are affected by the structural remodeling. How-
ever, imposing spatial and time dependence on the elastic
parameters did not qualitatively change our findings and, for
simplicity, in the following we assume them to be constant.

Active remodeling is introduced by imposing dynamical
changes of the reference metric. The precise functional form
of active remodeling is not important, as long as one can
associate a typical timescale τa to it. Active remodeling
can be thought of as a generalization of growth, with the
quasistatic differential growth being described as ḡαβ (r, t ) =
a(r)t ḡαβ (r, t = 0), where a(r) > 0 and τ

growth
a ≡ a−1 � τel .

The advantage of expressing deformation with respect to the
reference metric [26] is that the formalism can be directly
generalized to include active remodeling and viscoelastic
relaxation, without making only assumptions about the exis-
tence of a stress-free reference state.

Finally, the metric of the sheet is subject to viscous re-
laxation. This process acts to dissipate the energy introduced
by activity. We model viscoelastic dissipation via internal
rearrangement processes [27] leading to the relaxation of the
reference metric towards the realized (i.e., current) metric,
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with

∂t ḡαβ = 1

τv

(gαβ − ḡαβ ), (6)

where τv is the viscous remodeling timescale [Fig. 2(c)].

B. Active sheet dynamics

We assume overdamped dynamics and solve the set of first-
order equations for each vertex i and discrete metric of each
triangle,

γ ṙi = −∇ri E (gαβ, ḡαβ, bαβ ) + ηi(t ), (7a)

˙̄gαβ (r, t ) = Rαβ (gαβ, t ) + V γ δ

αβ (t )[gγ δ (r, t ) − ḡγ δ (r, t )]. (7b)

Here, ri ∈ R3 is the position vector of vertex i, and ηi(t ) ∈ R3

is a weak random noise, obeying 〈ηi〉 = 0 and 〈ηm
i (t )ηn

j (t
′)〉 =√

2γ kBT δi jδmnδ(t − t ′) with m, n ∈ {x, y, z}. γ is the friction
coefficient modeling dissipation by the surrounding fluid and
T is the temperature kept very low and used only for nu-
merical convenience to avoid being trapped in shallow local
minima. All of our simulations were effectively at T = 0 as
thermal fluctuations are not expected to play an appreciable
role in biological systems, i.e., relevant energy scales far
exceed kBT .

V γ δ

αβ (t ) is a tensor that sets the rate of viscous relaxation.

While, in general, V γ δ

αβ is a function of time, here we as-

sume it to be constant, V γ δ

αβ = 1
τv

δ
γ
α δδ

β . We note that a similar
metric-based approach to modeling viscoelastic behavior has
recently been discussed in Refs. [28,29]. Rαβ is a tensor
function that prescribes the active remodeling rate. Here, Rαβ

models metric expansion that explicitly depends on time and,
thus, describes dynamical changes of the active remodeling
rate. Finally, discrete versions of the realized and reference
metric tensors are defined in Fig. 2(b). Equations (7a) and
(7b) are integrated numerically using the standard first-order
Euler-Maruyama discretization scheme keeping connectivity
of the triangulation fixed (see the numerical implementation
in Appendix E). Expressions for ∇ri E and Rαβ are given in
Appendices C and D, respectively.

A description based on the time-evolving reference metric
is also suitable for direct discretization (Fig. 2) and efficient
parallel implementation on GPUs. This allows us to simulate
systems containing up to 2 × 106 triangles, removing the need
to implement complex remeshing procedures to avoid reduc-
tion in accuracy in the vicinity of high-curvature folds. Note
that in the current implementation, we do not include steric
effects and the sheet can take unphysical self-intersecting
configurations. The inclusion of self-avoidance is possible,
but technically challenging to efficiently implement on GPUs
[30]. The steric effect would indeed affect the folding pat-
terns, but would not change our main conclusions. Values
of the parameters used in simulations are given in Table I,
Appendix E. Moreover, length is measured in units of h, time
in units of t∗ = γ /Y h, and energy in units of κ .

