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Magnetoquasistatic resonances of small dielectric objects

Carlo Forestiere ®, Giovanni Miano®, and Guglielmo Rubinacci
Department of Electrical Engineering and Information Technology, Universita degli Studi di Napoli Federico II, via Claudio 21,
Napoli, 80125, Italy

Mariano Pascale
Department of Electrical Engineering and Information Technology, Universita degli Studi di Napoli Federico II, via Claudio 21,
Napoli, 80125, Italy
and Photonics Initiative, Advanced Science Research Center, City University of New York, New York, New York 10031, USA

Antonello Tamburrino
Department of Electrical and Information Engineering, Universita di Cassino e del Lazio Meridionale, Cassino, 03043, Italy
and Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA

Roberto Tricarico

Department of Electrical Engineering and Information Technology, Universita degli Studi di Napoli Federico II, via Claudio 21,
Napoli, 80125, Italy

and ICFO Institut de Ciéncies Fotoniques, Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain

Salvatore Ventre
Department of Electrical and Information Engineering, Universita di Cassino e del Lazio Meridionale, Cassino, 03043, Italy

® (Received 6 July 2019; revised manuscript received 1 December 2019; accepted 5 December 2019;
published 13 February 2020)

A small dielectric object with positive permittivity may resonate when the free-space wavelength is large in
comparison with the object dimensions if the permittivity is sufficiently high. We show that these resonances
are described by the magnetoquasistatic approximation of the Maxwell’s equations in which the normal
component of the displacement current density field vanishes on the surface of the particle. They are associated
to values of permittivities and frequencies for which source-free quasistatic magnetic fields exist, which are
connected to the eigenvalues of a magnetostatic integral operator. We present the general physical properties
of magnetoquasistatic resonances in dielectrics with arbitrary shape. They arise from the interplay between the
polarization energy stored in the dielectric and the energy stored in the magnetic field. Our findings improve
the understanding of resonances in high-permittivity dielectric objects and provide a powerful tool that greatly
simplifies the analysis and design of high-index resonators.
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It is well established that small metal objects with negative
permittivity may resonate when the free-space wavelength
is large in comparison with their dimensions [1,2]. These
resonances can be predicted by the electroquasistatic approx-
imation of the Maxwell equations, and they are associated to
the values of permittivity for which source-free electrostatic
fields exist [1,2].

Small dielectric objects with positive permittivity may also
resonate when the free-space wavelength is large in compar-
ison with their dimensions, providing that their permittivity
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is sufficiently high [3-5]. At microwaves, low-loss dielec-
tric materials with relative permittivities eg of the order of
~100 are routinely used for various applications including
resonators and filters [6—8], while the relative permittivity of
certain titanates [9—11] can reach values higher than 1000.

In the visible and near-infrared (NIR) spectral ranges,
resonances in nanoscale high-permittivity objects, such as
AlGaAs, Si, and Ge nanoparticles, have been observed exper-
imentally, e.g., in Refs. [12—14], and have been exploited for
several applications, e.g., In Refs. [15-21]. In the nano-optics
community, these resonances are known as “Mie resonances”
(e.g., Ref. [14]) and they are described in framework of the
full Maxwell equations (Mie theory [22], quasinormal modes
[23], characteristic modes [24], material-independent modes
[25,26], etc.).

However, resonances in dielectric objects have a long
history which begins at the dawn of the twentieth century

Published by the American Physical Society
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with the work on Debye on natural resonant frequencies of
free dielectric spheres [27]. In 1939, Richtmyer showed that
suitably shaped objects made of a dielectric material can func-
tion as electrical resonators at high frequency [28]. Since the
1960s, they have been used as high-Q elements for microwave
filters and oscillator designs [29], and, following the work
of Long et al. [30], also as antennas. Dielectric resonators
have been traditionally analyzed by using perfect magnetic
wall boundary conditions (PMW) [9,11,31]. However, be-
cause electromagnetic fields do exist beyond the geometrical
boundary of the cavity, this condition is unable to accurately
predict resonances [29,32,33]. Many ad hoc corrections to
the PMW conditions have been proposed, including the Cohn
model [34], where an idealized waveguide with PMW walls
is considered, and the Itoh-Rudokas model [35]. Instead,
Van Bladel investigated these resonances without ad hoc
assumptions using an asymptotic expansion of the Maxwell’s
equation in differential form in terms of the inverse of the
index of refraction [3]. Glisson et al. [36,37] obtained the
resonant frequencies of rotationally symmetric dielectric bod-
ies by searching the frequencies at which the determinant of
the impedance matrix is zero; they assembled the impedance
matrix by discretizing a surface integral formulation of the full
Maxwell equation.

