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Quantum error correction provides a path to large-scale quantum computers, but is built on challenging
assumptions about the characteristics of the underlying errors. In particular, the mathematical assumption of
statistically independent errors in quantum logic operations is at odds with realistic environments where error
sources may exhibit strong temporal and spatial correlations. We present experiments using trapped ions to
demonstrate that the use of dynamically corrected gates (DCGs), generally considered for the reduction of error
magnitudes, can also suppress error correlations in space and time throughout quantum circuits. We present a
first-principles analysis of the manifestation of error correlations in randomized benchmarking and validate this
model through experiments performed using engineered errors. We find that standard DCGs can reduce error
correlations by ∼50× while increasing the magnitude of uncorrelated errors by a factor scaling linearly with the
extended DCG duration compared to a primitive gate. We then demonstrate that the correlation characteristics of
intrinsic errors in our system are modified by the use of DCGs, consistent with a picture in which DCGs whiten
the effective error spectrum induced by external noise.
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I. INTRODUCTION

Suppressing and correcting errors in quantum circuits is
a critical challenge driving a substantial fraction of research
in the quantum information science community. These efforts
build on quantum error correction (QEC) and the theory of
fault tolerance [1–6] as fundamental developments that sup-
port the concept of large-scale quantum computation [7–9]. In
combination, these theoretical constructs suggest that so long
as the probability of error in each physical quantum informa-
tion carrier can be reduced below a threshold value, a properly
executed QEC protocol can detect and suppress logical errors
to arbitrarily low levels, and hence enable arbitrarily large
computations. Underlying this proposition is an assumption
that errors are statistically independent, i.e., the emergence
of a qubit error at a specific time is uncorrelated with errors
arising in other qubits or at any other time in the computation.
Error correlations that decay with distance between qubits
(spatially) can induce simultaneous multiqubit errors [10], and
correlations that decay with circuit length (temporally) have
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been shown to produce more rapid accumulation of net circuit
errors [11,12].

The practicality of the assumption of uncorrelated errors
has long been questioned, as laboratory sources of noise com-
monly exhibit strong temporal correlations, captured through
spectral measures exhibiting high weight at low frequencies.
As such, coherent errors induced by low-frequency noise
and miscalibrations have recently become a larger focus of
research, with their detrimental effects on QEC implemen-
tations being examined [11,13–15] and first ideas targeting
their suppression emerging [16,17]. Attempts to address these
errors in the theory of quantum error correction are challeng-
ing and results to date suggest that revision of postulated
fault-tolerance thresholds may be required [18,19] relative
to more optimistic predictions that have recently emerged
[20]. Indeed, when implicit assumptions that errors are both
spatially and temporally uncorrelated are weakened, the value
of a tolerable error threshold can change from some value ε

to ε2, easily leading to order-of-magnitude decreases in the
acceptable error rates [7].

The adverse effect of correlated errors on error correction
procedures has been observed in the context of a repetition
code both experimentally [21] (where they were seen to
effectively negate any advantage obtained from iterative error
correction) and theoretically [13], where an increase in the
logical failure rate was identified. Furthermore, while a recent
full-scale numerical simulation has shown that coherent errors
at the physical layer can, in fact be overcome by topological
error correcting codes [22], large numbers of physical qubits
are required with error rates that are uniformly subthreshold.
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The emerging message is that, while correlated errors do not
invalidate the use of QEC, their presence can significantly
increase the requisite overhead and may reduce the tolerable
magnitude of physical qubit errors.

In this paper we demonstrate experimentally that using
a low-level abstraction known as a dynamically corrected
gate (DCG), we can suppress error correlations in addition
to error magnitudes. Replacing “primitive” physical quan-
tum gate operations with logically equivalent DCGs [23–27]
forms a “virtual” layer wherein error characteristics can be
modified (virtualized) before the application of QEC [28,29].
We present a first-principles analysis of Clifford randomized
benchmarking [30,31] in order to quantitatively model the im-
pact of error correlations on simple experimental observables,
building on concepts in Ref. [32]. Specifically, we identify that
error correlations are manifested in the scaling of the distribu-
tion over sequence randomizations, at fixed sequence length,
with measurement averaging. We validate this framework
using randomized benchmarking experiments performed with
a single trapped ytterbium ion. We then demonstrate that
the replacement of the individual Clifford operations within
each sequence with logically equivalent DCGs modifies the
error correlation signatures such that they are experimentally
consistent with the presence of uncorrelated errors. Single-
qubit experiments performed under engineered noise with
tunable correlation characteristics show consistent reduction
in the correlated error component when switching from prim-
itive to DCG sequences. We explain this behavior using a
framework that describes the action of DCGs at the operator
level [27,33,34] as whitening the effective error spectrum
experienced by each gate. Finally, we demonstrate that using
DCGs in sequence construction reduces spatial error cor-
relations between qubits, through simultaneous randomized
benchmarking on five trapped ion qubits. These results pro-
vide direct and strong evidence that the use of dynamically
protected physical qubit operations in a layered architecture
for quantum computing [29] can facilitate the successful
application of existing QEC theory with only minimal revision
on the path to fault-tolerant quantum computation.

II. IDENTIFYING SIGNATURES OF ERROR
CORRELATIONS IN CIRCUITS

We begin by laying out the challenge of establishing
clear quantitative metrics allowing the identification of error
correlations in quantum circuits. The types of correlated er-
rors treated here concern unitary coherent errors that can be
represented by additive environmental coupling terms, e.g.,
dephasing noise, or fluctuating control field terms in the
system Hamiltonian. In general, such error channels exhibit
strong temporal correlations when they are induced by colored
noise spectra or systematic drifts in control parameters due
to insufficiently precise or too infrequent calibrations. Corre-
lated errors between gates can also be caused by incoherent
error channels when considering, for example, changes in
T1 times, which lead to slow variations of fundamental gate
error rates. We do not consider the latter form of corre-
lated errors here; however, it is worth noting that they can
also lead to detrimental and non-Markovian behavior in gate
performance.