III. RESULTS AND DISCUSSION

A. Timescales

As noted above, there are three relevant timescales in this
problem: the elastic relaxation time τel , the viscous dissipation

timescale τv , and the active relaxation timescale τa. Here we
estimate these timescales for a typical biological system such
as an early embryo.

We start by estimating τel . We assume that a flat sheet is
suspended in a fluid that only provides drag (i.e., the fluid acts
as a simple sink for the sheet’s momentum). Furthermore, con-
sidering only out-of-plane motion, the overdamped dynamics
of the sheet in the continuum limit reads [31]

�∂tw = κ�2w, (8)

where w(x, y) measures the vertical displacement from the
flat configuration, �2 is the bi-Laplacian operator, and � is
the friction per unit area. The magnitude of the drag force
on a disk of radius R moving perpendicular to its plane with
velocity v in a fluid of viscosity η is Fd = 16ηRv [32]. This
gives � = 16

π

η

R . Noting that for scaling purposes ∂t ∼ 1/τel

and � ∼ 1/R2 [31], we estimate

τel = 16

π

ηR3

κ
. (9)

For an epithelial cell sheet in water, τel ∼ 101–102 s, con-
sistent with [33]. Clearly, the timescale of relaxation as-
sociated with stretching deformation is much shorter and,
consequently, of no importance for the present discussion.

Active effects in a tissue result, for example, from myosin
driven contractions and turnover of the actin cytoskeleton
[34], as well as cell growth and division. Processes related
to the cytoskeleton typically occur at timescales of τa ∼ 101–
102 s [35,36], while cell growth and division are slower
and can span several hours [2]. Dissipation in tissues results
from multicellular rearrangements (i.e., plastic events such
as intercalations, ingressions, and extrusions) and subcellular
cytoskeleton remodeling (i.e., cell-shape relaxation). We note
that dissipation is accompanied by entropy production and,
in general, an entropy production equation would be required
[14]. Here, we are not concerned with the details of the dis-
sipative processes (rendering the entropy production equation
unnecessary) and assume that they occur on a timescale τv .

We note, however, that cell rearrangements are typically
slower (occurring on the scale ∼10 min) than the subcellular
remodeling (occurring on the seconds to minutes scale). While
it is not always the case, the out-of-equilibrium situation
with τa < τel , τv is, therefore, biologically plausible and, we
argue, beneficial to access the diversity of shapes needed to
form complex structures. In the following, we explore the
range of possible dynamical shape patterns formed in the
nonequilibrium regime.

B. Nonequilibrium wrinkling patterns

Here we explore out-of-equilibrium dynamics of flat disks
of radius R subject to active remodeling and viscous dissipa-
tion (Fig. 3). The choice of the disk geometry is inspired by
extensive work on wrinkling patterns due to tension [37,38]
or resulting from a quasiequilibrium growth, e.g., during
biofilm formation [39–41]. We note, however, that this regime
corresponds to τel � τa. We assume that a ring of radius
ri < R is kept fixed, but can transmit stress. Active remodeling
is assumed to occur only in the outer annulus, for ri < r < R.
With no viscoelastic relaxation and slow active remodeling
(lower-left corner in Fig. 3), the system is in the extensively
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FIG. 3. A snapshot of the out-of equilibrium shapes obtained by
numerical integration of Eqs. (7a) and (7b) starting from a flat disk
configuration. The snapshots are taken at t = 104t∗. The vertical axis
represents the rate of viscous (dissipative) relaxation with increasing
values designating faster residual stress relaxation. On the horizontal
axis, we plot the active structural remodeling rate, with larger val-
ues corresponding to faster changes of the local reference metric.
The usual slow, quasiequilibrium elastic growth corresponds to the
lower-left corner in this graph. Colors represent the height function,
w(x, y). In these simulations, Rαβ is time independent. Different
geometries are shown in Appendix A.

studied quasiequilibrium differential growth regime. Free ex-
pansion of the outer boundary can relieve part of the stress
produced by growth. There is, however, no such stress-relief
mechanism in the tangential direction and the sheet forms a
regular pattern of radial wrinkles. The inner disk, on the other
hand, is compressed in both directions, leading to wrinkles
with no preferred orientation.

