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Emergent fractons and algebraic quantum liquid from plaquette melting transitions
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Paramagnetic spin systems with spontaneously broken spatial symmetries, such as valence bond solid phases,
can host topological defects carrying nontrivial quantum numbers, which enables the paradigm of deconfined
quantum criticality. In this work, we study the properties of topological defects in valence plaquette solid (VPS)
phases on square and cubic lattices. We show that the defects of the VPS order parameter, in addition to
possessing nontrivial quantum numbers, have fracton mobility constraints deep in the VPS phase, which has been
overlooked previously. The spinon inside a single vortex cannot move freely in any direction, while a dipolar pair
of vortices with spinon pairs can only move perpendicularly to its dipole moment. These mobility constraints,
while they persist, can potentially inhibit the condensation of vortices and preclude a continuous transition from
the VPS to the Néel antiferromagnet. Instead, the VPS melting transition can be driven by proliferation of spinon
dipoles. For example, we argue that a two-dimensional VPS can melt into a stable gapless phase in the form of an
algebraic bond liquid with algebraic correlations and long-range entanglement. Such a bond liquid phase yields
a concrete example of the elusive two-dimensional Bose metal with symmetry fractionalization. We also study
the three-dimensional valence plaquette and valence cube ordered phase, and demonstrate that the topological
defects therein also have fractonic dynamics. Possible nearby phases after melting the valence plaquettes or
cubes are also discussed.
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I. INTRODUCTION

The search for exotic quantum phases and their transitions
has gained a wide audience in recent years, due to a range
of unusual properties which cannot be understood within
the Landau paradigm of symmetry breaking. For example,
topologically ordered phases, which do not possess a local
order parameter, can exhibit topologically protected ground
state degeneracies and deconfined fractionalized excitations.
Furthermore, even for seemingly conventional symmetry-
breaking phases, it is possible to have Landau-forbidden
phase transitions with similar unusual phenomenology. The
most well-known example of such a transition is between a
Néel antiferromagnet and a valence bond solid (VBS). These
phases break two different types of symmetries (spin rotation
and lattice symmetries, respectively), so Landau theory would
predict that a generic transition between these phases is either
first order or possesses an intermediate regime where the two
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orders coexist. In contrast, a more in-depth analysis reveals
the existence of a generic second-order transition between
these phases [1]. While the Néel and VBS phases have
fairly simple phenomenology, characterized by Landau order
parameters, the unusual critical point between them hosts
deconfined fractionalized excitations, earning it the name of
a “deconfined quantum critical point.” This phenomenon of
deconfined quantum criticality has now been intensely studied
in a variety of physical systems [2–18].

Intuition for this unusual transition can be gained by study-
ing the defects of each type of order, which carry quantum
numbers associated with the other symmetry. For example, a
vortex of VBS order naturally carries spin- 1

2 , as we review
in Sec. II. Destruction of the VBS phase via condensation of
these vortices then necessarily breaks spin-rotation symme-
try, leading to an antiferromagnetic Néel phase. This point
of view leads to a general picture for deconfined quantum
criticality, with implications well beyond the Néel-VBS tran-
sition. While the VBS phase is the most commonly studied
spatially ordered phase with spin quantum numbers associated
with its topological defects, it is certainly not the only one.
Another order of this type, often overlooked in discussions
of deconfined quantum criticality, is a valence plaquette solid
(VPS), in which spins are entangled in clusters of fours,
instead of the pairwise entanglement associated with a VBS
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phase [19–25]. Both VPS and VBS order, as candidates of
paramagnetic crystals, have been observed in a wide variety
of materials [26,27]. Like a VBS defect, vortices of this
plaquette order also carry spin- 1

2 , so we expect that destruction
of the VPS phase via vortex proliferation will lead to a
phase with broken spin-rotation symmetry, such as a Néel
antiferromagnet. However, as we demonstrate in detail, this
simple picture of vortex proliferation is complicated by the
fact that vortices of VPS order behave like fracton quasiparti-
cles, with their characteristic mobility restrictions, leading to
important consequences for phase transitions out of the VPS
phase.

A fracton is a type of quasiparticle which does not have
the ability to move by itself [28]. However, fractons can often
move upon coming together to form certain bound states. In
the simplest cases, two fractons can move together upon form-
ing a dipolar bound state. Fractons were first encountered in
the context of exactly solvable spin liquid models [29–33] and
have since been shown to have physical realizations ranging
from crystalline defects [34–38] to hole-doped antiferromag-
nets [39]. Spin models for fracton systems have been intensely
studied in recent years [40–55], in large part due to their
potential applications toward quantum information storage
[32,56,57]. Fracton models have also exhibited unexpected
connections with various other areas of physics, ranging from
gravitation [58,59] to many-body localization [31,60,61], and
have even manifested in the theory of deconfined quantum
critical points between certain VBS phases [62]. Theoreti-
cally, fractons are often described in the language of sym-
metric tensor gauge theories, which encode the immobility of
fractons in a set of higher-moment conservation laws, such as
conservation of dipole moment [63–70].

The tensor gauge theory description allows us to make
an immediate connection between plaquette order and the
physics of fractons. As we review in Sec. II, a conventional
valence bond solid can be mapped onto the confined phase
of a vector gauge theory, with vortices behaving as linearly
confined charges. In similar fashion, we show in Sec. III
that a VPS phase can be mapped onto the confined phase
of a symmetric tensor gauge theory, with vortices of the
plaquette order acting as the fractons. Even though these
fractons are confined within the VPS phase (corresponding to
the large energy cost associated with vortices), their mobility
restrictions still can have important consequences for phase
transitions driven by vortex proliferation. For a valence bond
solid, the spin-carrying vortices become gapless deconfined
excitations at a quantum critical point, then subsequently
condense to drive the system into a Néel antiferromagnet. For
a VPS phase, on the other hand, the vortices are immobile
fractons, for as long as the description in terms of plaquettes
remains valid. (The mobility restrictions could break down in
a regime where a plaquette can easily break down into a pair
of dimers.) Assuming we remain in a regime well described
in terms of plaquettes, potential phase transitions and quantum
critical points can be strongly impacted by the fractonic nature
of the vortices. Even if the fractons become deconfined at a
quantum critical point, their mobility restriction serves as an
impediment to direct condensation. Fracton systems therefore
have a tendency to first exhibit a condensation transition of
mobile dipoles, which relaxes the mobility restrictions and

allows a subsequent fracton condensation transition. This two-
stage nature of fracton condensation transitions is dramat-
ically realized in the analysis of two-dimensional quantum
melting, which predicts that two-dimensional crystals must
pass through a hexatic phase before fully melting to an
isotropic liquid [34,37,38].

We therefore conclude that VPS order can generically
host an intermediate phase in which only dipoles of vortices
are condensed, while individual vortices remain gapped. The
precise nature of this intermediate phase depends on the
microscopic details governing the interaction of two vortices
within a dipole pair. In certain cases, the intermediate phase
may be a simple bond-ordered phase, such as a valence
bond solid. As another illustrative example, we argue that
a transition between two-dimensional VPS and Néel phases
can feature a stable intermediate gapless phase in the form
of an algebraic bond liquid [71–74] with quasi-long-range
order between dipoles formed by spinon pairs. Such a fea-
tureless gapless liquid carries many features akin to the con-
cept of the “Bose metal,” including power-law correlations
and zero-energy nodal lines. In particular, its thermodynamic
and entanglement properties have the hallmarks of a two-
dimensional (2d) Fermi liquid and hence can be regarded as
the “boson descendant” of a Fermi surface [75]. A gapless
intermediate phase of this type is consistent with existing
numerics on the VPS-Néel transition in 2d Heisenberg models
[20]. In Sec. III, we review the stability of this algebraic bond
liquid phase and study its transition with a VPS phase. We also
describe some novel properties which may be used to detect
an algebraic bond liquid in experiments or numerics, such as
specific heat, structure factor, and entanglement entropy. The
bond liquid exhibits novel characteristics, including T ln(T )
dependence for specific heat [72] and long-range entangle-
ment, with entanglement entropy scaling as L ln(L), which
exceeds the boundary law [76].