In this paper, we show, by using an integral formulation,
that the resonances in high-permittivity small dielectric ob-
jects can be predicted by the magnetoquasistatic approxi-
mation [38] of Maxwell’s equations, in which the normal
component of the displacement current density field vanishes
on the surface of the object. These resonances are associated
to values of permittivities and frequencies for which source-
free quasistatic magnetic fields exist, and they are in one-to-
one correspondence with the eigenvalues of the magnetostatic
integral operator relating the vector potential inside the object
and the displacement current density induced in the object
itself. By studying this operator, we derive the general physi-
cal properties of magnetoquasistatic resonances in small high-
permittivity objects of arbitrary shape. They arise from the in-
terplay between the polarization energy stored in the dielectric
and the energy stored in the magnetic field. Their resonance
frequencies constitute an infinite countable set accumulating
at +oo, and, for any given shape of the object, they are
inversely proportional to its linear dimension and to the square
root of its relative permittivity. The eigenmodes correspond-
ing to different eigenvalues are orthogonal in the usual sense.
We also introduce an a priori lower bound for the minimum
resonance frequency. From a numerical perspective, this ap-
proximated integral formulation gives, in its range of validity,
a great simplification with respect to full-wave approaches and
with respect to asymptotic differential formulations.

I. RESONANCES IN A MAGNETOQUASISTATIC
APPROXIMATION

Let us consider a homogeneous and isotropic dielectric
object with a bounded arbitrary shape €2 and relative permit-
tivity eg. We define its characteristic size /. as a chosen linear
dimension of the object and its size parameter x = 27l /A,
where A is the vacuum wavelength. We look for source-free
solutions of the Maxwell’s equations in high-permittivity di-

electric objects, in the limit x — 0 (small object). Under these
conditions, the electromagnetic field is primarily determined
by the displacement current density field J¢ induced inside the
object itself [3]. In Appendix A, we show that this assumption
is well founded. Therefore, we look for the values of the
parameter 8 = (w/co)+/€r for which there exists a nontrivial
solution of the source-free magnetoquasistatic problem [38]

V x A = uoH, (1a)

VxH=J, (1b)
with the constitutive relation

2
J= ﬁ—A Mg, (2)
Mo

where Il is the characteristic function on the set €, i.e.,
[Mo(r) =1 for r € Q and 0 otherwise, w is the angular
frequency, and ¢y = 1/,/gopo is the light velocity in vac-
uum. The magnetoquasistatic vector potential A satisfies the
Coulomb gauge in  and R*\Q; A and the quasistatic mag-
netic field H are regular at infinity. Equation (2) disregards the
effects of the displacement current density field in vacuum.
The continuity of the tangential components of A and H
imply, respectively, the continuity of the normal components
of H and J¢ across the boundary 9 of Q. Since the normal
component of the current density field J¢ at the boundary 92
is equal to zero, the current density field J¢ is divergence-free
(div-free) everywhere in R?; instead, the normal component
of the vector potential at 92 may be discontinuous. The fact
that J? has a vanishing normal component on d€2 implies that
also the normal component of the polarization current density
field is zero.

It is convenient to scale the spatial coordinates by the
characteristic size of the object /., r = [.F. Thus, we denote
with € the scaled domain €. Then, problems (1a), (1b), and
(2) are solved by expressing the vector potential A in terms of
the current density J¢ as

AF) = pol? L, (I} (®), 3)

where we have introduced the magnetostatic integral operator
Lad)®) = [l M@ -mav. viea @
Q

and go(r) = 1/(4mr) is the static Green function in vacuum.
In (4), there is the static Green’s function because we are
neglecting the displacement current density in vacuum. By
combining Egs. (2) and (3), we obtain the linear eigenvalue
problem

J®) =y L, J)F), VFeQ, 5

where y = [.(w/co)./er = x./€r. Equation (5) holds in the
weak form in the functional space constituted by the functions
which are div-free within € and having zero normal compo-
nent on 3<2, and equipped with the inner product (w, v)y =
[y w* - vav.

The operator £,, is compact, positive definite, and self-
adjoint. As a consequence, Eq. (5) admits a countable set of
eigenvalues {y?},. and eigenmodes J¢; the eigenvalues y?
are real and positive and accumulate at infinity. The eigen-
modes corresponding to different eigenvalues are orthogonal

013158-2



MAGNETOQUASISTATIC RESONANCES OF SMALL ...

PHYSICAL REVIEW RESEARCH 2, 013158 (2020)

in the usual sense; and they constitute a complete basis of the
considered functional space. Furthermore, the eigenvalue y,
is proportional to the magnetic energy of the corresponding
eigenmode:

IV x Allgs

Yn = (6)
1A llg

A, is the magnetic vector potential generated by Jﬁ in the
whole space, and ||v||%, = (V,V)y.
The resonance angular frequencies w, are given by

@)

€o
wl‘l - lcﬁyrr
The mathematical structure of the integral operator (4) does
not depend on the linear characteristic dimension of the
dielectric object /.; namely it is scale invariant. This fact
combined with Eq. (7) leads to an important property of
the magnetoquasistatic resonances: For any given shape of
the object, the resonance frequencies are always inversely
proportional to both /. and ,/eg. Furthermore, the resonance
frequencies accumulate at infinity. By contrast, we recall that
in small metal particles the electrostatic resonance frequencies
accumulate at finite frequencies [2] (for arbitrarily shaped
particles with a simple Drude dispersion, they accumulate at
w,/ V2, where w), is the plasma frequency of the metal.)
Moreover, the following bound on the eigenvalues hold:
4
B0 en, ®)
2/ a a
where @ is the radius of a sphere B, having the same volume
of Q. The inequality (8) is obtained by multiplying both
members of Eq. (5) by J¢, integrating over Q and using the
Cauchy-Schwarz inequality and the inequalities [39]

1 3 1 3
/ ————dV' < / ————dV' =4na,
g lr—r| 5, lr —1r’|
/IJdldV’ < /mis{$2} // |J412dVv, 9)
Q Q

where B, is centered in r. As an example, let us apply the
bound (8) to the case of an oblate spheroid: By keeping
the major semiaxis fixed and decreasing the minor one, the
volume of the particle decreases and so does a: This leads to
an increase of lower bound for the eigenvalues (and for the
magnetostatic energies) of all the modes. This is in contrast
with what is observed for a metal spheroid, where the same
decrease of the minor semiaxis implies a decrease of the elec-
trostatic energy of the fundamental electrostatic (plasmon)
mode [40].