If one instead allows for viscoelastic relaxation while
keeping the active remodeling slow (left column in Fig. 3),
wrinkles are less pronounced or, in the case of very fast dis-
sipative relaxation, do not form at all (top left in Fig. 3). This
is easy to understand, as in this regime the stress generated
by active remodeling is dissipated by a fast relaxation of the
reference metric of the sheet. As one increases the remodeling
rate (second and third columns in Fig. 3), wrinkling patterns
become more pronounced and less regular, especially close to
the inner ring, where stress accumulation is strong. Without
viscous dissipation (bottom right in Fig. 3), the sheet contin-
ues to expand and quickly reaches unphysical self-intersecting
configurations. In a real system, steric repulsion and intrinsic

FIG. 4. Total elastic energy E divided by the number of vertices
Nv as a function of the simulation time. Note that small peaks in the
green (pentagons) and orange (circles) curves correspond to the onset
of wrinkling. The sheet represented by the blue (triangles) curve
wrinkles at around t = 6 × 103t∗; however, there is no distinct peak
due to very strong viscous relaxation. Once the wrinkles form, the
energy gradually increases due to active remodeling. τ−1

a and τ−1
v are

measured in units of 1/t∗.

biological processes such as apoptosis due to hypoxia and
nutrient deprivation would prevent this uncontrolled growth.

If viscoelastic relaxation is introduced, the stress generated
by active remodeling is in part dissipated, which prevents
wrinkles from growing rapidly (upper-right region in Fig. 3).
As shown in Fig. 4, the ratio between active relaxation and
viscous dissipation then determines the steady-state wrinkling
patterns. If viscoelastic relaxation is introduced, the stress
generated by active remodeling is in part dissipated, which
prevents wrinkles from growing rapidly. The ratio between
active relaxation and viscous dissipation determines the wrin-
kling pattern morphology. These patterns, however, do not
correspond to the minima of elastic energy and thus exhibit
far richer morphologies compared to the equilibrium states.
Note that in our model, the system would typically not reach
a steady state. Therefore, one would need to introduce an
additional mechanism that suppresses active remodeling in
order to stabilize the system. Biological systems indeed have
such homeostatic mechanisms.

Furthermore, if the system is able to dynamically tune
the active remodeling rate, it can reach conformations that
would otherwise require overcoming large energy barriers.
For example, for a fixed high value of τ−1

a , one needs to inject
substantial energy in order to initiate wrinkling (Fig. 5, cir-
cles). On the other hand, if the initial value of τ−1

a is reduced,
the wrinkling energy barrier is significantly lowered (Fig. 5,
triangles). This is not surprising as elastic relaxation is not fast
enough to accommodate structural changes due to fast active
remodeling. If τ−1

a is increased once the wrinkles are formed,
however, it is easy to reach different wrinkling patterns (Fig. 5,
pentagons) without the high initial energy cost.

If we note that wrinkles are predominantly in the radial
direction, in order to analyze the effects of dynamical tuning
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FIG. 5. Energy per vertex as a function of simulation time. To
reach a wrinkled configuration with a remodeling rate τ−1

a = 5 ×
10−5 would require the sheet to overcome a large energy barrier
(peak of the orange (circles) curve). If the initial remodeling rate,
however, is set to τ−1

a = 2 × 10−5, the system requires less energy
to reach the wrinkling instability (peak of the blue (triangles) curve).
Upon switching to τ−1

a = 5 × 10−5 at t = 2 × 103t∗, the evolution
continues along the green (pentagons) curve and the system reaches
a wrinkling pattern, which is very similar to the one obtained by
following the orange (circles) curve, as shown by the two snapshots
on the right.

of the system’s parameters on wrinkle patterns, we compute
the power spectrum of the Monge parametrization w(r, θ )
represented in polar coordinates of an annular ring wR(θ ) =
1/NR

∑
r∈(R,R+�R) w(r, θ ), where NR is the number of mesh

vertices in the annulus with the inner radius R and the outer
radius R + �R. The power spectrum Sww( fθ ) = |wR( fθ )|2,
where wR( fθ ) = ∑