As a first step we analyze how correlations in a physical
noise process translate to correlations in the resultant unitary
errors within a circuit of j = 1, . . . , J gates. In our model, any
noisy operation Ũj within the circuit can be decomposed into
the ideal operator Ûj and an error operator �̂ j such that Ũj =
�̂ jÛ j . Here Ûj ≡ Û (n j, θ j ) rotates the state vector by angle θ j

around an arbitrary axis n j on the Bloch sphere. Considering
unitary semiclassical noise processes, the error component in
each operation can be written as �̂ j = exp{i ∑∞

α=1[ε j]α · σ̂},
with σ̂ the vector of Pauli matrices, α an index denoting
the Magnus expansion order [35], and ε j the error vector
characterizing the strength and nature (affected quadrature) of
the error [34–37]. A quantum circuit experiences temporally
correlated errors if the values of ε j across the circuit (in space
or time) exhibit nonzero correlations.

Our approach to measuring error correlations is built on
common quantum verification protocols employed to infer
the average behavior of gate operations [11,30,38–47]. Re-
stricting our analysis to the single-qubit case, error corre-
lations between gates may occur in these protocols when
physical noise processes exhibit strong correlations in time.
We demonstrate this numerically by calculating the error
vector ε j for each operation in a single-qubit randomized
benchmarking sequence exposed to detuning (σ̂z) noise with
a variable block-correlation length Mn; this is defined to be
the number of gates over which the noise strength is constant
within the sequence. The sequence is assembled from the 24
Clifford operations comprising combinations of π and π/2
rotations about the x, y, and z axes of the Bloch sphere and an
identity gate Î. Calculating the autocorrelation function of the
error vector’s magnitude throughout a sequence reveals strong
correlations over a length of gates Mε that appear to scale
linearly with the correlation length of the input noise process
Mn [Fig. 1(c)]. This behavior suggests a linear mapping from
noise correlations to error correlations in conventional set-
tings. As a prelude to future demonstrations in this paper, we
note that if the individual Clifford gates are replaced by DCGs,
this simple linear mapping from input noise correlations to
output error correlations breaks down.

In general, the primary limitation one faces in accessing
information about Mε in a physical experiment is that using
standard projective measurements at the end of a circuit will
limit the ability to probe correlations that arise throughout the
circuit’s execution. Most experimental quantum verification
routines suffer from exactly this limitation, and primarily
measure the average difference between a qubit state trans-
formed under an imperfect operation and a predetermined
target state at the end of the protocol [Fig. 1(a)]. However, as
we will illustrate in the following, there is additional useful in-
formation present in the outcomes of randomized benchmark-
ing measurement routines that may be employed to extract
insights into error correlations appearing during the sequence.

The key underlying concept is that in a randomized bench-
marking sequence built up from many operations, the resultant
net state transformation in the presence of noise Ũeff |ψ〉
[Fig. 1(b)] is determined by an interplay of both the sensitivity
of each individual operation to the noise [35] and the impact
of the sequence structure on error accumulation [32,46,48].
Specifically, nominally equivalent randomized benchmarking
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FIG. 1. Translation of noise correlations to error correlations in quantum circuits. (a) A single operation applied to a qubit in the presence
of noise Ũj can be decomposed into an error operator �̂ j and the target operation Ûj . Bloch spheres schematically illustrate the effect of an
imperfect π rotation about the x axis acting on input state |1〉, with dark shading indicating an overrotation error. (b) Noise (red line) exhibiting
nonzero temporal correlation of length Mn = 3, quantized in units of gate operations, acts on a quantum circuit composed of sequentially
applied unitary operations. The resultant errors accumulate and lead to a noisy effective operator Ũeff , whose effect is determined through a
projective measurement at the end of the circuit. (c) Translation of correlations in a noise process to correlations in the magnitude of the circuit
error vector ‖ε j‖. The error vector for each gate of a randomly composed sequence of 1000 primitive gates under a noise process with noise
correlation length Mn is calculated and the autocorrelation function of the magnitude of the error vector E[‖ε j1‖‖ε j2‖] is shown for the first
100 gates. Random walks are shown for the extreme error correlation cases (d) Mε = 1 (uncorrelated) and (e) Mε = J (fully correlated).
Final walk displacements of eight sequences, each with 1000 error realizations, are shown along with the full walk for a single sequence that
is common between the two cases.

sequences (constructed to perform the same net operation)
exhibit variations in correlated-noise susceptibility that are
analytically calculable and verifiable in experiments. We use
this variability and the behavior under experimental averaging
to extract a signature of error correlations within quantum
sequences.

A. Random-walk formalism for error accumulation

We present a first-principles analysis to directly link mea-
surement outcomes for single-qubit randomized benchmark-
ing sequences to the nature of the underlying error correlations
quantified by Mε, expanding the formalism introduced in
Ref. [32]. We consider randomized benchmarking sequences
composed of J single-qubit Clifford operations

∏J
j=1 Ĉη j = Î,

with the vector η containing labels for the 24 Clifford op-
erations, η j ∈ {1, 2, . . . , 24}. A final gate is precalculated to
yield a net identity operation for the sequence such that in
the absence of error the final qubit state will be the same as
the initial state. Due to imperfections in the operations, the
physically implemented gates C̃η j differ from the ideal gates
by an error map C̃η j = �̂ jĈη j .