In Sec. IV, we extend these ideas to three-dimensional
cube-ordered and valence plaquette phases on a cubic lattice.
In each case, the fundamental topological defects of the order
behave as immobile fractons. In the case of cube order, even
spinon dipoles are locked in place, with spinon quadrupoles
behaving as one-dimensional lineons. We also study differ-
ent types of plaquette order in three dimensions, focusing
on a strongly anisotropic VPS phase which can exhibit a
continuous transition to a VBS phase. This phase transition
features a reduced dimension allowing the physics of certain
3-dimensional VPS melting transitions to be mapped onto the
problem of a 2-dimensional VBS melting transition.

II. REVIEW OF THE VBS-NÉEL TRANSITION

Let us first recall the prominent deconfined quantum crit-
ical point between VBS and Néel phases on a 2d square
lattice spin- 1

2 system. For an interacting spin- 1
2 model on a

square lattice, the Lieb-Schultz-Mattis theorem forbids any
featureless gapped paramagnet ground state [77–79]. Two
common symmetry-breaking states are the Néel order, which
spontaneously breaks spin rotation and lattice translation sym-
metries, and the valence bond solid (VBS) order, which breaks
the lattice translation and C4 rotation.
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FIG. 1. VBS vortex with a spinon inside the vortex core. The
spinon can fluctuate locally by VBS pattern reconstruction. This
implies the spinon current carries a gauge charge with respect to the
VBS order.

In Refs. [1–3], it was proposed that despite their distinct
symmetry-breaking patterns, the VBS and Néel phases in a
square lattice spin- 1

2 system can be connected by a continuous
phase transition which is dubbed as a deconfined quantum
critical point. The key ingredient for such a Landau-forbidden
phase transition between two symmetry broken phases lies in
the fact that the topological defect of the order parameter for
one broken symmetry carries a nontrivial quantum number
of the other symmetry group. In order to restore a broken
symmetry, one can consider the condensation of topological
defects of the order parameter. However, this condensate
would drive the system into another broken-symmetry state
simultaneously due to the charge carried by the defect. In
the VBS-Néel example, the VBS phase spontaneously breaks
the C4 lattice rotations, which has four degenerate ground
state patterns related by the C4 rotations, as depicted in
Fig. 1. The VBS order can be characterized as a complex
scalar with fourfold anisotropy. To quantum-disorder the VBS
order, one should proliferate the Z4 vortices. Since the VBS
vortex carries an unpaired spin, as shown pictorially in Fig. 1,
consequently the vortex condensation breaks spin rotation
symmetry.

To formulate the VBS-Néel transition, it is useful to note
that the VBS phase can be mapped to the confined phase of a
compact U(1) gauge theory. The dimer coverage on the edge
of the square lattice can be mapped to an electric field,

Ei(r) = (−1)ir Di(r), (1)

where Di(r) refers to the dimer coverage on the edge adjacent
to site r along the i direction, which only takes values 0 or 1.
The index ir = 0 or 1 for r ∈ A or B sublattice, respectively. In
the VBS phase, each spin can be paired with one and only one
of its neighboring spins to form spin singlets. This translates
to the local Gauss law for the electric fields,

∂iEi(r) = (−1)ir [1 − q(r)], (2)

where q(x) is the number of unpaired spinons at site r. [It is
worth noting that the “spinon quantum number” corresponds
to the gauge charge of the emergent U(1) gauge field carried
by the fractionalized spinon, which should be distinguished
from the Sz charge.] A free spinon charge appears if no
dimer is touching the site. Breaking a dimer can create a pair
of spinons. Further, let us define the gauge connection, Ai,
which is the conjugate variable to Ei, namely [Ai(x), Ej (y)] =

i
2π

δi jδxy. In the spin picture, the Ai operator breaks (creates) a

FIG. 2. A typical VBS order on a square lattice. When mapping
the dimer order to a compact U(1) gauge theory, the magnetic flux
operator flips local VBS configurations.

dimer on link i if the link does (not) have an existing dimer.
The magnetic flux operator B = ∇ × A flips the local dimer
orientation on a plaquette, as in Fig. 2. Thus, the low-energy
physics of the VBS phase is characterized by a compact U(1)
gauge theory with background charges whose Hamiltonian is
given by the following:

H = U
∑

r,i

Ei[Ei − (−1)ir ] + T
∑
�

cos(∇ × A) (3)

+V
∑

r

[∂iEi − (−1)ir ]2. (4)

The pure (2 + 1)d compact U(1) gauge theory, due to the
instanton events, is always in its confined phase at low energy,
where the spinon excitations experience a linearly confining
potential. The confined phase is mapped to the VBS phase
where the VBS vortices have linear confinement due to the
energy cost of the domain walls connecting the spinons.

Consider the phase transition out of the VBS state by
proliferating the VBS vortices. The quantum critical point can
be described by the following field theory,

L = |(∂μ − iAμ)z|2 + r|z|2 + g|z|4 + 1

4e2
F 2 + · · · , (5)

where z is a CP1 field that captures the spinon degree of
freedom inside the vortex core. Aμ is the emergent gauge field
described previously. Since the spinon is charged under the
emergent gauge field as in Eq. (2), spinons are minimally
coupled to the gauge fields. The hopping of a spinon thus
requires the change of dimer configurations along the path.
In this theory, we implicitly include the 4-fold monopole
creation and annihilation operators which correspond to the
possible instanton events that respect the lattice C4 rotation
symmetry [1–3]. When the spinon is gapped, namely r >

0, the gauge theory is confined due to monopole proliferation
and the system is in the VBS phase. At the critical point,
r = 0, the spinon field becomes massless and there is evi-
dence that the compact U(1) gauge field dynamically becomes
deconfined at the fixed point [1]; i.e., the 4-fold instanton
events are irrelevant under renormalization group flow. As r
decreases below 0, the VBS vortices or spinons condense,
which restores the C4 rotation and spontaneously breaks the
spin rotation symmetry.

III. PLAQUETTE PARAMAGNET IN 2D

Apart from columnar valence bond order, another widely
observed paramagnetic crystalline phase is the VPS (valence
plaquette solid) state which breaks C4 symmetry and lattice
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FIG. 3. Left: VPS order which enlarges the unit cell by 4. Right:
The vortex connecting four distinct VPS patterns carries a spinon.

translation Tx, Ty for both directions. Such a plaquette param-
agnet has been found and fabricated in frustrated magnets and
atomic, molecular, and optical systems [19,21,26]. There are
various types of VPS wave functions which respect the same
symmetries. For example, for a spin- 1

2 system, each valence
plaquette represents a symmetric combination of vertical and
horizontal dimer pairs on the same plaquette. For an SU(4)
spin system with a fundamental representation on each site,
one can have plaquettes in an entangled state of four SU(4)
spins. Regardless of the microscopic configuration inside the
valence plaquette, each spin participates in only one of the
four plaquette clusters adjacent to the site. The VPS order
enlarges the unit cell into four plaquettes, so there are four
distinct VPS patterns related by site-centered C4 rotation, as
shown in Fig. 3.

A. Defect structure

To restore the spatial symmetry, it is essential to prolif-
erate the C4 symmetry defect. For the plaquette crystalline
phase, one can define the four distinct plaquette patterns as
a Z4 boson. The C4 symmetry defect formed by the vortex
configuration of the order parameter carries a spinon. Naively,
one expects the vortex condensate will restore the crystalline
symmetry and concurrently develop magnetic order. However,
in order to drive the defect condensate, vortices need to be
able to fluctuate in spacetime. As opposed to the VBS phase,
where a spinon in the background of dimers can hop among
sites by reconstructing the local valence bond configuration,
a spinon in the background of plaquette order is frozen; it
cannot move away from the original vortex center without
breaking additional plaquettes, as depicted in Fig. 4.