θ wR(θ )ei fθ θ is the Fourier transform of
wR(θ ). The position of the peaks of Sww( fθ ) corresponds to
the position of the dominant wave number fθ . The power
spectra for the three systems discussed in Fig. 5 are shown
in Fig. 6. The left column shows Sww( fθ ) at t = 2 × 103t∗
at the point when the system marked with green symbols
(pentagons) had its parameters switched from those of the
system marked with blue symbols (triangles) to those of the
system marked with orange symbols (circles). As expected,
the “blue” (triangles) and “green” (pentagons) power spectra
are nearly identical along with the entire system. On the
other hand, the system with a higher active remodeling rate
(orange/circles) has distinctly different features for interme-
diate radii. At t = 4 × 103t∗, “orange” (circles) and “green”
(pentagons) systems have the same energy (Fig. 5), yet their
power spectra are significantly different. This is not surprising
as the “green” (pentagons) system retains a memory of its
past, which is an expected feature in a system far from
equilibrium and also suggests that the total energy is not a
good quantity to describe the actual wrinkling pattern. Finally,
at t = 8 × 103t∗, the power spectra of the “orange” (circles)
and “green” (pentagons) systems are similar to each other
and distinct from the “blue” (triangles) system. The only
exception is Fig. 6(c), where the “green” (pentagons) system

FIG. 6. Power spectrum profiles Sww ( fθ ) vs fθ of the the angle-
dependent height function wR(θ ) for three different times during
the shape evolutions and three different active remodeling rates τ−1

a

given in Fig. 5. Each row represents an annulus of width �R = 10
for radii (R, R + �R)= (a) (10, 20), (b) (20, 30), (c) (30, 40), and
(d) (40, 50). The × marks peak values of each power spectrum. The
symbols and colors have the same meaning as in Fig. 5. All power
spectra were computed using Welch’s method [43].

still retains some similarity to the “blue” (triangles) system.
This is, however, not surprising since in this region, wrinkles
are irregular and would take the longest to reshape.

This simple example shows that an out-of-equilibrium sys-
tem is not only able to develop a rich variety of morphologies,
but it also can avoid costly energy barriers between different
patterns by dynamically tuning its parameters, which most
biological systems are equipped to do, e.g., via adenosine
triphosphate-dependent cellular processes [42].

IV. SUMMARY AND CONCLUSIONS

By applying an active solid model to viscoelastic thin
sheets subject to active structural remodeling, we showed that
the interplay between activity and viscous relaxation leads to a
diverse morphology of out-of-equilibrium wrinkling patterns.
Of particular interest in this study is the regime where active
processes are faster than elastic and viscoelastic relaxation. In
this case, the system has no time to fully relax local stresses
produced by active remodeling allowing local perturbations
to grow. As a consequence, the shape patterns depend on
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the initial conditions and local fluctuations. This is in stark
contrast to the mechanics of growth, in particular in plants,
that has been extensively studied with great success [44]. Most
theoretical approaches are based on continuum mechanics
augmented to encode the effects of growth into Föppl–von
Kármán equations [45–47]. The salient point in such treat-
ments is that elastic relaxation occurs at the timescales that are
short compared to growth and thus describe the regime where
the system is always in quasistatic mechanical equilibrium
[45,48]. We argue that the out-of-equilibrium regime studied
here is of particular interest in developing a physical under-
standing of morphogenesis, where the embryo has to undergo
a series of carefully orchestrated shape changes to develop the
functioning organism. In birds, for example, this process also
has to be energy efficient given the finite amount of nutrients
available in the egg.

Our observations are in line with and extend the recent
findings of Ruiz-Herrero et al. [19]. This suggests that keeping
a growing system out of equilibrium significantly increases
the range of available morphologies. The development of
higher organisms is too complex to be captured by a simple
mechanical model of actively remodeling sheets. Our observa-
tions, however, point to a mechanism by which a system that
is kept out of equilibrium could be steered towards a desired
shape by a careful regulation of remodeling, relaxation, and
mechanical parameters. This would be much easier to encode
in the space available in the genome.
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APPENDIX A: ALTERNATIVE SHEET GEOMETRIES
AND MODELS OF ACTIVE REMODELING

Here we show two examples of geometries and structural
remodeling. The first example (Fig. 7) shows the case of a
strip of size Lx = 100 and Ly = 20 under uniform structural
and viscous remodeling. As in the case of Fig. 3, if one
increases the rate of viscoelastic relaxation while keeping the
active remodeling, wrinkles are less pronounced or, in the case
of very fast dissipative relaxation, do not form at all.