The accumulation of errors throughout a sequence can be
represented by a sequence-dependent random walk in three-
dimensional Pauli-error space; the net walk length can then
be related to the final sequence error [32]. For a particular
realization of the error i, this walk is captured by the vector

R(i)
3D =

J∑
j=1

ε
(i)
j r3D, j, (1)

with gate error values ε
(i)
j ∼ N (0, σ 2) sampled from a zero-

mean Gaussian distribution with rms value σ . It will be shown
in Sec. II C that this leads to an average randomized bench-
marking error per gate proportional to σ 2. Here the values of
r3D, j are unit-length vectors that define the sequence-specific

random-walk steps; they can be calculated deterministically
for any randomized benchmarking sequence, irrespective of
the strength or correlation characteristics of the gate errors. In
a circumstance where the normalized error takes a consistent
value ε

(i)
j ≡ 1, the length of the J-step walk created by these

steps is an intrinsic property of the sequence and will be
shown to act as a proxy for its susceptibility to correlated
errors. Examining individual randomized benchmarking se-
quences reveals the idiosyncratic nature of their walks; cer-
tain randomizations exhibit long walks, while others have
walks that terminate near the origin, solely determined by the
structure of the sequence and the form of the error channel.
Accordingly, in the presence of correlated errors we expect
a wide variance of outcomes, determined by the underlying
structures of the randomly selected sequences. The general
framework linking this Pauli walk to accumulated error was
experimentally validated in Ref. [46].

B. Signatures of error correlations

We identify that the key measurable signature of error
correlations arises in the process of experimental averaging
over repetitions of a sequence, and hence over different re-
alizations of the error. In order to understand this, we begin
by examining how error correlations impact the random walk
introduced above and how the behavior of that walk changes
with experimental averaging.

Gate errors induce the mapping r3D, j → R(i)
3D; the term ε

(i)
j

in Eq. (1) can change the direction and scale the magnitude
of each step in the random walk. Thus correlations in ε

(i)
j are

translated into correlated modifications of the steps in R(i)
3D.

To see the effect of correlations in the error process, we cal-
culate the locus of walk termination points for eight different
sequences and 1000 error realizations, shown in Figs. 1(d) and
1(e). In the presence of errors whose magnitudes are constant
across all gates in a given benchmarking sequence, the error
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ε
(i)
j ≡ ε(i) rescales all steps in the walk uniformly such that

all termination points for a given sequence fall on a line
[Fig. 1(e)]. The walk terminations for the same sequence are
thus dominated by the underlying sequence structure [rays in
Fig. 1(e)]. By contrast, in the presence of uncorrelated errors
where ε

(i)
j changes randomly for each step, the termination

points appear randomly distributed in Pauli space for different
realizations of the error [Fig. 1(d)].

These differences will manifest in an experiment that av-
erages the experimental performance of a set of sequences
over many different realizations of an error-inducing noise
process. In the case of correlated errors, the preservation of
sequence-structure dependence in the sequence error leads to
a broad distribution of outcomes over different randomized
benchmarking sequences. This breadth is maintained even
when averaging experiments together over various realiza-
tions of the random but temporally correlated errors. In con-
trast, for uncorrelated errors, the random formless distribution
of walk termination points over the same set of sequences
implies that averaging over experiments would result in a
spread of outcomes that grows narrower as the experiment
number increases, consistent with the central limit theorem. It
is therefore in the distribution over measured results of noise-
averaged randomized benchmarking sequences that the sig-
natures of error correlations between gates within a sequence
will appear. In Secs. II C and II D we will describe how this
phenomenology can be accessed through a modified analysis
of conventional randomized benchmarking experiments.

C. Mapping to measurable quantities

We now link the random-walk framework to measurements
commonly performed in the laboratory, a single projective
measurement in the qubit basis. Such measurements are un-
affected by rotations about the z axis, i.e., they are phase
invariant. Consequently, this type of projective measurement
is insensitive to the component of the random walk oriented
along the σ̂z axis and instead probes a two-dimensional projec-
tion of the walk onto the σ̂xσ̂y plane of Pauli-error space [46].
Considering a measurement routine involving averaging a sin-
gle sequence over n realizations of the error, we may relate the
two-dimensional walk length to the projective measurement
results as

P = 1 − 〈‖R2D‖2〉n + O(σ 4), (2)

where 〈·〉n is an average over n instances of the error pro-
cess, P := 1 − 〈P(|1〉)〉n is the measurable noise-averaged
sequence survival probability when the qubit is initialized
in the state |0〉, σ is the rms of the normally distributed
errors, and R2D denotes the random walk in the σ̂xσ̂y plane of
Pauli-error space. For simplicity, we will proceed by referring
to R2D and its individual steps r2D, j simply as R and r j ,
respectively.

We analyze in detail three distinct error correlation regimes
for a unitary error channel with values ε

(i)
j ∼ N (0, σ 2):

(i) Mε = J , identically correlated errors with fixed, con-
stant magnitude over a sequence and rms value σC ; (ii)
Mε = 1, uncorrelated, normally distributed errors that change
randomly between each gate in a sequence with rms value
σU ; and (iii) statistically independent, contemporaneous

correlated and uncorrelated error processes such that the
relative strengths σC and σU determine the effective error
correlation length.