In contrast, a pair of spinons living on the link between ad-
jacent sites can hop along the stripe perpendicular to that link
without breaking additional plaquettes, as depicted in Fig. 5.
Such a spinon pair, which we refer to as a spinon dipole, is

FIG. 4. The spinon inside the VPS vortex has restricted mobility.
It cannot move without breaking additional plaquettes.

FIG. 5. A dipole can move along the stripe transverse to the
dipole’s orientation by exchanging positions with a plaquette.

a 1d subdimensional particle which moves transversely to the
dipole’s orientation.

Based on these observations, the topological defect of
the plaquette order displays restricted motion which exactly
resembles the behavior of fractons. In fracton phases of
matter, the fundamental deconfined quasiparticle excitation
is immobile due to a finite energy barrier associated with
the creation of additional excitations. Meanwhile, a pair of
fractons (dipole) has a certain degree of mobility, though it
too is often restricted to motion only within a submanifold,
such as a line, plane, or fractal.

To make the connection between VPS defects and fractons
precise, we introduce a higher-rank gauge theory description
for the valence plaquette order on a square lattice. By analogy
to the VBS order, the plaquette order can be mapped to a
rank-2 symmetric tensor electric field defined at the center of
each square as follows:

Exy(r) = (−1)ir P(r), (6)

where P = 1 (0) corresponds to the valence plaquette occu-
pancy (vacancy) on each square. The index ir is the same as
defined before. As opposed to the VBS state, where dimers
can have two orientations corresponding to Ex and Ey, the
plaquette electric field is a single-component field, effectively
a scalar. We can also define a conjugate variable Axy, satis-
fying [Axy(r), Exy(r′)] = i

2π
δr,r′ . The operator e±iAxy creates or

annihilates a valence plaquette. As each spin on the site is only
entangled with one of the four adjacent plaquette clusters, one
can define a Gauss law for the rank-2 electric field as

∂x∂yExy(r) = (−1)ir [1 − q(r)], (7)

where q(r) is the number of unpaired spinons at site r. As
long as there is one plaquette adjacent to a site, there is no
free spinon on that site. If plaquettes are absent from all
four squares surrounding the site, then there exists a free
spinon charge at the center. This Gauss law is precisely the
two-dimensional version of the Gauss law seen in the fracton
phase of matter described by a hollow rank-2 symmetric
tensor gauge theory [44,65,66]. Due to the particular double
derivative in Eq. (7), the spinon number is conserved on each
row and column of the system, so the theory respects an
emergent subsystem U(1) symmetry:∫

dx q = 1 − (−1)y
∫

dx (−1)x∂x∂yExy = const. (8)
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FIG. 6. A global flux φx (yi ) globally shifts the valence plaquette
configuration on the row with y = yi.

A similar equation holds in the y direction. Again, we
emphasize that q is the spinon charge quantum number cor-
responding to the emergent U(1) symmetry, which should be
distinguished from the total Sz charge. In particular, only the
spinon charge is conserved on rows or columns while the Sz

charge is conserved globally. Due to the emergent subsystem
symmetry, single-spinon motion is prohibited. However, a pair
of spinons, which we refer to as a dipole, can hop only along
the stripe perpendicular to its orientation.

Based on the Gauss law in Eq. (7), the low-energy sector is
invariant under the following gauge transformation,

Axy → Axy + ∂x∂yα, (9)

for any function α with arbitrary spatial dependence. Since
there is only one component of the gauge field, there is no
local gauge-invariant operator representing a flux degree of
freedom. The absence of a local flux operator indicates that
there is no resonant process that can flip plaquette configura-
tions locally into each other. However, one can define global
flux operators,

φx(yi ) =
∫

dx(−1)xAxy(yi ), (10)

φy(xi ) =
∫

dy(−1)yAxy(xi ). (11)

These global flux operators shift a row (or column) of the
valence plaquette configuration by one unit cell, as in Fig. 6.

B. Bond-ordered phases

Due to the restricted mobility of the spinon corresponding
to the VPS defect, it is difficult for the spinon to condense
directly. We therefore do not expect a continuous transition
from the VPS phase to a simple Néel antiferromagnet. Based
on this observation, our next goal is to figure out the possible
phases near the plaquette melting transition, driven by con-
densation of dipolar pairs of vortices. Since these vortex pairs
live along the links of the lattice, it is natural to expect that
the resulting phase will be well described in terms of valence
bonds, instead of valence plaquettes. The precise nature of this

FIG. 7. Condensation of triplet dipoles can lead to antiferromag-
netic order coexisting with a form of bond order.

intermediate phase will depend on the microscopic structure
of the dipolar pair, which is dictated by the details of the
underlying Hamiltonian.

In the simplest case, the spinon dipole may form an SU(2)
singlet. In this situation, the result of dipole condensation
will be a type of valence bond solid. Even in this case,
there are several types of possible VBS states which can
result, depending on how precisely the dipoles condense. For
example, condensation of y-directed dipoles will naturally
lead to a VBS state with all valence bonds aligned with
the y direction. This physics is borne out by studies on
two-dimensional quantum dimer models on a square lattice,
which can host a continuous transition between plaquette
order and a staggered VBS phase, whose critical point is de-
scribed by the quantum Lifshitz theory with z = 2 dynamical
exponent [80].

Beyond such VBS phases, obtained by condensing singlet
spinon dipole, another possibility is that the two spinons of
a dipole tend to align their spins in a triplet state. In this
case, since the dipoles are carrying a net spin, the resulting
condensed phase breaks spin rotation symmetry. However,
this state will not be the simple Néel phase, but rather will
have antiferromagnetic order coexisting with a form of bond
order. An example of a system with this type of order is
depicted in Fig. 7. Further condensation of defects of the
bond order can then drive this phase into a simple Néel
antiferromagnet.

C. Algebraic bond liquid phase

Beyond analytical exploration of transitions to bond-
ordered phases, there are also various numerical simulations
of frustrated spin models and hard-core boson models which
appear to reveal a possible symmetric gapless phase nearby
the VPS phase. This indicates that a plaquette-ordered system
may melt into a more exotic phase under certain conditions. In
this section, we propose a stable algebraic bond liquid phase
with power-law correlations which can potentially emerge
near the VPS phase.
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In our previous discussion, we have elucidated that the
spinon pair along a link can hop and fluctuate along the
1d stripe perpendicular to the dipole orientation. During the
melting of the VPS paramagnet, the dipole proliferates and
fluctuates along the stripe with quasi-one-dimensional disper-
sion. Because of the restricted dimension, the spinon dipole
cannot establish long-range order. Instead, the dipoles form
a state with quasi-long-range order. The system forms an
algebraic bond liquid.

To elucidate the behavior of the emergent spinons during
the plaquette melting transition, we implement the Schwinger
boson representation,

S = 1
2 z†σz, (12)

with the constraint z†
1z1 + z†

2z2 = 1. The two-component fields
(z1, z2)T are the bosonic spinons. The total charge density is
fixed in the original microscopic model. The relative den-
sity 1

2 (z†
1z1 − z†

2z2) corresponds to the Sz quantum number.
Both z1 and z2 couple to the same emergent U(1) gauge
field, while each of them also carries ± 1

2 charge for Sz. The
magnon excitation S+ = z†

1z2 corresponds to the exciton pair
of Schwinger bosons with opposite flavors. The subsystem
charge conservation law in Eq. (7) indicates that the gauge
charge of the Schwinger boson is conserved on each line. We
can approximately express the Schwinger boson operator in
terms of a U(1) rotor field as z†

a ∼ eiθa , writing the effective
Hamiltonian of the bosons in the following form,

H = U
∑

r

Exy[Exy − (−1)ir ] + u
∑

r

( ∑
a=1,2

n̂a − 1

)2

+ t
∑

a=1,2

cos(∂x∂yθa + Axy), (13)

where the u term is to implement the on-site constraint n1 +
n2 = 1, which can be released when coarse graining in the
continuum limit.