In a “material resonance picture” [25,41], once the oper-
ating frequency is assigned, the resonance permittivities are

given by
y 2
mﬁ=<l). (10)
X

Since L,, is positive definite, the source-free magnetoqua-
sistatic field may exist only for positive permittivities. More-
over, for any given shape, they eg ,, are inversely proportional
to x2, and they also constitute accumulate at oco. It is now
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FIG. 1. (a) Comparison between the eigenvalues y, of a sphere
and the poles of the Mie coefficients in the limit x — 0. (b) Eigen-
values of a finite-size cylinder with height & equal to the radius R,
with /. = R. (c) Eigenvalues of a right triangular prism with height H
and edge R = 2H with /. = R. (d) Eigenvalues of a ring with minor
radius r and major radius R = 3r, with /. = 3R.

apparent the difference between the magnetoquasistatic res-
onances and the plasmon resonances, which only exist for
negative permittivities, are size independent and accumulate
at —1 [2].

TABLE I. Magnetostatic eigenvalues y, of a sphere of radius R
compared with the poles of the Mie coefficients r,; in the limit x —
0. We assumed /. = R. Relative error €.

No. 1-3 4-11 12-23 24-26 27-32 33-36 37-38 3942 43-50

y» 3.16 453 582 638 7.07 7.08 7.09 7.10 7.87
raq 3.14 449 576 628 699 699 699 699 7.73
€[%] 0.64 0.89 1.04 159 114 129 143 157 1381
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FIG. 2. Eigenmodes of a sphere, associated to the first six distinct eigenvalues y,. The modes on the same column are degenerate. We
represent the projection of the modes on the plane y = 0 in panels (a), (b”), (¢”), (d), (¢”), and (f), on z = 0.4R in (b'), on z = 0.35R in (¢'),

onz = 0.26R in (¢/), and on z = 0.23R in (f').

In Appendix A, we show that in the limit x — O the
Maxwell equations admit two orthogonal sets of current
modes. The modes of the first set are div-free and curl-free
within the object, but have a nonvanishing normal component
on the object surface. The modes of the second set are div-free
within the object and have a vanishing normal component on
the object surface and nonzero curl. The latter set is solution of
the eigenvalue problem (5) and the corresponding resonance
frequencies w, are given by (7).

In a magnetoquasistatic resonance, the energy oscillates
back and forth between the polarization energy stored in the

10° Fa)

10-1 [£5 = 10000 + 100
(b) |

£p = 15.45 + 0.1456i
3

4
y =2mR\/er/\

FIG. 3. Normalized power absorbed by a sphere with radius R =
I, and gg = (a) 10* + 107, (b) 10? + 1i, and (c) 15.45 + 0.1456i as
a function of the parameter y = 27 R, /er/A. The sphere is centered
in (0,0,0) and it is excited by an electric dipole N&) at position
(0, 0, 1.5R). The first four eigenvalues y, of Table I are shown with
vertical dashed lines.

dielectric and the energy stored in the magnetic field, as shown
in Appendix B.

The eigenvalue problem (5) can be numerically solved
through a finite-element approach, briefly outlined in
Appendix C, where, unlike differential formulations, only the
spatial domain €2 is discretized and the radiation condition
is automatically satisfied. This approach only requires the
calculation of the eigenvalues of a real symmetric matrices,
for which efficient routines exists [42,43].

The magnetostatic formulation can be easily extended to
the scenario where the object is standing on a substrate
with relative permittivity &g, which is very relevant for the
applications. Since the thickness of the substrate is typically
much larger than the dimensions of the object, we can safely
assume it to be semi-infinite. Therefore, by using the method
of images [44], the resonances are still associated to the
eigenvalues of the operator (4) provided that the Green’s
function g¢ in Eq. (4) is replaced with

85—1 1
es+1[F—F

an

gs(B,F) = —

|F

where " is the mirror image of ¥ with respect to the substrate
plane.

_f/|

II. RESULTS AND DISCUSSION
A. Sphere

To benchmark the magnetoquasistatic approximation, we
now consider a dielectric sphere for which there exists a
full-wave analytic solution, i.e., the Mie theory [22]. Van De
Hulst gives [4] the resonant conditions of a high-permittivity

TABLE II. Magnetostatic eigenvalues y, for an isolated finite-
size cylinder with height equal to the radius. J, are the corresponding
values evaluated by empirical approximated formulas [31] (if avail-
able). We assumed /. = R.