The second example (Fig. 8) mimics active compression
of a flat disk of size R = 50. The compression is introduced
by imposing a rapid strain through an instantaneous change
on the reference metric in an external annulus 0.8R < r < R.
Viscous remodeling is assumed to occur only in the inner
annulus, for r < 0.8R.

APPENDIX B: BRIEF SUMMARY OF THIN
SHEET ELASTICITY

Starting from the expression for the elastic energy of a
thin three-dimensional solid of size L and uniform thickness
h � L with linear elastic response, we derive the expression
for energy of its two-dimensional neutral surface [23]. We

FIG. 7. A snapshot of the out-of-equilibrium shapes obtained
by numerical integration of Eqs. (7a) and (7b) in the main text,
starting from a flat stripe configuration. The snapshots are taken
at t = 4 × 103t∗. The horizontal axis represents the rate of viscous
(dissipative) relaxation, with increasing values designating faster
residual stress relaxation. On the vertical axis, we plot the active
structural remodeling rate, with larger values corresponding to faster
changes of the local reference metric. The usual slow, quasiequilib-
rium elastic growth corresponds to the lower-left corner in this graph.
Colors represent the height function, w(x, y).

consider a growing body with homogenous and isotropic
elastic properties, which configuration is described by a strain
tensor uαβ = 1

2 (gαβ − gαβ ), where both the reference metric
gαβ and the realized metric gαβ are assumed to be continuous
and nonsingular [20,49]. Using Einstein summation conven-
tion, the elastic energy can be written as

E = 1

2

∫
Aαβγ δuαβuγ δ dV, (B1)

where dV = √
det gdxdydz is the volume element, and

the elastic tensor is Aαβγ δ = λgαβgγ δ + μ(gαγ gβδ + gαδgβγ ),

FIG. 8. A snapshot of the out-of equilibrium shapes obtained by
numerical integration of Eqs. (7a) and (7b) in the main text, starting
from a flat disk configuration. The snapshots are taken at t = 2 ×
104t∗. The horizontal axis represents the rate of viscous (dissipative)
relaxation, with increasing values designating faster residual stress
relaxation. On the vertical axis, we plot the initial residual strain
in the exterior annulus, with larger values corresponding to larger
changes of the local reference metric. Colors represent the height
function, w(x, y).
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where λ and μ are two elastic constants related to the Young’s
modulus E and Poisson’s ratio ν via

E = μ(3λ + 2μ)

λ + μ
, (B2)

ν = λ

2(λ + μ)
. (B3)

Two-dimensional plate energy density

Expression of the elastic energy density of the neutral
surface can be derived under the Kirchhoff-Love assumptions
[20,50]:

(1) Body is in the state of plane stress, i.e., stress normal to
the surfaces parallel to the neutral surface can be neglected.

(2) Points which lie on a normal to the neutral surface in
the reference configuration remain on the same normal in the
deformed configuration.

Using these assumptions, it follows that

u3
3 = u33 = − λ

λ + 2μ
uα

α. (B4)

The elastic energy density in Eq. (B1) can now be rewritten as

E2D = 1
2A

αβγ δuαβuγ δ, (B5)

where the two-dimensional elastic tensor is

Aαβγ δ = 2μ

(
λ

λ + 2μ
gαβgγ δ + gαγ gβδ

)
. (B6)

Using the Kirchhoff-Love assumptions effectively decouples
different sheets parallel to the neutral surface [25]. Therefore,
one can obtain the expression for the total elastic energy of
the neutral surface by integrating along the sheet’s thickness
(chosen to be the z direction),

E2D = 1

2

∫
S

dxdy
∫ h

2

− h
2

dz
√

det g(z)Aαβγ δuαβ (z)uγ δ (z). (B7)