Note that the Hamiltonian contains no usual kinetic term
for the phase variables such as (∂iθa)2, as a single spinon is
immobile in any direction. Instead, the leading-order kinetic
term ∂x∂yθ corresponds to an x-directed dipole hopping along
the y direction, or vice versa. Such dipole hopping requires
reconstruction of the valence plaquette pattern along the hop-
ping path, so the dipole current minimally couples with the
gauge field Axy. Since there is no local gauge flux for such a
higher-rank gauge field, the role of gauge fluctuation merely
projects the Schwinger boson to the physical Hilbert space of
n1 + n2 = 1.

In the easy-plane anisotropy limit where 〈Sz〉 = 0, we take
〈n1〉 = 〈n2〉 = 1

2 so each slave boson is at half filling. This
theory resembles the exciton Bose liquid phase studied in
Ref. [71–74], where the bosons interact via a ring-exchange
interaction which respects a subsystem U(1) symmetry. Such
an exciton Bose liquid constitutes a stable gapless phase
with power-law correlation at fractional filling. When the
u/t becomes small and the theory tends to have order in θ

variables, we can implement a “spin-wave” approximation,

expanding the cosine terms, and obtain a Gaussian theory,

L = K

2

∑
a=1,2

(∂tθa)2 − K

2

∑
a=1,2

(∂x∂yθa + Axy)2. (14)

The action is invariant under the following transformation,

θa → θa + fa(x) + ga(y), (15)

which are the remnant of the subsystem symmetry of the VPS
phase. We can decompose the two branches as θ± = θ1 ± θ2:

L = K

2

∑
a=+,−

(∂tθa)2 − K

2
(∂x∂yθ+ + Axy)2 − K

2
(∂x∂yθ−)2.

(16)

We here rescale space and time to set the two coefficients
equal. There is then just one remaining dimensionless pa-
rameter as K = √

t/u. Such a quadratic Lagrangian, in which
all terms involve derivatives of the fields, describes a scale-
invariant phase at long length scales. In a sense it can be
viewed as a “fixed point” Lagrangian. The legitimacy of
this approximation and the relevance of compactness will be
discussed in detail. The θ+ mode and the gauge field Axy gap
out each other through an analog of the Higgs mechanism.
Subsequently, only the θ− branch is physical and that is the
degree of freedom we will consider here and after.

We first scrutinize the confinement energy between spinons
and dipoles in the VPS phase. Due to the subsystem sym-
metry, the spinons must be excited in quadrupole pairs with
two living on the same row or column of the lattice. Fol-
lowing the duality and bosonization argument introduced in
Refs. [71,72], we can map the theory in Eq. (16) to its dual
representation. As the θ− fields are compact with the identifi-
cation θ− = θ− + 2πZ , particular types of topological defects
will be allowed, which can be most conveniently addressed by
passing to a dual representation N, φ defined on the plaquette
centers [81]:

n̂− − 1
2 = ∂i∂ jφ−, N̂− = ∂i∂ jθ−; (17)

N̂ and φ are a pair of conjugate variables with φ being discrete
valued and N̂ being compact with N ∈ [0, 2π ].

The Gaussian part of the dual action is

L = 1

2K
(∂tφ−)2 − 1

2K
(∂x∂yφ−)2. (18)

In this dual picture, due to the discreteness of φ−, one can
also add vertex operators such as cos(4π∂iφ−) in the effective
theory. In the VPS phase, these vertex terms are relevant so the
spinon and dipole are confined, on which we elaborate further
below. In the presence of these vertex operators, the separation
of four spinons costs a linear confinement energy proportional
to the domain wall length.

We now demonstrate the stability of the algebraic bond
liquid phase obtained via melting of the valence plaquette
order. In the original representation in Eq. (16), the correla-
tion between two charges 〈cos[θ−(r)] cos[θ−(0)]〉 vanishes at
long wavelength due to the subsystem U(1) symmetry. The
long-range correlation between Schwinger bosons implies the
spinons cannot be excited in pairs but instead are created in
quartet forms. Follow the calculation in Ref. [72], we obtain
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that the leading-order nonvanishing correlation functions are
between two dipole operators living on bonds,

〈cos(∂xθ−)(0, 0, 0) cos(∂xθ−)(0, y, τ )〉 = 1

(τ 2 + y2)1/(Kπ2 )
,

〈cos(∂yθ−)(0, 0, 0) cos(∂yθ−)(x, 0, τ )〉 = 1

(τ 2 + x2)1/(Kπ2 )
.

(19)

Notice that the dipole-i correlation function is only nonzero
when the dipoles are at the same row transverse to the dipole
orientation. Thus, the dipoles effectively behave as a 1d
Luttinger liquid with restricted motion and algebraic corre-
lation on each stripe. This quasi-one-dimensional behavior
is crucial for the stability of the bond liquid phase. As the
dipole displays 1d motion within the same stripe, the quantum
fluctuation forbids any dipole condensation with off-diagonal
long-range order as a consequence of the Mermin-Wagner the-
orem. Instead, there appears a quasi-long-range order between
dipoles akin to the Kosterlitz-Thouless transition. The quasi-
long-range order between dipoles corresponds to a spinon-
quadrupole excitation with four spins living on the corner of a
thin stripe.

To explicate the stability of the bond liquid phase, we
need to consider the compactness of the θ− term. In the dual
representation in Eq. (18), the φ− are chosen to be half inte-
gers so we consider the vertex operators V = cos(4π∂iφ−),
V ′ = cos(2π∂2

i φ−). When K is small, these vertex operators
turn out to be relevant, so the system is driven into a Mott
phase which essentially breaks the crystalline symmetry. In
Refs. [21,72], it was shown that there is a finite region for
K > Kc where all vertex operators are irrelevant, so the al-
gebraic bond liquid is stable. Hence, there could potentially
appear an algebra bond liquid phase near the VPS phase.

When K < Kc, the vertex operator proliferates and thus
creates a spin gap. According to the Lieb-Schultz-Mattis
theorem, such a gapped spin- 1

2 model does not support a
featureless Mott phase, so the ground state must break lat-
tice symmetry, which corresponds to the VBS order or VPS
order depending on the microscopic symmetry of the vertex
operator. For Vi = cos(4π∂iφ−), the vertex operator creates a
kink for the dipole i along the transverse stripe. If both Vx,Vy

proliferate, the system breaks translation on both directions
and thus falls into the stripe order or a plaquette order,
depending on the sign of Vi [71]. When ∂iφ− = 0, the system
becomes prone to plaquette order as

cos(2π∂iφ−) ∼ cos(2π∂y∂xθ−)eiπri , (20)

which exactly agrees with our VPS picture. Based on this
observation, we conclude that the proliferation or suppression
of Vi drives the transition between a VPS phase and the
algebraic bond liquid.

When ∂iφ− = π/2, the system favors a stripe order as

sin(2π∂iφ−) ∼ (
n̂− − 1

2

)
eiπri . (21)

Finally, we mention that in Refs. [73,74], the authors present
a microscopic boson model with various ring-exchange terms
which supports a phase transition between plaquette order
and the bond liquid phase, with a possible competing order
toward a charge density wave. This opens a search for the

unconventional plaquette melting quantum phase transition in
concrete spin models.

D. Signatures of the algebraic bond liquid phase

The algebraic bond liquid phase is engendered by the
quasi-one-dimensional dipole fluctuations. Due to the re-
stricted motion of spinons, a single-spinon excitation is
gapped and the spinon correlation 〈eiθa (r)eiθa (r′ )〉 vanishes at
long wavelength due to the subsystem U(1) symmetry. The
bond correlator, denoting the dipole correlation of spinon
pairs, has quasi-long-range order as

〈eiθa (r)e−iθa (r+ex )eiθa (r+y)e−iθa (r+ex+y)〉

y → ∞−−−−→ = 〈ei∂xθ−(r)ei∂xθ−(r+y)〉 = 1

(y)1/(Kπ2 )
,

〈eiθa (r)e−iθa (r+y)eiθa (r+ex )e−iθa (r+ey+x)

x → ∞−−−−→ = 〈ei∂yθ−(r)ei∂yθ−(r+x)〉 = 1

(x)1/(Kπ2 )
. (22)

It is worth mentioning that the dipole correlation is anisotropic
and only displays algebraic order along the transverse direc-
tion, as a consequence of the subdimensional behavior of the
dipoles. In particular, the quasi-one-dimensional motion of the
dipole, originating from the subsystem charge conservation
law, is crucial for the stability of the bond liquid phase.
While spontaneous U(1) symmetry breaking is generally ex-
pected in 2d quantum systems, a subsystem U(1) symmetry
consists of independent symmetry operations acting on an
extensively large set of 1-dimensional lines. The quantum
fluctuations thereby suppress dipole long-range order, so the
Mermin-Wagner theorem still applies. As a result, the bond
correlations decay as a power law due to the absence of
spontaneously broken subsystem U(1) symmetry in 2d .