No. 1 2-3 4-5 6 7-8 9
Name TEqs HEM;;; HEM;;; TMys HEMy;s  TEgi4s
Vn 3.26 4.05 4.52 4.96 5.02 5.30
5, 322 411 495 5.8
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FIG. 4. Eigenmodes of a finite-size cylinder with height equal to the radius, associated to the first seven distinct eigenvalues y,. The modes
on the same column are degenerate. (a) TEq5, (b) HEM, s, (c) HEM5s, (d) TMyy5, (€) HEMy,5, (f) TEg1145, () HEM2)s.

small sphere by finding the poles of the Mie coefficients
in the limit x — 0. The resonances occur at y, = r,; for
the transverse magnetic (TM) multipoles and at y, = r,,—1;
for the transverse electric (TE) multipoles, for any n,![ €
N, where r,; denotes the /th zero of the spherical Bessel
function j,. In Fig. 1(a), we compare the first 100 magne-
toquasistatic eigenvalues of the operator £,, with the poles
of the Mie coefficients, while in Table I we show the cor-
responding values and the numerical error. The details on
the hexahedral mesh used for the computation are given in
Appendix C. In particular, we note that for the first 50
eigenvalues the numerical error is below 2%. The magneto-
quasistatic model correctly predicts the peculiar degeneracies
of the TE and TM resonances: the /th resonance of the nth
TE multipole is degenerate with the [/th resonance of the
(n — 1)-th TM multipole: Namely, the eigenvalue r ; has a de-
generacy 3, while r,,; with n > 1 has a degeneracy 4(n + 1).

The magnetoquasistatic modes are ordered according to
their magnetic energy, which does not necessarily follow their
multipolar order. The first eigenvalue y = rp; is associated
to three degenerate TE displacement current density modes,
M;lnil (ro1¥) with p = e, 0 and m = 0, 1, which correspond to
magnetic dipoles oriented along the three coordinate axis.
As an example, we show lel)l (ro1¥) in Fig. 2(a). The fact
that the lowest-energy magnetoquasistatic mode of a high-
permittivity small sphere is the magnetic dipole is in agree-
ment with experimental studies [13]. The second eigenvalue
has an ei%htfold degeneracy: It is associated to five TE
modes M;nzz(rnf') with p = e, 0 and m = 0-2 [in Fig. 2(b’)
Méll)Z(r”f') is shown] and three TM modes N;ln),l(r“f') with
m = 0-1and p = e, o [in Fig. 2(b"") N\}) (1,¥) is shown]. The

third eigenvalue is associated to seven TE modes M;ln)ﬁ(rzlf')

with p=-e¢,0 and m =0-3 [in Fig. 2(¢") Mgllé(}'élf) is
shown] and five TM modes N;lnzz(rzlf') with p =¢,0 and
m=0-2 [in Fig. 2(c") N} (ry¥) is shown]. The fourth
eigenvalue is associated to three TE modes M;ln:l (roof) with
m =0-1 and p =e,o, associated to two counter-rotating
current loops [we show MLll)l (ro2F) in Fig. 2(d)]. The fifth
eigenvalue is associated to nine TE modes M4 (r311’) with
m=0-4 and p=e,o [in Fig. 2(¢’) M}, (r3;¥) is shown]
and seven TM modes N;23(r31f') withm =0-3and p =¢,0
[in Fig. 2(e¢"") Nill;(ryf') is shown]. The sixth eigenvalue is
associated to five TE modes M;lw)lz(rlgf') with m = 0-2 and

p = e, o [in Fig. 2(f") Mf)ll)2(r12f‘) is shown] and three TM
modes N{, (r;,F) with m = 0-3 and p = ¢, 0 [in Fig. 2(f")
N;ll)3(r31f') is shown]. All the magnetoquasistatic modes have
vanishing normal component and nonzero tangential compo-
nent on the sphere boundary.

We now show that the magnetoquasistatic eigenvalues
predict the occurrence of the resonance peaks in the scattering
response of a high-permittivity small sphere. In Fig. 3, we
show with a continuous line the power absorbed by the sphere
normalized by 7wR? as a function of y = x,/ex for different
values of &g, calculated by the Mie theory [22], and with
four vertical dashed lines the first nondegenerate eigenvalues
vy, of the magnetostatic volume integral operator listed in
Table 1. Thus, the first vertical line represents the position of

@

Jer=100+i |

(c)

i = 15.45 + 0.1456i
3

4
y = 2w R\/Er/A

FIG. 5. Normalized power absorbed by a cylinder with radius
R =1, height h =R, and &g = (a) 10* 4 10%, (b) 10> + 1i, and
(c) 15.45+40.1456i, as a function of y = x,/eg. The cylinder is
centered in (0,0, 0) and it is excited by an electric dipole N at
position (R, 0, 1.5R). The first six magnetoquasistatic eigenvalues y,
are shown with vertical dashed lines.
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FIG. 6. Eigenmodes of a triangular prism with L = 2H associated to the first six nondegenerate eigenvalues.