The expression for survival probability in Eq. (2) can be
used to calculate the distribution of survival probabilities
without modification for both regimes (i) and (ii) simply by
using the appropriately calculated random walks. In the limit
of long sequences and many noise averages (large J and n), the
noise-averaged survival probability is 
 distributed over dif-
ferent, nominally equivalent, sequence randomizations [46];
the shape and scale parameters of the distribution, a and b,
respectively, can be calculated from first principles using the
particulars of the sequence, noise averaging, and error charac-
teristics. For these two limiting cases of identically correlated
errors over a sequence and uncorrelated errors changing ran-
domly between gates, the respective survival probabilities are
sampled from 
 distributions shaped according to

PC ∼ 


(
a = 1, b = 2

3
Jσ 2

)
, (3a)

PU ∼ 


(
a = n, b = 2

3n
Jσ 2

)
. (3b)

From these expressions, the variance and expectation val-
ues of the distribution over sequence randomizations can be
calculated. To leading order, both distributions exhibit the
same mean value E = ab, giving a randomized benchmarking
average gate error of 2

3σ 2. However, the distributions diverge
in the second moment V = ab2.

We may now derive the properties of the distribution
associated with regime (iii) by considering two independent
walks; one is induced by the correlated error component R(i)

C

and the other by the uncorrelated component R(i)
U . To begin,

it is convenient to note that in the case of a correlated fixed
error process over a sequence, it is possible to factor out the
constant error strength from the random walk for a particular
realization of the error [32],

R(i)
C = ε

(i)
C

J∑
j=1

r j = ε
(i)
C V. (4)

We thus introduce V to describe the sequence-specific walk,
defined by the steps r j that remain invariant under different
realizations of the error process [Fig. 1(e)]. This separability is
not achievable in the presence of uncorrelated errors due to the
randomization of each step in the walk by the error process.
The expression for survival probability can then be expanded
in terms of these independent walks to second order in σC and
σU as

P = 1 − 〈∥∥R(i)
U + ε

(i)
C V

∥∥2〉
n

= 1 − 〈∥∥R(i)
U

∥∥2〉
n
− σ 2

C‖V‖2, (5)

where the cross term is identically zero using 〈ε(i)
C 〉n = 0.

For all three correlation regimes, higher-order terms and
cross terms contribute to the second moment of the distribu-
tion and have been calculated analytically (Table I). These
terms reduce to those calculated using the 
 distributions
in Eq. (3) in the limit of large J and n, with J 
 n. On
inspection, we expect that in the presence of uncorrelated
errors the variance will narrow with increasing n, while it
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TABLE I. Statistical moments for the distribution of noise-
averaged sequence survival probabilities with different error correla-
tion lengths, (i) fully correlated across the sequence, (ii) completely
uncorrelated values between gates, and (iii) a combination of two
independent error processes in the same quadrature, one correlated
and one uncorrelated. The variance for case (iii) incorporates contri-
butions from each error source individually, V [PC] and V [PU ], as
well as a cross term.

Error type 1 − E[P] V [P]

(i) fully correlated 2
3 Jσ 2

C
2
9

n+2
n J (2J − 1)σ 4

CMε = J

(ii) uncorrelated 2
3 Jσ 2

U
2

9n J (4 + 2J + n)σ 4
UMε = 1

(iii) correlated V [PU ] + V [PC]2
3 J (σ 2

U + σ 2
C )+uncorrelated + 4

9 Jσ 2
Cσ 2

U

will remain fixed in the presence of correlated errors. Such
differences in scaling of a variance measure with averaging
are reminiscent of the manifestation of noise correlations in
other physical quantities, e.g., the Allan variance used in
precision frequency metrology [49,50]. Our analysis therefore
highlights that calculating the variance of measurements of
randomized benchmarking survival probabilities for different
sequences and exploring how this variance changes with ex-
perimental averaging can give insights into the underlying er-
ror correlations. The functional dependence of the distribution
variance with n will be employed throughout the remainder of
this work as a key signature of error correlations in standard
randomized benchmarking.

In the next section we demonstrate how the model can be
updated to connect to realistic laboratory noise models.

D. Modeling realistic laboratory error models

Building on the general framework introduced above, we
introduce first-principles calculations connecting the theoret-
ical model for gate error with actual error-inducing noise in
experiments. We determine the sequence walk in the presence
of arbitrary unitary error maps, incorporating the possibility
of multiaxis and gate-dependent errors. This facilitates the
analysis of experimental measurements performed subject to
the most common noise sources encountered in the laboratory.

We consider two physically motivated noise processes
that can occur throughout a randomized benchmarking
sequence. First, frequency detuning noise, on either the
qubit’s resonant frequency or the frequency of the control field
used to drive qubit gate operations, creates an off-resonance
error between the qubit and control. Second, amplitude
noise, which may arise from coupling-strength variations
or drifts and miscalibrations in the control, results in an
over- or underrotation error of the qubit state vector. Both
of these represent concurrent noise sources, i.e., applied
simultaneously with the execution of a gate, which ultimately
produce complex gate-dependent errors.

In general, depending on their underlying cause, both
frequency detuning and amplitude noise processes may pos-
sess temporally correlated and uncorrelated components.
Correlated noise sources include miscalibrations, magnetic-

field drifts, and temperature drifts in control systems, while
uncorrelated noise often stems from electrical noise or local
environmental sources, e.g., anomalous heating in ion traps
[51] or two-level system fluctuators in superconducting qubits
[52,53].

To now examine the impact of these physical noise pro-
cesses on the behavior of the sequence survival-probability
distributions, we proceed by explicitly calculating the trans-
lation between the physical noise strength δ

(i)
j ∼ N (0, ρ2)

and the effective sequence errors at the core of our model
ε = ε(δ). In our notation, ρ is used to denote the rms mag-
nitude of the noise, distinguishing it from the rms magnitude
of the error operator σ . Our calculations incorporate the
fact that single-axis noise, e.g., detuning, present during a
noncommuting operation generally results in a multiaxis error
process. Furthermore, physical implementations of Clifford
operations typically employ variable gate durations, resulting
in gate-dependent error operators.