In the small strain approximation, we can neglect all terms
that are cubic or higher power in uαβ to obtain

E2D =
∫

S
Aαβγ δ

(
h

2
uαβuγ δ + h3

24
bαβbγ δ

)√
det gdxdy, (B8)

where bi j = ei · ∂ jn is the second fundamental form, related
to the curvature tensor c j

i = gikbk j [51]. Equation (B8) is the
expression for the elastic energy of a thin shell expressed
in terms of its neutral surface. The first term in the two-
dimensional energy expression is stretching energy and it
describes energy penalty of stretching or compressing of the
neutral surface. The second term is the bending energy, which
describes energy penalty of flexing the sheet. Therefore, one
can write E2D = Es + Eb [20], where

Es = Y

2(1 + ν)

(
ν

1 − ν
uα

αuβ

β + uα
βuβ

α

)
, (B9)

and Y = Eh. Similarly,

Eb = h3

24

E

(1 + ν)

(
ν

1 − ν
bα

αbγ
γ + bβ

αbα
β

)
. (B10)

APPENDIX C: DISCRETE MODEL OF THIN
SHEET ELASTICITY

1. Stretching energy

Following Ref. [52], coordinates of a given point P inside
a triangle can be written in terms of the two vectors that span
the triangle, r1 and r2, as

rP = ξr1 + ηr2, (C1)

where 0 � ξ � 1 and 0 � η � 1 are coordinates of vector r in
the basis {r1, r2}. For convenience, we introduce a third vector
r3 = r1 × r2 such that

ĥ = (r1 r2) ≡
⎛
⎝r1,x r2,x r3,x

r1,y r2,y r3,y

r1,z r2,z r3,z

⎞
⎠. (C2)

Then, rP = ĥsP with sP = (ξ η ω ≡ 0)T . Further, the
squared distance between P and any point Q [rQ = ĥsQ, and
sQ = (φ ψ 0)T ] in the triangle is

l2 = (sP − sQ) ˆ̄g(sP − sQ), (C3)

where ˆ̄g = ĥT ĥ is the (discrete) metric of the reference trian-
gle, which can be easily computed in a simulation. Consider
an affine deformation of the triangle that contains point P
defined as

r′
P = ĥ′sP, (C4)

then the displacement vector (P → P′) can be written as

u = r′
P − rP = (ĥ′ĥ−1 − Î )rP, (C5)

where Î is the identity matrix. In order to derive the expression
for the nonlinear strain tensor in term of matrices ĥ′ and ĥ, we
recall that in the mixed tensor form,

u j
i = 1

2

(
∂ui

∂x j
+ ∂u j

∂xi
+ ∂uk

∂xi

∂uk

∂x j

)
, (C6)

where we have dropped the P subscript for convenience. We
then find

∂ui

∂x j
= [

(ĥ′ĥ−1) j
i − δ

j
i

]
. (C7)

Inserting Eq. (C7) into Eq. (C6) leads to

û = 1
2 (ĥ−T ĝĥ−1 − Î ). (C8)

We can now use Eq. (B9) to write

Estretch = AT Eh

8(1 + ν)

[
ν

1 − ν
(trF̂ )2 + tr(F̂ 2)

]
, (C9)

where AT is the triangle area and

F̂ = ˆ̄g−1ĝ − Î. (C10)
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Finally, the force associated with Es is then given by

fi = −
[

AT Y h

4(1 − ν2)
{(F11 + νF22)

(
2α11r12 + α12r13 α12r12

) + (F22 + νF11)
(
α12r13 2α22r13 + α12r12

)
+ (1 − ν)[F21

(
α11r13 2α12r13 + α11r12

) + F12
(
2α12r12 + α22r13 α22r12

)
]}

+ es

4AT

(
g22r12 − g12r13 g11r13 − g12r12

)](−1 1 0
−1 0 1

)
, (C11)

where αμν = ( ˆ̄g−1)μν and es = Es/AT .