the mode Mf}'l)l (ro1T), the second line is associated to one TE

mode M) (r;¥) and one TM mode N'})(r|,¥), the third is
1)

associate to M(()B(rzﬁ‘) and Nil])z(rzlf'), and the fourth line to
Mgll)l (ro2F). They are shown in Figs. 2(a)-2(d). In Fig. 3(a),
we consider x € [0.025,0.065] < 1 and ez = 10* +i10%. We
find very good agreement between the eigenvalues y, and the
absorption peak positions. This is expected because the inves-
tigated values of x are much less than one. Then in Fig. 3(b),
we consider x € [0.25,0.65] < 1 and eg = 10? + i. We note
a red shift of the peaks with respect to the magnetoquasistatic
prediction, because the values of x starts to be comparable to
one. Eventually, in Fig. 3(c), we investigate a silicon sphere
with x € [0.64, 1.6] and eg = 15.45 + 0.1456i. Although x is
now comparable to one, there is still a correlation between the
peaks and the magnetoquasistatic predictions. However, the
peaks now show a broadening and a red shift. The third and
fourth peaks appearing in Fig. 3(c) arise from the splitting
of the third peak of Fig. 3(b) because the degeneracy of the
modes M} (r21¥) and N} (2, F) is lifted by the retardation.

B. Finite-size cylinder

We now investigate a finite-size cylinder of radius R and
height & = R, which is very common among nanofabricated
structures, because it is compatible with planar nanofabrica-
tion processes. Although no analytic solution exists in this
case, semiempirical formulas have been proposed for low-
index resonances obtained by brute-force numerical calcula-
tions [31]. We assume a characteristic size [, = R. In Fig. 1(b),
we show the first 100 magnetoquasistatic eigenvalues of the
investigated cylinder. In Fig. 4, we plot the displacement
current density modes corresponding to the first seven distinct
eigenvalues. A similar catalog has been produced by Kajfez
et al. [37] by using a surface integral equation formulation
of the full Maxwell equations for bodies of revolution. Here,
we follow the classification introduced by Glisson et al. [36],
which is in turn borrowed from the literature on cylindrical
waveguides [45,46]. Specifically, the modes which are sym-
metric along the azimuthal direction are denoted either as
TEg,s or as TMy,s. All the remaining modes are known as
hybrid modes with respect to the axis of rotation, and they
are denoted by HEM,,,,,, where the subscripts m, n, and p
are associated to the number of oscillation of the mode along

the azimuthal, radial, and axial directions. It is also worth
noting that the third subscript is denoted as § if it is smaller
than unity. The fundamental mode of the finite-size cylinder
shown in Fig. 4(a) is TEgys, i.e., a magnetic dipole oriented
along the vertical axis. The next two degenerate modes,
e.g., HEM/,; and HEM|, shown in Figs. 4(b’) and 4(b"),
radiate like magnetic dipoles oriented along two orthogonal
horizontal directions. We note that while in a high-permittivity
small sphere the three magnetic dipoles are degenerate, in
the investigated cylinder they are split up by the symmetry
breaking, with TE(;s having lower magnetoquasistatic energy
with respect to HEM s and HEM/ ;. Moving further in the
direction of increasing magnetostatic energy, we encounter
the hybrid modes HEM},; and HEMY{,; followed by the
azimuthally symmetric mode TMy;s. Then, we encounter the
hybrid modes HEM),;, HEMY;, then TEg;;45, followed by
the modes HEM,; and HEM?,;.

In Table II, we compare the values of the magnetoqua-
sistatic eigenvalues y, against semiempirical formulas [31]
(when available) obtained by fitting the results of different
numerical methods for the modes TEgs [47], HEM; 5 [48],
TMo15 [49], and TEo;145 [47].

As for the sphere, we show in Fig. 5 that from the
knowledge of the magnetoquasistatic eigenvalues we can pre-
dict the occurrence of the resonance peaks in the absorbed
power spectra. The absorbed power has been calculated by an
independent full-wave numerical method, i.e., the Poggio,
Miller, Chew, Harrington, Wu, Tsai (PMCHWT) approach
[50,51]. We show with vertical dashed lines the first six
nondegenerate eigenvalues y, associated to the modes TEgs,
HEM115, HEM125, TMOIS’ HEleg, and TE011+8, whose
values are listed in Table II. In Fig. 5(a), we consider
er = 10* 4+ 10%i and x € [0.025, 0.065] < 1: The magneto-
quasistatic eigenvalues exactly predict the absorption peaks

TABLE III. Magnetoquasistatic eigenvalues y, of an isolated tri-
angular prism with edge L and height H, with L = 2H. We assumed
I.=L.

No. 1 2-3 4 5-6 7-8 9 10-11

Vn 452  4.69 5.76 6.21 6.26 648 7.41
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TABLE IV. Magnetoquasistatic eigenvalues y, of an ring with
minor radius » and major radius R = 3r. We assumed /. = 3R.

No. 1 2-3 4-5 6-7 8-9 10-11 12

#  Too HTPY, HTP!, HTP{, HTP;;, HTP!, Py
yo 3484 7079 7.095 7.022 7.54 7.292 7.301

because the hypotheses of the magnetoquasistatic model are
verified. Next, in Fig. 5(b), we consider x € [0.25,0.65] < 1
and g = 10> + 10i: We note a red shift and a broadening
of the peaks because the values of x are approaching one.
Eventually, in Fig. 5(c), we consider a silicon cylinder with
x €[0.64,1.6] ~ 1 and eg = 15.45 4 0.1456i. Even if x ~ 1,
there is still a correlation between the peaks and the magneto-
quasistatic predictions. However, the shift and the broadening
of the peaks are now significant.