In this setting, the error ε
(i)
j employed in Eq. (1) is replaced

by the physical noise strength δ
(i)
j . As a result, the previously

unit-length steps r3D, j now take more complex, but still an-
alytically calculable, values due to the gate dependence and
multiaxis character of the errors induced by concurrent noise
processes. For a particular noise process we calculate the
associated random walk, which enables a mapping of the rms
magnitude of the physical noise ρ to an updated rms value of
the error σ . Appendix B describes the formalism to calculate
the noise-to-error translation in standard Clifford gates for an
arbitrary unitary error process. Table II summarizes the results
which, when combined with the expressions from Table I,
can be used to predict both the expectation and the variance
of the distribution of survival probabilities over sequence
randomization.

III. EXPERIMENTAL IMPLEMENTATION

A. Randomized benchmarking on 171Yb
+

qubits

We perform experiments using a qubit encoded in the
2S1/2 hyperfine ground states of a single laser-cooled 171Yb

+

ion confined in a linear Paul trap, with the computational
basis states defined as |0〉 := |F = 0, mF = 0〉 and |1〉 :=
|F = 1, mF = 0〉. Laser cooling, state initialization to |0〉,
and detection are performed using a laser at 369 nm that
couples the 2S1/2 |F = 1〉 ground state to the first excited state
2P1/2 |F = 0〉. As the ion selectively fluoresces when it is
projected to the upper bright qubit state |1〉, one can distin-
guish between the two basis states by counting the number of
emitted photons during the detection period. Single-ion qubit
state detection is performed in a time-resolved manner [46,54]
using an avalanche photodiode; multi-ion data employ an
electron multiplying CCD (EMCCD) camera and processing
through a random forest classifier from the SCIKIT-LEARN

framework [55].
Qubit rotations are driven via a microwave field near

12.6 GHz generated by a vector signal generator (VSG).
Using an internal baseband generator, we program arbitrary
rotations of the qubit via IQ modulation. Rotations about
the z axis are implemented as instantaneous, precalculated
IQ frame shifts. Randomized benchmarking sequences com-
posed from Clifford operations are preloaded into the VSG
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TABLE II. Translation from the rms value of a physical noise process ρ, with correlation length Mn, to the rms value of the gate error
σ used to calculate the first and second moments of noise-averaged sequence survival probabilities. The values ρC and ρU represent the rms
magnitudes of the correlated and uncorrelated noise processes, respectively. Similarly, the terms rU, j and rC, j represent the random-walk steps
for the different noise processes. Full details of the derivation of the relevant random-walk step expectation values E[‖r j‖2], E[‖r j‖4], and
Cov(‖rU, j‖2, ‖rC, j‖2) for the specific noise models employed in our verification experiments are presented in Appendix B 1.

Error type ρ → σ translation for E ρ → σ translation for V

(i) fully correlated
σ 2

C = 3
2E[‖r j‖2]ρ2

C σ 4
C = 9

2
E[‖r j‖4]+(J−2)E[‖r j‖2]2

2J−1 ρ4
CMn = J

(ii) uncorrelated
σ 2

U = 3
2E[‖r j‖2]ρ2

U σ 4
U = 9

2
(2+n)E[‖r j‖4]+(J−1−n)E[‖r j‖2]2

4+2J+n ρ4
UMn = 1

(iii) correlated (σ 2
C + σ 2

U ) = 3
2 (E[‖rU, j‖2]ρ2

U + E[‖rC, j‖2]ρ2
C ) σ 2

Cσ 2
U = 9

2 Cov(‖rU, j‖2, ‖rC, j‖2)ρ2
Cρ2

U+uncorrelated

and mapped to the desired physical operations prior to the
recording of each data set. The experiments in this paper are
performed using k sequences, each comprising J operations.
The first J − 1 gates are randomly composed Clifford opera-
tions Ĉη j and the final operation ĈηJ = (

∏J−1
j=1 Ĉη j )

† is selected
such that the sequence implements the identity in the absence
of error. A full list of the Clifford operations and their physical
implementations can be found in the Supplemental Material
of Ref. [32]. Typical single-qubit randomized benchmarking
experiments with primitive gates achieve a baseline result of
pRB ≈ 1.9 × 10−5 in our system (Appendix A).

B. Verifying error correlation signatures with engineered errors

The key signature of the presence of temporally correlated
errors appears in the variance of the distribution over sequence
survival probabilities and its scaling with experimental aver-
aging; averaging reduces the variance in the case of uncorre-
lated errors, but has limited impact when errors exhibit strong
temporal correlations.

We begin our experimental study by engineering ex-
perimental noise sources to test and verify the predictions
of the theoretical model presented in Sec. II. We perform
standard randomized benchmarking, but engineer detuning
and control-amplitude noise with different user-defined band-
widths. All noise values are generated numerically and are
sampled from a zero-mean Gaussian distribution N (0, ρ2)
with rms strength ρ. Off-resonance errors are induced via
fractional detuning noise present during the application of
the randomized benchmarking sequence δ = (
/�) set by
the frequency detuning 
 between the qubit transition and
the microwave source in units of the Rabi frequency �.
Overrotation errors are produced by amplitude noise in the
microwave control field, effectively changing �. Two limiting
noise bandwidths are treated: maximally correlated noise
Mn = J and uncorrelated noise Mn � 1. For the detuning
(control-amplitude) noise process, the correlated noise com-
ponent is engineered using a constant offset in the VSG
microwave frequency (amplitude) over the entire sequence
and the uncorrelated noise is applied via an external frequency
(amplitude) modulation input and changes value every primi-
tive π/2 time. The relevant random-walk steps calculated for
these noise processes and used in modeling our experimental
measurements are found in Table III of Appendix B.