However, as the spinon is the emergent fractionalized de-
gree of freedom, its four-point correlation cannot be measured
directly. Instead, we can measure the magnon pair correlator,

S+ = ei(θ1−θ2 ), S− = e−i(θ1−θ2 ),

〈S+(r)S−(r + ex )S+(r + y)S−(r + ex + y)〉
= 〈eiθ1(r)e−iθ1(r+ex )eiθ1(r+y)e−iθ1(r+ex+y)〉

× 〈eiθ2(r)e−iθ2(r+ex )eiθ2(r+y)e−iθ2(r+ex+y)〉

= 1

(y)1/(Kπ2 )
,

〈S+(r)S−(r + ey)S+(r + x)S−(r + ey + x)〉

= 1

(x)1/(Kπ2 )
, (23)

which also renders an algebraic correlation. The above result
is based on the one-loop correction where the magnon correla-
tion is simply the product of two Schwinger boson correlators.
Including higher-loop corrections can potentially change the
exponent of the algebraic correlation.

If we go back to the square lattice structure with unit
length a, the spinon pair between links can only hop along
the transverse direction with even lattice units 2a (we will
take a = 1 henceforward). Thus the periodicity of the unit
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cell is doubled and the Brillouin zone sits in the region ki ∈
[−π/2, π/2] with dispersion as

ω(k) = | sin(kx ) sin(ky)|. (24)

The low-energy dispersion displays a zero-energy nodal line
which qualitatively changes the IR behavior, including trans-
port features and entanglement. Such an excitation spectrum
with nodal lines can be measured in terms of the static
structure factor for the Sz correlator. In our slave-boson repre-
sentation, the Sz number corresponds to the imbalanced charge
density between the two Schwinger bosons as Sz ∼ n1 − n2,
so the static structure factor for the Sz correlator can be written
in terms of the slave-boson correlator as

Szz(k) ∼ 〈[n1(k) − n2(k)][n1(−k) − n2(−k)]〉
= 〈[n1(k)n1(−k) + n2(k)n2(−k)]〉
∼ | sin(kx ) sin(ky)|. (25)

This structure factor can be measured using conventional
experimental techniques, such as inelastic neutron scattering
and electron spin resonance.

As opposed to the usual bosonic superfluid theory, whose
low-energy mode condenses at zero momentum, the bond
liquid phase contains two nodal lines along the two axes.
At each fixed momentum kx, the dispersion resembles a
relativistic 1d theory, E = v f ky. Such a bond liquid phase,
with low-energy modes containing nodal lines, is termed as
a “Bose surface,” in analogy with the 2d Fermi liquid with
a Fermi surface. For both Fermi surfaces and Bose surfaces,
each patch with fixed transverse momentum carries a linearly
dispersing 1d mode. Due to the existence of the Bose surface,
the low-energy transport behavior of the bond liquid phase is
qualitatively different from the usual photon gas or weakly
interacting bosons. For each fixed nonzero momentum kx, the
low-energy modes display linear dispersion with respect to ky,
akin to 1d relativistic bosons. In particular, due to the nodal
lines at kx, ky = 0 with a subextensive number of quasi-1d
modes, the specific heat at low temperature scales as [72]

Cv ∼ T ln(1/T ), (26)

which is similar to the marginal Fermi liquid theory in 2d .
The excitation in Eq. (24) corresponds to the dipole ex-

citation containing two spinons between bonds. However, as
the spinon is conserved on each line, the dipole excitations
must be created in pairs. To be concise, dipoles are created
in pairs on the same stripe as a consequence of subsystem
symmetry so the spinon appears in quadrupole form. This
phenomenon is in close analogy to the spinon excitations in 1d
spin chains where the magnon excitations can fractionalized
into two spinon excitations. Consequently, the spin spectrum
function covers a broad continuum whose upper and lower
limits correspond to the parallel and antiparallel motion of
the two spinons. Such continuum in the spectral function
distinguishes the spinon excitations with the regular magnons
with sharp dispersion.

To seek the collective mode of the dipoles, we calculate
the spectral function for 〈B†

xBx〉. The Bx = S−(r)S−(r + ex )
operator creates a pair of magnons between an x link. For
a nonfractionalized bond liquid [71,72] whose dipoles are
composed of magnon pairs with integer Sz charge on each row,

the spectral function has contributions from the magnon pair
excitations with a sharp dispersion relation. In our algebraic
bond liquid state, the dipole excitations, created in pairs, carry
two spinons between the link with half-Sz charge on each row
or column. Such a collective excitation can be interpreted as
two dipoles on the same stripe moving along the transverse
direction with independent dynamics.

In our slave-boson theory, the bond operator Bx =
S−(r)S−(r + ex ) = e−i∂x (θ1−θ2 ) creates the x-dipole excitation
for both z1, z2 slave particles, each carrying half-Sz charge.
As these slave-dipole pairs are deconfined excitations in the
bond liquid phase, each propagates along the stripe with
independent motion and the collective excitation corresponds
to the combination of the two. To reach such a collective
excitation among spinon pairs, we calculate the static structure
factor for the 〈B†

xBx〉 = 〈ei∂x (θ1−θ2 )e−i∂x (θ1−θ2 )〉 correlator,

〈B†
x (Q,
)Bx(−Q,−
)〉

=
∫

dkdω eik2G1(k,ω)ei(k+Q)2G2(k+Q,ω+
),

Gi(k, ω) = 〈θi(k, ω)θi(−k,−ω)〉 = 1

ω2 − E2(k)
,

E (k) = | sin(kx ) sin(ky)|. (27)

To extract the collective excitation spectrum, we expand the
correlator as

〈B†
x (Q,
)Bx(−Q,−
)〉 =

∑
m,n

1

m!n!
�m,n,

�m,n(Q,
)

=
∫

dkdω[k2G1(k, ω)]n[(k + Q)2G2(k + Q, ω + 
)]m.

(28)

The poles in each �m,n(Q,
) correspond to a collective
mode. We start with the leading-order expansion �1,1(Q,
),

�1,1(Q,
)

=
∫

dk
(k2)(k + Q)2

E (k)

{
1

[E (k) + 
]2 − E2(k + Q)

+ 1

[E (k) − 
]2 − E2(k − Q)

}
. (29)

This propagator renders a series of poles as 
(Q) =
E (Q − k) + E (k). The energy spectrum at fixed momentum
Q covers a broader range depending on the choices of k.
This continuum spectrum can be understood as the two-dipole
excitation with dispersion E (Q − k) and E (k). The total mo-
mentum is fixed as Q with Q − 2k being relative momentum
due to the independent motion of the dipole pair.

In particular, if we fix a slice of the momentum space by
taking Qy = 0, π , the energy spectrum has an upper and lower
limit as


(Qx, Qy = 0) ∼ | sin(kx )| + | sin(Qx − kx )|,

upper (Qx ) ∼ sin(Qx/2), 
lower (Qx ) ∼ sin(Qx ). (30)

The upper or lower limit of the spectrum denotes the par-
allel or opposite motion for the two dipoles. This collective
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FIG. 8. Continuous energy spectrum with respect to Qx with
fixed Qy = 0.

excitation fills the continuum region between these two limits,
as depicted in Fig. 8, which resembles the spinon spectrum in
1d antiferromagnetic spin chains. Actually, when fixing Qy,
we focus on the collective motions of y dipoles along the
x direction. As the dipole’s motion is restricted along the x
stripe, the collective mode is attributed by the dispersion of
two dipoles along the stripe [82], which can be regarded as
the descendent of the spinon in 1d spin chains.