C. Right triangular prism

We now present the magnetoquasistatic analysis of a right
triangular prism, which is not axisymmetric as the objects
investigated so far, but belongs to the symmetry group D3.
The triangular prism has height H, while its basis is an
equilateral triangle of edge L = 2H. In Fig. 1(c), we show
the first 100 magnetostatic eigenvalues, while in Fig. 6 we
show the corresponding modes. It is apparent from Table III
that the eigenvalues have multiplicity one or two, which is
consistent with the fact that the prism is invariant under
transformation of the group D3, [52]. The fundamental mode
of a triangular prism is a magnetic dipole oriented along the
vertical axis, shown in Fig. 6(a). The next two degenerate
modes are magnetic dipoles lying on the horizontal plane and
oriented along one height and the corresponding orthogonal
edge, as shown in Figs. 6(a) and 6(b). By moving further in the
direction of increasing magnetostatic energy, we note that the
modes in Figs. 6(c), 6(d) and 6(d’) resemble the modes TMy14
and HEM,; of the cylinder but the order of the corresponding
magnetostatic energy is inverted. This fact suggests that the
order of the magnetoquasistatic resonances can be tailored by
a convenient design of the geometry of the object.

D. Ring

Eventually, we investigate a dielectric ring (solid torus)
with minor radius r and major radius R = 3r, whose boundary

has a different genus with respect to the object that we have
investigated so far. Similar rod-ring shaped dielectric res-
onators have been investigated in the context of antennas, e.g.,
Ref. [53]. In Fig. 1(d), we show the first 100 magnetostatic
eigenvalues, while in Table IV we list the values only of the
low-order ones.

We catalog these modes using a magnetic coordinate sys-
tem [54], where <13, f, and 6 are the toroidal, radial, and
poloidal directions, respectively. We describe the number of
oscillation of the displacement current density modes along
the q3 £, and 9 directions by the toroidal ¢, radial r, and
poloidal p numbers. The modes which are invariant along the
toroidal direction (# = 0) are denoted either as toroidal Ty, if
the displacement current is directed along ¢ or poloidal Po,p

if the displacement current is directed along 8. We denote
all the remaining modes as hybrid toroidal-poloidal modes
HTP,,.

In Fig. 7, we show the displacement current modes of
the first seven nondegenerate eigenvalues. The first mode,
shown in Fig. 7(a), is the fundamental toroidal mode Toq:
Its magnetostatic energy is significantly lower with respect to
the remaining modes. The fundamental poloidal mode Py is
the seventh nongenerate mode, shown in Fig. 7(g). The re-
maining modes in Fig. 7 are hybrid. Specifically, the modes in
Figs. 7(c), 7(c’), 7(d), and 7(d’) are characterized by the same
numbers (¢, r, p) = (1, 1, 1): We distinguish them as up-down
HTP!,, [Figs. 7(c) and 7(c)] and inboard-outboard HTP;},
[Figs. 7(d) and 7(d’)]. Similarly, the modes in Figs. 7(b), 7(b"),
7(e), and 7(¢') are denoted as HTPS,, and HTP;},. Next, we
show in Fig. 7(f) HTPY, .

III. CONCLUSIONS

There exist two mechanisms through which a small non-
magnetic homogeneous object may resonate. The first is the
electroquasistatic resonance [1] where the induced electric
charge plays a central role. These resonances are connected
to the eigenvalues of the electrostatic integral operator that
gives the electrostatic field as a function of the charge density.
They physically arise from the interplay between the energy
stored in the electric field and the kinetic energy of the elec-
trons. Each resonance is characterized by a negative eigenper-
mittivity, which is size independent. The eigenpermittivities
constitute a countable infinite set and accumulate at the point
—1. The induced current density fields are both curl-free

MAGNETOSTATIC ENERGY

FIG. 7. Eigenmodes of a ring, associated to the first seven distinct eigenvalues y,. The modes on the same column are degenerate. We
represent the projection of the modes on the intersection of the ring with the plane z = 0 in panels (a), (d), (d'), (e), and (¢’); with the surface
x?2 4+ y* = R? in panels (b), (b'), (c), (¢), (f), and (f); with the plane x = 0 in panel (g).
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and div-free within the particle, but have nonvanishing (and
discontinuous) normal components to the particle surface.

The second mechanism is the magnetoquasistatic reso-
nance, described in this paper, where the displacement current
density field is the main player. These resonances are con-
nected to the eigenvalues of a magnetostatic integral operator
that gives the vector potential as a function of the current
density. They arise from the interplay between the polarization
energy stored in the dielectric and the energy stored in the
magnetic field. These resonances are only possible for positive
permittivity. For any given shape, the resonance frequencies
are inversely proportional to the characteristic size of the
object and inversely proportional to the square root of the
permittivity. They are an infinite but countable set accumulat-
ing at +00. The induced current density fields have a nonzero
curl within the particle but are div-free and have a vanishing
normal component on the particle surface.

The applicability of the magnetoquasistatic approximation
can be extended to accurately describe the radiation damping
of the modes and the frequency shift due to the finite particle
size by using perturbation techniques.