Instead of simply calculating the randomized benchmark-
ing decay rate pRB derived from fitting to the mean of the
distribution over different values of J , we instead focus on
analyzing our data to extract information that is otherwise
generally discarded in averaging processes. In each individual
measurement, the qubit is initialized in state |0〉 via opti-
cal pumping and one of k = 50 randomized benchmarking
sequences with J = 100 gates is applied in the presence of
engineered noise. A final projective measurement in each
experiment yields a discretized qubit state measurement,
which is used to infer the probability of finding the qubit in
state |1〉 by repeating the experiment r = 220 times under
application of the same engineered noise realization (reducing
quantum projection noise). The survival-probability measure-
ment outcomes for each sequence are then averaged over a
variable number up to n = 200 different realizations of noise
possessing the same engineered correlations. This process is
repeated for all k = 50 sequences, allowing us to calculate the
distribution variance V (n)

k .
Figures 2(a)–2(c) show the distributions over randomized

benchmarking sequences of measured noise-averaged survival
probabilities in the presence of concurrent detuning noise.
The same set of sequences is subject to correlated (gray) or
uncorrelated (red) noise sampled from a common distribution.
Data are represented as histograms for different fixed values
of averaging number n for each sequence. Solid lines are
theoretical predictions for the distribution of survival prob-
abilities derived from the updated random-walk framework,
as given by the 
 distributions from Eq. (3), and substituting
the error rms value σ using the noise-to-error translation for
the expectation value shown in Table II. These theoretical
predictions, which involve no free parameters, show good
agreement with the data in the regimes studied.

These data clearly illustrate the differences in the dis-
tributions over the same set of randomized benchmarking
sequences when subjected to noise with differing correlation
properties. As shown in Ref. [32] and highlighted here in
Table I, the distributions possess approximately the same
mean value, despite the differing noise correlation properties.
The skew to high fidelities in the data taken using correlated
noise is a manifestation of the randomized decoupling effects
known to exist within some randomized benchmarking se-
quences [32]. More importantly, the behavior of the variance
of the distributions under an increasing number of noise
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FIG. 2. Signatures of error correlations in randomized bench-
marking sequences. (a)–(c) Distribution of measured survival proba-
bilities for k = 50 randomly composed sequences averaged over n =
5, 25, and 100 noise realizations drawn from δ ∼ N (0, ρ2 = 2 ×
10−3) for both maximally correlated Mn = J (gray) and uncorre-
lated (red) engineered noise processes. Uncorrelated noise possesses
a π/2 bandwidth, i.e., noise values change with a rate set at the
inverse of the duration of a primitive π/2 rotation, and hence can take
one or multiple values in a gate (Mn � 1). Solid lines are normalized

 distributions plotted with no free parameters. (d) Scaling of cumu-
latively noise-averaged histogram variances V (n)

k ≡ Vk[〈P(|1〉)〉n].
Trajectories correspond to different orderings of noise realizations
with dotted lines representing the mean of 1000 reorderings and solid
lines are theoretical predictions with no free parameters (see the text).
Vertical dashed lines indicate the values of n used in (a)–(c).

averages n varies substantially. For small n the distributions
are similarly broad despite the differences in their shapes,
but with further averaging the distribution measured under
uncorrelated noise narrows while the variance of the distribu-
tion measured under correlated noise remains approximately
constant (as discussed in Sec. II C).

To highlight the effect of noise correlations on the ex-
perimental averaging behavior, we plot the variance of the
distribution over measured sequence survival probabilities
V (n)

k ≡ Vk[〈P(|1〉)〉n] as a function of the number of noise
averages n [Fig. 2(d)]. Data are represented as a collection of
trajectories, each constituting a randomized reshuffling of the
data set (indexed by individual noise realizations). Data sets
are averaged over n noise realizations sampled from the full
set and n is allowed to vary from left to right. This continues
until all n = 200 noise realizations have been sampled. This
procedure is used to mitigate potential unintended systematic
bias in the scaling of the noise-averaged variance with n.
For instance, if by chance the first several noise samples
over which one averages varied substantially, the variance
may be artificially inflated from the ensemble average value;
accordingly, the resulting deviations between noise-averaging
trajectories are largest for small n and vanish at the far right
of the graph where all data sets are fully averaged over all
available data. For correlated noise Mn = J , the resulting

trajectories are initially broadly distributed and fluctuate be-
fore converging with n to a fixed, analytically calculable
variance. By contrast, in the case of uncorrelated noise with
Mn � 1, all trajectories show an approximate reduction in
V (n)

k ∝ 1/n, commensurate with a continued narrowing of
the distribution of outcomes over different sequences under
averaging [Figs. 2(a)–2(c)].

Solid lines capturing key scaling behaviors observed in
both data sets of Fig. 2(d) are derived from the expression
for variance in Table I using the noise-to-error translations
presented in Tables II and III, calculated for concurrent de-
tuning noise with no free parameters. Overall, agreement
with the measured experimental data are good across a wide
parameter range and two orders of magnitude in V (n)

k . For
correlated noise, small deviations between the theoretical
trace and measured mean scaling appear for low values of n.
Numerical evidence attributes this to the limited sample size
in terms of sequences, which does not always capture the rare
highly-error-susceptible sequences that would lead to a larger
variance. In the case of uncorrelated noise, there is an overall
vertical shift between the theory and the data, which is fully
compensated by adjusting the rms noise strength ρU by ∼6%.
Numerical simulations and analytic considerations attribute
the need for this adjustment to the strong noise employed in
these experiments, which violates the theoretical assumption
Jρ2

U 
 1, such that higher-order terms in the theory cannot be
fully ignored.