2. Bending energy

We start from Eq. (B10) and use κG = −κ (1 − ν) to obtain

Eb = κ (2H2 − K ) + νκK. (C12)

We use Tr[(bγ
μ)2] = 4H2 − 2K to write

Eb = 1
2κgβγ gαδbαγ bβδ + νκK. (C13)

From the definition of the second fundamental, it immediately
follows that

Eb = 1
2κ∂γ n · ∂γ n + νκK. (C14)

Following Ref. [53], the 1
2κ∂γ n · ∂γ n term is a continuum

version of the expression

ESN = 1

2
κ̃

∑
Tj .n.n.Ti

|nTi − nTj |2

=︸︷︷︸
‖n‖=1

κ̃
∑

Tj .n.n.Ti

(1 − nTi · nTj ), (C15)

where Ti is the triangle i, Tj are three of its neighboring
triangles, κ̃ is the discrete value of the bending rigidity, and
the subscript “SN” stands for “Seung-Nelson.” The sum in
Eq. (C15) can be written as

ESN = 1

2
κ̃

∑
j

|n(ri ) − n(ri + bv( j) )|2, (C16)

where b is the distance between the centers of two neighboring
triangles, and vectors v are v( j) = cos ( 2π

3 j)ex + sin ( 2π
3 j)ey

(Fig. 9). For b → 0, we expand n(ri + bv( j) ) to the linear

FIG. 9. A triangle Ti and three of its nearest neighbors Tj . In the
continuum limit, b → 0. The shaded area is the vertex area element.

order in b,

n(ri + bv( j) ) = n(ri ) + b∂φn|riv
( j)
φ + o(b2). (C17)

Thus,

ESN = b2

2
κ̃∂φn|ri∂ψn|ri

∑
j

v
( j)
φ v

ψ

( j). (C18)

We can now calculate the j-sum explicitly for each component
φ = x, y and ψ = x, y,

3∑
j=1

v( j)
x vx

( j) =
3∑

j=1

cos2

(
2π

3
j

)
= 3

2
,

3∑
j=1

v( j)
y v

y
( j) =

3∑
j=1

sin2

(
2π

3
j

)
= 3

2
,

3∑
j=1

v( j)
x v

y
( j) =

3∑
j=1

sin

(
2π

3
j

)
cos

(
2π

3
j

)
= 0, (C19)

and we assume that ∂φn is calculated at point ri.
We write ESN = − 3

2
b2

2 κ̃∂φnbμ
φeμ = 3

2
b2

2 κ̃Tr(bμ
φ )2 =

3b2

4 κ̃ (4H2 − 2K ) = 3b2

2 κ̃ (2H2 − K ). Thus, the total discrete
energy is

ESN = 3

2
κ̃

∑
Ti

b2
(
2H2

Ti
− KTi

)
, (C20)

where HTi and KTi are the mean and Gaussian curvature of the
triangle Ti, and the sum goes over all triangles. From Fig. 9,
we see that the area element Ai = b2

√
3

2 , which leads to

ESN = 1√
3
κ̃

∑
Ti

Ai
(
2H2

Ti
− KTi

)
, (C21)

FIG. 10. Edge e shared by the faces k and l shown along with
their associated normals.
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which in the limit Ai → 0 becomes an integral,

ESN = 1√
3
κ̃

∫
A

(2H2 − K ). (C22)

Comparing Eq. (C12) with the last expression, we obtain κ =
1√
3
κ̃ . Note that a different prefactor was obtained in Refs. [53]

and [54], since in Eq. (C17) we truncated the expansion too
early. The exact value of the constant of proportionality is,
however, of the same order of magnitude, κ =

√
3

2 κ̃ [53]. In

practice, this difference is inconsequential since we use κ̃ as a
tuning parameter.