Another signature for the algebraic bond liquid is the
violation of the area law for entanglement entropy, arising
as a consequence of the Bose surface. In Ref. [76], it was
demonstrated that if we equally bipartition the bond liquid
state on a lattice along the x axis, the entanglement entropy
scales as Lx ln(Ly), which resembles the entanglement entropy
for the 2d Fermi surface [83–85]. Such a violation of the area
law can be roughly understood by dividing the Bose surface
into small patches over which the surface looks approximately
flat, such that each patch can be regarded as a one-dimensional
relativistic boson whose entanglement entropy scales as ln(L).
Summing over the contributions from all patches, the total
entanglement entropy should behave as L ln(L). Such long-
range entanglement is smoking-gun evidence for the Bose
surface which can be detected in numerical simulations.

E. SU(3) Plaquette defect on triangle lattice

Our previous discussion based on plaquette order on square
lattices can be straightforwardly applied to other bipartite
lattices, such as the honeycomb lattice. In particular, the
spinon living in the C3 plaquette defect obeys a conservation
law on each θ = 2π/3 line, so the spinon is also a fracton. A
spinon pair, regarded as a dipole, can hop on transverse zigzag
stripes as a 1d subdimensional particle.

Finally, we would like to bring attention to the SU(3)
plaquette order on a triangular lattice with possible fractal
dynamics. A typical plaquette order contains SU(3) singlets
between three SU(3) spins living on the three sites of left-
oriented triangles, as illustrated in Fig. 9. As the SU(3)
valence plaquette only lives on the left-oriented triangles, the
system breaks C3 rotation symmetry and the ground state
contains three VPS configurations related by C3 rotation.

A typical topological defect renders the breaking of the
SU(3) singlet on one triangle which creates three dangling
SU(3) spins. It is obvious that one cannot move or separate a
single SU(3) spin out of the defect due to fractal conservation

FIG. 9. Left: SU(3) plaquette order on the triangular lattice.
Right: Breaking a plaquette creates three SU(3) spins.

laws. In particular, if we define P = ± as the plaquette oc-
cupancy or vacancy for each left-oriented triangle, the charge
conservation law for SU(3) spin is

Pi+e1 Pi+e2 Pi+e3 = (−1)qs
; (31)

ei are the three vectors from a site toward the left-oriented
triangles, qs is the SU(3) charge. Apparently, the SU(3) charge
is conserved in each fractal manifold with the shape of a Sier-
pinski triangle. Thus, it is impossible to move a single SU(3)
toward any direction due to the special fractal conservation
law. Due to the fractal dynamics and restricted mobility of
SU(3) spins, the melting of the plaquette order does not engen-
der any deconfined quantum critical point (DQCP) toward the
spin SU(3) breaking state. At this stage, we are still agnostic
about the possible phase diagrams near this plaquette order
phase, so we leave this as a topic for future study.

IV. FRACTONS IN 3D CUBE ORDERED
AND VALENCE PLAQUETTE PHASES

In this section, we extend the scope of our analysis to a 3d
cubic lattice. We consider properties of the topological defects
in 3d valence cube solid (VCS) and valence plaquette solid
(VPS) phases. We show that the topological defects of these
orders are generically fractons. Then we consider possible
outcome of the melting transitions of these orders indicated
by the fracton dynamics.

A. 3d valence cube solid order

A natural generalization of the 2d plaquette order in 3d
is the cube order. The cube order for an SU(2) spin- 1

2 model
on a cubic lattice is a state which has resonating clusters of 8
spins on every other cube in the lattice. One can also imagine
a similar state for models with larger spin symmetry such as
SU(4) and SU(8). We argue that topological defects of these
cube-ordered phases are emergent fractons just as in the 2d
plaquette order. We also propose possible neighboring phases
assuming the fractonic dynamics persists across the phase
transition. In the following, we restrict ourselves to the case
of spin- 1

2 systems on cubic lattices.
The fractonic nature of the topological defects becomes

clear after mapping the cube order to a rank-3 tensor gauge
theory. Since a cubic lattice is a bi-partite lattice, on each cube,
one can define an “electric” field Exyz(r) = (−1)irC(r), where
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ir = odd or even if r ∈ A or B sublattice, and C(r) = 1 (or 0)
denotes that there is (or not) a resonating cluster on cube r
[86]. Exyz furnishes a rank-3 hollow gauge theory in 3d . In
the low-energy Hilbert space, the electric field satisfies the
following Gauss law around a site on the lattice,

∂x∂y∂zExyz(r) = (−1)ir [1 − q(r)], (32)

where q = 0 or 1 denotes the number of free spinons at site r,
and all the derivatives should be treated as lattice derivatives.
The q = 1 state corresponds to a topological defect of the cube
order, which maps to a point charge of the rank-3 gauge field.

One can introduce the conjugate field Axyz(r) for Exyz(r),
namely [Axyz(r), Exyz(r′)] = i

2π
δr,r′ . The e±iAxyz (r) is the cre-

ation or annihilation operator for Exyz(r) on cube r. The
Gauss law in the low-energy subspace in Eq. (32) implies the
following gauge transformation for Axyz,

Axyz → Axyz + ∂x∂y∂zλ. (33)

With this gauge transformation, we can locally remove the
gauge field. Therefore, there is no local “magnetic” flux in
this rank-3 gauge theory. Physically, this means there is no
local resonating process for the cube order. Namely, any local
adjustments of the cube order parameter inevitably break the
Gauss law constraint. Of course, there are still global flux
operators, which can adjust the cube order either on a whole
plane or along a straight line, analogous to the global flux
operators appearing in the 2d case in Eq. (11).

Since the topological defect, which traps a single spinon,
appears as the matter field that couples to the rank-3 gauge
field, it is a fracton that cannot move along any direction.
Specifically, the Gauss law of this theory implies conserva-
tion of all components of dipole and quadrupole moments,
along with certain components of the octupole moment. The
mobility of other point defects of the cube order is also easy
to determine. From the physical picture of cube order, one
can see that the spinon dipoles are also immobile. The spinon
quadrupole on a plane is movable along the normal direction;
hence it is a lineon.

Now we consider possible melting transitions if this frac-
tonic constraint is kept all the way through. Since the spinon
monopoles and dipoles have no mobility at all, it is hard to
consider their condensation. The most probable way to drive
the system out of the cube order is to proliferate the planar
spinon quadrupole, which is movable along different lines.
However, one dimension cannot host true long-range order of
continuous symmetry. Therefore, the resultant phase may be
an algebraic spin liquid similar to that in the 2d case.

Let us write down the low-energy field theory which en-
codes the coupling between the rank-3 gauge field and spinon
matter field,

H = U
∑

r

Exyz[Exyz − (−1)ir ] + u

( ∑
a=1,2

na − 1

)2

+ t
∑

a=1,2

cos(∂x∂y∂zθa + Axyz ),

where we have again used the CP1 map as in Eq. (12) to
fractionalize the spin at the topological defects. As before,
the n1 and n2 are the number operators of the two bosonic

spinons. We adopt a roton approximation for the spinons.
Correspondingly, the θ1 and θ2 are the phases of the two
bosons. This theory is invariant under the following symmetry
transformation,

θa → θa + g1a(x, y) + g2a(y, z) + g3a(z, x). (34)

Consider an easy-plane limit, namely, adding a term
u′ ∑

a=1,2(na − 1
2 )2 to favor n̄1 = n̄2 = 1

2 . With a large t , the
system tends to fall into an ordered state of θ1 and θ2. In a spin-
wave approximation, we can expand the cosine term and take
the Gaussian theory. In the resultant theory, the gauge fields
and the ∂x∂y∂z(θ1 + θ2) mode gap out each other through an
analog of the Higgs mechanism. The only physical mode left
is ∂x∂y∂z(θ1 − θ2). Let us label θ = θ1 − θ2 and n = n1 − n2.
The continuum theory now reads

HG = 1

8K
n2 + K

2
(∂x∂y∂zθ )2, (35)

where we have rescaled spatial coordinates to simplify the
Hamiltonian to this form with K ∼ √

t/u′. Because of the
symmetry in Eq. (34), there is no cosine term for θ . The Gaus-
sian theory describes a 3d generalization of the 2d algebraic
liquid phase, in which the planar quadrupole operators acquire
algebraic correlations. For example, the quadrupole operators
Qz = cos(∂x∂yθ ) have zero equal-time correlation along the x
and y directions due to the symmetry in Eq. (34); however,
there is power-law correlation along the z direction,

〈Qz(0, 0, z)Qz(0, 0, 0)〉 ∼ 1

|z|1/(π2K )
. (36)

Planar quadrupole operators along different planes have simi-
lar power-law correlations. The directional power-law correla-
tions of the planar quadrupoles are the remnant of their fracton
dynamics in VCS phase.