The uncorrelated noise data begin to deviate from an exact
1/n scaling of V (n)

k at large numbers of noise averages. This
behavior is captured by our theoretical model and varies
in a predictable way with the applied noise bandwidth and
sequence length J (Appendix B 1); we have verified it is
not due to fundamental measurement limits in our system or
quantum projection noise, as discussed in Appendix D. We
are able to attribute this “saturation” in variance scaling for
uncorrelated noise to residual sequence dependence, even in
the case of purely uncorrelated noise, and the fact that our
projective measurement probes only a two-dimensional σ̂xσ̂y

plane in Pauli-error space. For example, one can imagine a se-
quence composed solely of Î gates, which, due to an induced
off-resonance error, will experience a net phase rotation that
cannot be measured by single-axis projective measurements.
Hence, no amount of averaging over different noise strength
realizations will produce a survival probability that converges
to the distribution mean, even in the case of uncorrelated
noise.

Overall, we find that our theoretical models predict not
only the full distribution of survival probabilities over ran-
domized benchmarking sequences, but also the scaling of
this distribution’s variance with experimental averaging. The
difference between the gray and red data in Fig. 2(d) and
the agreement of theory thus constitute key experimental
validations of the central theoretical contributions made in this
paper.

IV. SUPPRESSING ERROR CORRELATIONS USING
DYNAMICALLY CORRECTED GATES

In the next part of our study we explore the ability to
modify error correlations within a sequence through determin-
istic replacement of each Clifford operation in a randomized
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FIG. 3. Suppression of error correlations using dynamically corrected gates. (a) The first-order generalized filter-transfer function for
dephasing noise of a primitive operation G(1)

z (ω, Tj ) and the noise spectrum [here βz(ω) ∝ 1/ω] combine to produce an effective error spectrum
E (ω, Tj ) for a single gate. (b) The modified filter functions for first-order DCGs scale as ω at low frequencies, which results in a whitening
of E (ω, Tj ) relative to the input noise spectrum. (c) and (d) Variance scaling with n for primitive (gray) gates and WAMF (orange), CORPSE
(blue), and BB1 (green) DCGs all subjected to noise with both correlated and uncorrelated components. In (c) detuning noise is engineered
with strength δC ∼ N (0, 2 × 10−3) and δU ∼ N (0, 5 × 10−4) and in (d) amplitude noise is engineered with strength δC ∼ N (0, 9 × 10−4)
and δU ∼ N (0, 2 × 10−4). Dotted lines are means of 1000 trajectories randomized over noise realizations and solid lines for the DCGs are
theoretical fits from Table I to the mean with the values of σ 2

U and σ 2
C allowed to vary. Black solid lines for primitive gates are derived from

the same theory with no free parameters. As with Fig. 2, all data are measured for k = 50 sequences of length J = 100 with n = 200 noise
realizations and r = 220 repetitions.

benchmarking sequence with an error-suppressing dynami-
cally corrected gate (DCG). Each DCG is implemented by
replacing primitive physical rotations with composite pulses
comprising multiple physical rotations [33], according to one
of several prescriptions [25]. This approach abstracts the tar-
get state transformations away from the physical qubit manip-
ulation in a manner that builds in error robustness via coherent
averaging. In this way, these composite gates modify the error
susceptibility of the target operations and in particular change
the relationship between an input correlated-noise process and
output gate errors. We therefore refer to their action as virtu-
alizing the Clifford operations, consistent with an abstraction
above the physical-layer operations presented in Ref. [29].

The error-virtualization process is described quantitatively
by calculating the error vector ε j at the operator level and
expressing it in the Fourier domain. In the limit of classical
Gaussian dephasing noise, described in the Fourier domain as
the spectrum βz(ω), the leading-order Magnus term (α = 1)
in the σ̂z quadrature may be written as

[ε j,z]1 = −i
∫

dω

2π
G(1)

z (ω, Tj )βz(ω). (6)

Here G(1)
z (ω, Tj ) is an analytically calculable, filter-transfer

function that describes the spectral characteristics of a gate
active for duration Tj [34]. The effective error spectrum
experienced by the gate may therefore be represented by
the spectral overlap of the filter-transfer function with the
noise, written as G(1)

z (ω, Tj ) × βz(ω) → E (ω, Tj ). Figure 3(a)
demonstrates the mapping between input noise and the effec-
tive error spectrum schematically for an example 1/ω-noise
spectrum and a primitive π rotation about the x axis. In this
example, correlations in the noise are directly transferred to

the correlations in the effective error spectrum [37] [cf. direct
Mn to Mε translation for primitive gates in Fig. 1(c)].

Replacement of the primitive gate with a logically equiv-
alent DCG virtualizes the effective error spectrum for each
operator through the process of noise filtering [27,33,34,37].
Figure 3(b) illustrates this effect, where the DCG’s reduced
susceptibility to low-frequency noise (captured through its
filter-transfer function) results in a “whitening” of the ef-
fective error spectrum relative to βz(ω). We use the term
whitening to describe the reduction of low-frequency weight,
producing an error spectrum with characteristics closer to a
white spectrum than the original input; we do not imply the ef-
fective error spectrum after DCG application is formally white
(frequency independent). In the current context, this whiten-
ing suggests that DCGs should not only reduce overall error
magnitudes when the noise is dominated by low-frequency
contributions, but they should also suppress the signatures of
error correlations between sequentially applied gates.

The particular DCG constructions examined in this work
are the compensation for off-resonance with a pulse se-
quence (CORPSE) [56] and Walsh amplitude modulated filter
(WAMF) [57] gates, which suppress detuning errors, and
the BB1 pulse family [58], which suppresses overrotation
errors. Specific details of DCG construction for the various
operations employed here are presented in Appendix C.