APPENDIX A: SOLUTION OF THE ELECTROMAGNETIC
SCATTERING IN THE QUASI-STATIC LIMIT

Let us consider an isotropic and homogeneous material
occupying a volume €2, which is bounded by a closed surface
02 with outward-pointing normal h. The medium is nonmag-
netic with relative permittivity &g, surrounded by vacuum. The
object is illuminated by a time harmonic electromagnetic field
incoming from infinity Re{E;,.(r)e”'}, where w is the angular
frequency. Here, we derive the behavior of the electromag-
netic scattering in the quasistatic limit starting from the full
wave model.

The scattering problem is formulated by considering as
unknown the effective current density field J = J(r) induced
in the body (which particularizes into conduction current in
metals at frequencies below interband transitions, polarization
current in dielectrics, sum of conduction and polarization
currents in metals in frequency ranges where interband tran-
sitions occur). We have J = iwegx E, where E = E(r) is the
total electric field (induced + incident) and y = (eg — 1) is
the electric susceptibility. Both the vector fields E and J are
div-free in Q due to the homogeneity and isotropy of the
material. The current density J is governed by the full wave
volume integral equation [55-59]:

J(r) 1 # T/ e\
- =—-——V glr —r)J(@) - a()dS
LwEY X Lwéy 0
— iwpo /// g —r)J(x)dV' 4 Epe(r) Vr e @,
1%

(AD)

where &y is the vacuum permittivity, io is the vacuum perme-
ability, g(r) = e~ /4 r is the Green’s function in vacuum,
ko = w/cop, and ¢y = 1/,/eomo. The surface integral repre-
sents the contribution of the scalar potential to the induced
electric field and the volume integral represents the contribu-
tion of the vector potential. We introduce the dimensionless
size parameter x = wl./cy, where [ is a characteristic linear

length of the region 2. Then, Eq. (A1) is rewritten as

J(®)

o LUNE) = iwgoEinc(F), VF € L, (A2)

where ¥ = r/[,

L{W}(F) = -V # g(r — ¥ )W, (F)dS'
Q2

+x? /// gr —rYWFE)V',  (A3)
Q

Q is the scaled domain, V is the scaled gradient operator, and
W, = W - ii. In the quasistatic limit (x — 0), the operator £
has the following expression up to the third order in x:

LIW}(F)

2
=-V # go(F — f")<1 TS T f'/|2>
90 2

X W, (¥)d S +x* // go(F —F)WFEF)V'+0(*) (A4)
Q
asx — 0, where

1
go(r) = —— (A5)

4r

is the static Green’s function for the vacuum.

We now study the solution of Eq. (A2) in the quasistatic
limit x — 0. To achieve this purpose, we introduce a complete
basis for representing the unknown, which is obtained by
joining two orthogonal sets. The first set {Wi‘l} is given by the
solution of the eigenvalue problem

1 ~
LAWNNE) = —Hw}l(f’) VE e §, (A6)
Yh
where L, is the electrostatic integral operator
LaW) = =T b g - FW S, (A7)
aQ

The eigenfunctions {W,L'} are both div-free and curl-free in the
limitx — 0 in €2, but they have non-vanishing normal compo-
nents to d2. Since L, is Hermitian and definite negative, the
eigenvalues yh” are real and negative, and the eigenfunctions
are orthonormal according to the scalar product

(A,B):///QA*-BdV.

Both the eigenfunctions {W,'l} and the eigenvalues {yh”} do not
depend on the size of object, but only on its shape. However,
the set {Wl‘l} is not sufficient to represent the vector space
of square integrable div-free functions in €2. To complete the
basis, it is sufficient to add to {Wl‘l} the set of solenoidal vector
fields {W;f} with vanishing normal components to 92 and that
are solution of the eigenvalue problem in weak form

(A8)

1 -
LafWil([F)= Wy () VEieQ, (A9)
Vi
where L,, is the magnetostatic integral operator
L (W }(F) = /// go(F — F )W, (F)dV'". (A10)
Q
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The eigenfunctions {W;-} are div-free in  and have vanishing
normal components to 9€2, but their curl in € is different
from zero. Since L,, is Hermitian and definite positive, the
eigenvalues )/hl are real and positive, and the eigenfunctions
are orthonormal according to the scalar product (A8). Both the
eigenfunctions {W;-} and the eigenvalues do not depend on
the size of object but only on its shape. Furthermore, the set
of eigenfunctions {Wl‘l} is orthogonal to set of eigenfunctions
{W;'}. The union of the two sets {Wlll} and {W;"} is a complete
basis for the vector space of square integrable div-free vector
fields in 2. Therefore, we represent the unknown current
density J as

J@®) =) (W (F) + Wi (). (A1)

h

We substitute expression (Al1l) into Eq. (A2) and we obtain
to the leading order in x the following expressions for the
expansion coefficients I;- and I;-:

Y .
I} = —t—ioxeo(Wy, Eie(r),
Vi — X
J/l
I = ———ioxeo(Wj, Epn(r)).  (Al2)
Vi —X°X