Next, the bending force matrix fp,e is

fp,e = −κ̃ (∂ri j EB,e)

⎛
⎝−1 1 0 0

−1 0 1 0
−1 0 0 1

⎞
⎠, (C23)

with

(∂ri j EB,e) = ∂ri j

(
Ak · Al

|Ak| |Al |
)

= 1

|Ak| |Al |
[
∂ri j (Ak · Al ) − (Ak · Al )

(
1

|Ak|∂ri j |Ak| + 1

|Al |∂ri j |Al |
)]

= 1

4|Ak| |Al |
{

[(r02 · r03)r02−(r02 · r02)r03(r02 · r03)r01 + (r01 · r02)r03 − 2(r01 · r03)r02(r01 · r02)r02 − (r02 · r02)r01]

+ (Ak · Al )

[
1

|Ak|2 ((r02 · r02)r01 − (r01 · r02)r02(r01 · r01)r02 − (r01 · r02)r010)

+ 1

|Al |2 (0(r03 · r03)r02 − (r02 · r03)r03(r02 · r02)r03 − (r02 · r03)r02)

]}
, (C24)

with ri j defined in Fig. 10.

APPENDIX D: EXPRESSION FOR ACTIVE REMODELING

Remodeling is introduced as a change in the local reference
metric ḡ. Here we choose a circular geometry for which we
have the following natural metric (Fig. 11):

ḡi j ({r, θ}, t ) =
(

g11({r, θ}, t ) g12({r, θ}, t )
g12({r, θ}, t ) g22({r, θ}, t )

)
. (D1)

For simplicity, we impose a nonshear linear uniform remodel-
ing, i.e.,

∂t g11({r, θ}, t ) = β11,

∂t g12({r, θ}, t ) = 1

2

[(
g22

g11

) 1
2

β11 +
(

g11

g22

) 1
2

β22

]
cos φ,

∂t g22({r, θ}, t ) = β22, (D2)

with β11 and β22 being the remodeling rates in the R12 and R13

direction of the reference configuration, and φ is the angle
between these two vectors. Equations (D1) and (D2) can be
easily discretized.

FIG. 11. Active remodeling is introduced as a change of the
reference metric of each triangle.

APPENDIX E: NUMERICAL IMPLEMENTATION
AND SIMULATION PARAMETERS

We have built our own parallel GPU-based (Nvidia CUDA)
implementation of the discrete model outlined in the previ-
ous sections. Our code is specifically designed to introduce
different sources of activity into the system. We use the
Brownian dynamics approach [55]. All computation-heavy
tasks are fully implemented on the GPU, so that there are
no transfers between device and host during the execution.
The only routines executed by the host are those required
by the user in order to save data. Our CUDA kernels are
moderately optimized, trying to keep aligned and coalesced
memory access, avoiding threads divergence, and only using
atomic functions when absolutely necessary. Finally, we used
PARAVIEW [56] as an external visualization software for testing
and presentation purposes.

The coarse-grained triangular meshes used in the simu-
lation were created using a public domain package GMSH

[57], setting the edge target length to l = 0.35 and the plate
radius equal to R = 50, with all lengths measured in units
of thickness, h. In order to obtain a different initial configu-
ration, the vertices are moved randomly in (x, y) around the
initial configuration using a normal distribution with standard
deviation equal to 10−3. After this procedure, the device mesh

TABLE I. Simulation parameters.

Stretching potential Value

Young’s modulus, E 102

Plate thickness, h 100

Poisson’s ratio, ν 1/3
Seung-Nelson bending potential

Bending modulus, κ 5 × 10−2(E h3)
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is created and the reference metric is set to the mesh actual
metric.

The potentials used in our simulation with its respective
parameters are listed in Table I. It is important to note that all
material parameters are assumed to be time independent and
uniform across the entire mesh.

The active remodeling processes are assumed not to be
uniform on the mesh. In particular, we have chosen to restrict
active and viscous remodeling to an external annulus of 20 <

r < 50. The remodeling and viscous remodeling rates are set
to be uniform inside of the annulus, for the respective values
used in the simulation; see Fig. 3.

To integrate the vertex equation of motion, we have imple-
mented a Brownian dynamics integrator,

∂t ri = μ(Fi + FR), (E1)

where μ is the inverse friction coefficient and Fi is the total
force acting on the vertex i due to the mesh deformation, and
FR is a uniform random force whose magnitude fulfills the
fluctuation-dissipation theorem for the given inverse friction
coefficient and temperature, T ; in our simulation, we set μ =
1.0 and T = 10−6. In addition, the integration is set to be 10−3

for remodeling rates equal to or smaller than 10−3 and 10−5

otherwise.
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