In the Gaussian theory, we have ignored the compactness
of the θ variable. To justify the stability of the Gaussian the-
ory, one has to consider the relevancy of the vertex operators.
To do this, it is most convenient to go to the dual description.
We can have a duality map

1
2 n = ∂x∂y∂zφ, ∂x∂y∂zθ = N, (37)

where φ and N are conjugate variables defined on the dual
lattice sites. φ should take values in Z/2, while N ∈ [0, 2π ).
The dual Hamiltonian reads

HD = K

2
N2 + 1

2K
(∂x∂y∂zφ)2 + · · · . (38)

In this continuous field theory, we have regarded φ fields as
real numbers. However, since the φ variable actually takes
values in Z/2, we have to include cosine terms, namely the
vertex operators, to reinstall the integral constraint of the φ

fields. There are various vertex operators that can appear in
the theory, for example, V = cos(4πφ), Vx = cos(4π∂xφ),
Vxy = cos(4π∂x∂yφ), and so on. The task is to determine the
scaling dimensions of these vertex operators and to inspect
whether they are relevant at the Gaussian fixed point. The
Gaussian theory has an emergent symmetry,

φ(x, y, z) → φ(x, y, z) + f1(x, y) + f2(y, z) + f3(z, x), (39)
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which restricts the correlations of the vertex operators. The
correlations between V at different points are zero, similarly
for Vx, due to the emergent symmetry. The Vxy operator can
have nonzero correlation functions only along the z direction.
The most relevant vertex operator has a correlation function
as follows,

〈Vxy(0, 0, z)Vxy(0, 0, 0)〉 ∼ 1

|z|η′K , (40)

with η′ > 0 depending on the UV definition of the vertex
operator. We can see that for large enough coupling K , the
vertex operators in the theory can all be irrelevant; hence, the
algebraic spin liquid is stable.

B. Tensor gauge theory and fractons in 3d VPS

Consider an SU(2) spin model on a cubic lattice. In analogy
with the previously discussed 2d valence plaquette order,
the 3d plaquette order contains 12 distinct plaquette order
patterns, as there are 12 plaquettes adjacent to a single site.
Such plaquette order breaks cubic symmetries and translations
while maintaining the SU(2) spin rotation symmetry. We now
show that the valence plaquette order on the cubic lattice,
similarly to the 2d case, can be mapped to a hollow rank-2
gauge theory [21,62,66].

We denote the plaquette order on each i- j square as a tensor
electric field,

Ei j (r) = (−1)ir Pi j, (41)

where the binary variable Pi j = 1 (0) corresponds to the va-
lence plaquette occupancy (vacancy) on each square. ir is
again the sublattice index for site r. As the plaquette lives
on three i- j planes, there are three components of the tensor
electric field Exy, Ezy, Exz, forming a symmetric rank-2 hollow
(i.e., purely off-diagonal) gauge theory [21,62,66]. The gauge
field Ai j , as the conjugate variable of Ei j satisfying the usual
commutation relation [Ai j, Ei j] = i

2π
, is the operator which

creates or annihilates a valence plaquette on each square and
thus enables plaquette fluctuation. This is different from the
2d case as in 2d the plaquette order cannot fluctuate locally.
Since each spin on a site is only entangled with one of the 12
adjacent plaquette clusters, one can write down the analogy of
the Gauss law for the rank-2 gauge field as follows,

∂i∂ jEi j (r) = (−1)ir [1 − qs(r)], (42)

where ∂i should be regarded as the lattice derivative on the
cubic lattice and the Gauss law respects the cubic symmetry.
This Gauss law exactly resembles the hollow rank-2 sym-
metric gauge theory in 3d as the U(1) generalization of the
X-cube fracton model [21,29,30,62,66]. Due to the particular
double derivative in Eq. (42), the spinon is conserved on each
i- j plane, so the theory respects a subsystem planar U(1)
symmetry. Consequently, a fundamental topological defect,
which carries a single spinon, is a fracton that is restricted
from moving in any direction. In addition, the topological
defects which host a pair of spinons along a link can hop
within the 2d plane which is perpendicular to its dipole
orientation. As opposed to the 2d VPS order, the plaquette
configuration on the cubic lattice can fluctuate and resonate
locally on each cube. These local fluctuations defined on each

FIG. 10. The flux operator creates resonance between different
plaquette configurations.

cube can be mapped to three types of magnetic flux operators
in the gauge theory language,

Ba = εi ja∂iA ja, (43)

which are invariant under the following gauge transformation,

Ai j → Ai j + ∂i∂ j .α. (44)

Differently from the vector U(1) gauge theory in 3d , the flux
operators here are pointlike excitations obeying the identity∑

a Ba = 0. In particular, the flux excitations are also fractons,
known as lineons [21,30], which only move along straight
lines. Such flux operators flip the plaquette configuration
on one cube, as in Fig. 10, which generates resonant states
between different flippable plaquette configurations.

A typical Hamiltonian for the pure compact rank-2 gauge
theory can be written as follows,

H = U
∑

r

∑
i, j

Ei j[Ei j − (−1)ir ] + V
∑

r

(εki j∂kEi j )
2

− T
∑

r

∑
a=1,2,3

cos(Ba); (45)

the electric fields are subject to the Gauss law on every site.
Due to the proliferation of topological defects, namely the 2π

instanton tunneling which turns out to be relevant, the pure
rank-2 gauge theory is generically in a confined phase with
crystalline orders [21].

Next we consider matter fields and possible Higgs-like
transitions in this rank-2 gauge theory. The matter field that
couples to the gauge theory are the topological defects of the
VPS order,

Hm = u
∑

r

( ∑
a=1,2

na − 1

)2

+ t cos(∂i∂ jθa + Ai j ), (46)

where again we have used the CP1 formalism to represent the
spinon trapped in the topological defects. The single spinons
are fractons that cannot move, while a pair of spinons can
move in the plane that is perpendicular to its dipole moment.
Let us use this hierarchy of matter field mobilities to infer
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the possible nearby phases. Due to the restricted motion of
the spinon, a direct condensation of spinons is inhibited. The
leading-ordering instability should be dipole condensation,
where the spinon pair between links acquires coherence along
a 2d plane. Such condensation restores the mobility of the
spinon along the dipole direction and thus breaks subsystem
symmetry. Depending on the microscopic Hamiltonian, the
spinon pair condensate could engender a valence bond solid
or liquid phase. In the following, we will consider a case
with strong anisotropy where the melting transition leads the
system to a valence bond solid state.

C. An anisotropic VPS

We now consider a special limit of the valence plaquette
solid with strong anisotropy along the z direction; namely,
the valence plaquettes energetically favor being on the xz, yz
squares. In this case, one can imagine a columnar-plaquette-
ordered ground state along the xz or yz direction, which
spontaneously breaks the C4 rotation along the z direction.
In this anisotropic case, the low-energy Hilbert space has
Exy = 0. Thus the Gauss law is reduced to

∂x∂zExz(r) + ∂y∂zEyz(r) = (−1)ir [1 − qs(r)]. (47)

Notice there are only two electric operators, corresponding to
the plaquettes on xz and yz planes. A single spinon is still
immobile, while a pair of spinons along a z link can hop on
the x-y plane as a 2d subdimensional particle. A spinon pair
along an x or y link is conserved in each z stripe, so they are
restricted to fluctuate along z.