Expression (A11) with (A12) is the solution of the scattering
problem (A2) in the quasistatic limit x — 0. The eigenfunc-
tion W}l may be resonantly exited when Re{y} = y/ll and the
eigenfunction W;- may be resonantly exited when Re{yx} =
¥;-/x*. For these reasons, the sets {W,'l} and {W;"} can be
interpreted as the current modes of the body in the quasistatic
limit x — 0, and {y} and {y;'/x*} can be interpreted as
the corresponding eigensusceptibilities. Thus, we call the
eigenfunctions {W,‘l} electroquasistatic current modes and
the eigenfunctions {W,{} magnetoquasistatic current modes.
Since the eigensusceptibilities {yh”} are all negative, the elec-
troquasistatic modes can be resonantly excited only in met-
als (surface plasmons). In contrast, the eigensusceptibilities
{yhL /x?} are all positive, and therefore the magnetoquasistatic
modes can be resonantly excited only in dielectrics. The
scalar products (Wg, E;uc(r)) and (Wi, E;c(r)) in Eq. (A12)
describe the coupling of the electroquasistatic and magneto-
quasistatic current modes with the external excitation.

The magnetoquasistatic eigenvalue problem (A9) is prob-
lem (5) of the main paper, where y' is replaced by y°.
Since mincN yhl ~ 1 (assuming /. equal to the radius of
the sphere having the same volume of €2 [see Eq. (8)]) and
x < 1, the magnetoquasistatic resonances occur in dielectrics
with high permittivity, and hence the resonance frequency of

the hth magnetoquasistatic mode is wy, ~ (l:;;) v;-: This

is the resonant condition (7) of the main paper (where ¥+ is
replaced by y?). Moreover, problem (A9) can be rewritten in
differential form as in the following:

Vx Vx At = ytALTIE), (A13)
with the boundary condition A+ - n|;s = 0, where Vx is the
scaled curl, A*(r) = £,,(W*}(r) for ¥ € 2 and [1(¥) = 1 for
F € 2 and O for F ¢ €2. Note that at resonance we have th- =

I282. This validates the magnetoquasistatic model defined by
Egs. (1a), (1b), and (2) of the main paper.

APPENDIX B: ENERGY BALANCE IN THE
MAGNETOQUASISTATIC RESONANCES

In the electroquasistatic resonances of metals below the
interband transitions, the energy oscillates back and forth
between the kinetic energy of the conduction electrons and the
Coulomb potential energy arising from the surface charges on
the surface of the metal. In the magnetoquasistatic resonances
in dielectrics, the energy oscillates back and forth between
the polarization energy of the dielectric and the magnetic
energy. Indeed, we now show that in these resonances the
energy stored in the magnetic field is balanced by the energy
stored in the dielectric in the form of polarization energy.
By assuming that the dielectric susceptibility is real, the
resonance frequency w; for the magnetoquasistatic current
mode Wi is given by the condition

Wil

. _ .1
C%X_yh'

B

The eigenvalue y;- is related to the time average of the
magnetic energy. Indeed, we have

IV > Ay lgs
1 h IR
Yi = T (B2)
AL
where A;- is the magnetic vector potential generated by the
current mode W;- and V. is the scaled curl. By combining
Egs. (B1) and (B2), we obtain
1 12 20X 12
217 % Al = = oAy I (B3)
The term on the left-hand side is the energy stored in the
magnetic field associated to the current mode Wf; while
the term on the right-hand side is the energy stored in the
dielectric, in the form of polarization energy, at the resonance
frequency wy,.

APPENDIX C: NUMERICAL MODEL

Equation (5) can be discretized by drawing on the stan-
dard repertoire of computational electromagnetics for volume
integral equations [55-57]. The unknown of the magnetoqua-
sistatic problem, i.e., the displacement current density field J' d
belongs to the functional space 7 [60]:

Jr={we H(iv,Q)|V-w=0inQ,w-i = 0on dQ}.

We obtain the discretization of Eq. (5) by representing J¢ in
terms of N, loop shape functions wk

N
d __ L L
J —Zlkwk.
k=1
L

Each function w; is associated to the kth edge of the finite-
element discretization of the volume €. It is defined as the
curl of the kth edge-element shape functions [60] Ny:

WE(r) = V x Ni(r).

(CH
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TABLE V. Details on the meshes used in the numerical calcula-
tion of the eigenvalues.

Ob] ect Nnode Nelem Nedge
Sphere 6527 6048 11665
Finite-size cylinder 6060 5148 9433
Triangular prism 2520 2025 3592
Ring 29056 26112 49409

The discrete generalized eigenvalue problem is obtained by
substituting the representation (C1) into Eq. (5) and applying
the Galerkin method, projecting along the loop shape func-
tions:

y’LI=RL (C2)

The matrices R and L are associated to the left- and right-hand
sides of Eq. (5), respectively. The generic occurrences of these
matrices are

R, = / Wy () - wy (F)aV,
Q

L, = / / WE(E) - Wy (F)go(F — F)dVdV'.
QJQ

Eventually, the problem (C2) is reduced to a standard sym-
metric eigenvalue problem by exploiting the LAPACK [43]
routine DSYGST, and then all eigenvalues and eigenvectors
of the resulting real symmetric matrix are computed through
the routine DSYEV. In Table V, we provide details about
the number of nodes, elements, and edges of the hexahedral
meshes used in the calculation.
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