The valence plaquette configuration can fluctuate and res-
onate between the side faces of the cube. Such a local plaque-
tte configuration resonance corresponds to the flux operator,

Bz = εi jz∂iA jz, (i, j ∈ x, y), (48)

which is invariant under the following gauge transformation,

Aiz → Aiz + ∂i∂zα. (49)

The effective field theory description for this anisotropic limit
can be written as

H = U
∑

r

{Exz[Exz − (−1)ir ] + Eyz[Eyz − (−1)ir ]}

+ V
∑

r

[(∂yExz )2 + (∂xEyz )2] − T cos(Bz ), (50)

which is derived from Eq. (45) by enforcing Exy = 0 and
confining the Axy gauge field component.

As the plaquette order fluctuates, there can appear vortex
configurations where the four plaquette patterns related by Cz

4
symmetry meet at a point, forming a 2d vortex, as shown in
Fig. 11. This Cz

4 vortex defect, carrying a spinon pair along
a z link, can fluctuate on the x-y plane. Similarly, there are
spinon pairs along the x and y links. However, they can only
fluctuate along the z direction due to the fracton constraint and
anisotropy.

Now let us consider a zero-temperature quantum melting
transition driven by condensation of these spinon pairs. We
start from a particular VPS state, say, all the plaquette is along
the x-z plane. The melting transition will try to break the
plaquettes. We can imagine a situation where the plaquette can

FIG. 11. A pair of spinons can hop on the 2d plane perpendicular
to its polarization.

only break into two z-direction dimers in the Hilbert space. In
this limit, we can imagine a VPS to VBS phase transition. Due
to the fractonic nature of the dimers, two things need to be
accomplished during the transition. (a) In each double layer,
the z dimer proliferates and destroys the plaquette order within
a layer. (b) The layers establish coherence. If (a) happens
before (b), then we have a transition that features dimensional
decoupling. If (b) happens first, we have a transition that has
reduced effective dimensions.

Let us first analyze the phase transition within a double
layer. Due to the anisotropy, the resonating plaquettes are
formed between the two layers. If we view the system from the
top, the VPS order actually is projected to a 2d VBS pattern.
In this top view, the interlayer singlet pair is the vortex core of
the VBS pattern. Therefore, for the double-layer system, the
VPS to VBS transition is mapped to a VBS melting transition.
The key difference between this transition and the 2d DQCP
is that the VBS vortices here do not have the spinon degree of
freedom. The low-energy field theory for such a transition is
the following:

L2d = |(∂μ − iaμ)φ|2 + r|φ|2 + g|φ|4 + 1

4e2
f 2 + · · · ,

(51)

which is similar to the theory of the DQCP as in Eq. (5)
except that the matter field φ here is a single scalar. We still
need to include the 4-fold instantons in the theory, which
is allowed by translation symmetry. In the particle-vortex
dual picture, the transition can also be described as a 3d XY
transition with 4-fold anisotropy. It is known that the 4-fold
anisotropy is irrelevant at the 3d XY transition. Thus, the VPS
to VBS transition in the double-layer system is in the 3d XY
universality class.

Now we consider the coupling between these 2-
dimensional critical theories along the z direction. Notice
that for each bilayer there is an independent emergent gauge
field, which constrains the possible coupling between layers.
The lowest-order gauge-invariant coupling of the matter field
between layers is

Lc =
∑

i j

λi j |φi|2|φ j |2, (52)
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where i, j are layer indices. This coupling is irrelevant under
renormalization group at the 3d XY fixed point. However,
we also need to include the monopole tunneling between
layers:

Lm =
∑

i j

gi j (M†
i M j + H.c.). (53)

This monopole tunneling term is gauge invariant. More im-
portantly, this term is highly relevant in the 2d critical theory.
This term will lock the gauge field between different layers.
In the end, there is only one gauge field, which has 2d
characteristics, across the 3d system. This suggest that the
layers should first establish coherence and then go through
the VPS-VBS transition all together. Physically, this means
that the plaquette patterns of different layers along z directions
synchronize. The transition are driven by proliferation of
straight vortex lines along the z direction. This suggests that
the VPS-VBS transition looks like a 2d transition despite the
system being 3-dimensional. We have a transition that features
a reduced effective dimension.

V. SUMMARY

In this work, we have shown how fracton physics gives
important insight into melting transitions of valence plaque-
tte solids. The topological defects of this type of spatial
order are characterized by fractonic mobility constraints, as
elucidated by a mapping onto a symmetric tensor gauge
theory. Specifically, the individual vortices are completely
immobile, while dipoles of vortices exhibit 1-dimensional
behavior. This restricted mobility can prevent a direct con-
densation of single vortices, precluding a continuous tran-
sition from the VPS phase to a simple Néel state. Rather,
a continuous melting transition of a VPS tends to involve
condensation of vortex dipoles, giving rise to an intermediate
phase between the VPS and Néel state. This intermediate
phase can take different forms depending on the microscopic
details of the dipoles, such as various types of bond order.
A particularly interesting possibility in two dimensions is an
algebraic bond liquid, which serves as a stable intermediate
gapless phase, in agreement with numerics on certain 2d
Heisenberg models [20]. We have discussed several signatures
of this algebraic bond liquid, such as its structure factor,
specific heat, and entanglement properties. We have also
discussed the extension of these ideas to three-dimensional
valence plaquette and valence cube solid phases. We show
that a particular anisotropic type of plaquette order can un-
dergo a continuous transition to a bond-ordered phase via
a quantum critical point that features a reduced effective
dimension.
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APPENDIX: PARTON VIEW OF THE
SPINON BOND LIQUID

In Refs. [73,74], the authors present a parton construction
for the bond liquid phase that captures several salient features
of this phase including subdimensional motion and long-
range entanglement. Here we apply their parton perspective
to illustrate the emergence of subdimensional particles.

Write the boson operator as b†
a = v†

ah†
a. The Schwinger

boson operator is further fractionalized into the vertical and
horizontal bosons v†

a, h†
a. At the mean-field level, 〈v†

i vi+ex 〉 =
〈h†

i hi+ey〉 
= 0, as each vertical or horizontal parton only hops
along the x or y direction, as dictated by the following
Hamiltonian:

Hv,h = |(∂x + ax )v|2 + |(∂y − ay)h|2 + cos(∇ × a) + e2

g
.

(A1)

Each parton v†, h† is analogous to a 1d relativistic boson
coupled with an emergent gauge field a. The strong fluctuation
of the gauge field induces strong interaction between the two
partons and projects the parton state to the physical Hilbert
space. The vertical parton carries gauge charge a, so its
algebraic correlation along x should be modified by the gauge
fluctuation. Besides, a pair of vertical partons is charge neu-
tral with power-law correlation 〈v†

i vi+eyvi+xv
†
i+x+ey

〉 = 1/|x|η.
At the mean-field level, this parton pair correlation exactly
corresponds to the bond correlation,〈

b†
i bi+ey bi+xb†

i+x+ey

〉
= 〈

v
†
i vi+eyvi+xv

†
i+x+ey

h†
i hi+ey hi+xh†

i+x+ey

〉
= 〈

v
†
i vi+eyvi+xv

†
i+x+ey

〉〈h†
i hi+ey〉〈hi+xh†

i+x+ey

〉
= c

〈
v

†
i vi+eyvi+xv

†
i+x+ey

〉
. (A2)

This parton construction provides a pictorial understanding
of the bond liquid phase, which has low-energy behavior,
including entanglement entropy, very similar to that of 1d
relativistic bosons. In the mean-field level, each parton forms
a 1d spin chain along the horizontal or vertical direction
with elementary spinon excitation. After parton projection,
the vertical or horizontal spinon motions are bound together
as a spinon pair between a link hopping along the transverse
direction.
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