A. Modification of variance scaling with engineered
errors using DCGs

We begin by performing a detailed quantitative study of
the measured signatures of error correlations through the
application of engineered noise. We experimentally imple-
ment primitive, CORPSE, WAMF, and BB1 gates, where the
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first two DCGs are designed to suppress errors arising from
frequency detuning noise and the latter is designed to suppress
errors arising from amplitude noise. Using the same set of ran-
domly generated randomized benchmarking sequences as in
Fig. 2, we now apply a mixed noise spectrum, simultaneously
containing uncorrelated rapidly varying noise (Mn � 1) and
quasistatic offsets that are constant over a full sequence giving
a strongly correlated component (Mn = J). In addition to
performing measurements with primitive gates, we also
construct DCG sequences by deterministically replacing each
Clifford with its logically equivalent DCG counterpart. The
relations for the mixed noise spectrum provided in Tables I
and II now permit a direct study of the impact of using
DCGs on error correlations appearing within the randomized
benchmarking sequences via the averaging behavior of
V (n)

k .
Beginning with frequency detuning noise, both DCG im-

plementations shown in Fig. 3(c) exhibit an initial vari-
ance scaling with noise averaging V (n)

k ∝ 1/n, reminiscent of
the application of the purely uncorrelated noise process in
Fig. 2(d). The observed saturation in V (n)

k at large n for the
DCG data combines contributions due to both the analytically
calculable component occurring in the presence of purely
uncorrelated noise introduced above and residual uncompen-
sated error correlations. The general behavior observed for
the DCG sequences is to be contrasted with that observed for
the same sequences composed of primitive gates where, as
in Fig. 2, the strong correlated noise component causes the
variance to converge to a large constant value (gray).

Similar behavior is observed when considering the am-
plitude error quadrature. We demonstrate this through the
application of engineered control-amplitude noise in Fig. 3(d),
where measurements on sequences composed of DCGs de-
rived from the BB1 family exhibit a similar V (n)

k ∝ 1/n aver-
aging behavior. Again, this is contrasted with the behavior of
sequences composed of primitive gates where once more the
variance saturates to a high constant value, despite application
of the same noise in both settings.

B. Quantitative analysis of error correlation suppression

In order to calculate the change in error correlations re-
alized in randomized benchmarking sequences composed of
DCGs, we compare experimental measurements of V (n)

k with
the predictions of the model summarized in Table I. For the
primitive gates, we explicitly translate the applied detuning
noise strengths to an effective error strength using the noise-
to-error relations in Table II; for this, we also use the expected
random-walk step expressions calculated and presented in
Table III of Appendix B for detuning or amplitude noise with
a π/2 bandwidth in the uncorrelated component. The black
solid lines in Figs. 3(c) and 3(d) are then derived using these
calculated error strengths, with no free parameters. Agree-
ment between experimental measurements and theoretical
predictions for the primitive gate sequences is good, but we
observe a small (∼20%) deviation that appears approximately
constant over several orders of magnitude in n for both noise
processes. Ongoing work is investigating the source of this
discrepancy; possible sources include the unaccounted impact
of higher-order terms due to the strength of the applied noise

and undersampling of the distribution over noise-averaged
sequences.

To extract the relative correlated and uncorrelated error
components after DCG application, we fit the data using the
theoretical predictions for the scaling of V (n)

k shown in Table I
and use the strengths of the two error components σ 2

U and σ 2
C

as free parameters. First, for all DCGs we observe a reduction
in σ 2

C coupled with an increase in σ 2
U . Specifically, σ 2

C is
reduced by a factor of 49 times for CORPSE, 6 times for
WAMF, and 10 times for BB1 gates, while all experience
an increase in σ 2

U by approximately 6–7 times. The relative
performance of the DCGs observed in our experiments is
aligned with their documented strengths, as the CORPSE gate
is known to more efficiently cancel purely static detuning er-
rors than WAMF gate [33,57], although improved calibration
of the pulse-amplitude values used in WAMF gates is expected
to improve the efficacy of correlated-error suppression.

The increase in σ 2
U is approximately consistent with the

increase in duration of the DCGs relative to the primitive gate
implementations. Considering the high-pass-filtering nature
of all DCGs illustrates why uncorrelated noise processes
fluctuating rapidly on the scale of the individual DCGs are
transmitted by their filters and lead to residual errors that
may be amplified by the DCG structure. Overall, these mea-
surements, in particular, the scaling of V (n)

k , are consistent
with an interpretation that the action of the noise whitening
in the filter-transfer-function framework transforms correlated
noise into predominantly uncorrelated residual errors at the
operator level.

C. Signatures of variable error correlation lengths

To expand on the previous analyses, we experimentally
demonstrate that the reduction in effective error correlation
indeed resides at the virtual gate layer. Using the same se-
quences as before and the same engineered ρU and ρC rms
magnitudes for detuning noise, the length of the correlated
noise component is now varied in terms of the number of gates
at the virtual level, breaking it up into blocks of length Mn.
The laboratory-frame durations of the noise blocks therefore
now differ by a factor of ∼6 between the primitive and the
CORPSE gates (the average increase in the duration of the
Clifford operations when using the CORPSE gate).

In the case of sequences composed of primitive gates, the
signature exhibited by the variance scaling under noise av-
eraging in Fig. 4(a) gradually changes from indicating corre-
lated errors (saturation at high variance) to purely uncorrelated
errors (1/n-like scaling) as the block length is decreased, con-
sistent with observations in Figs. 2 and 3. By contrast, the se-
quences composed of CORPSE gates in Fig. 4(b) retain their
overall 1/n-like scaling behavior for all correlated component
block lengths, demonstrating that residual uncorrelated errors
remain dominant. All traces in Figs. 4(a) and 4(b) have been
normalized to the initial mean variance for each engineered
noise case to highlight the change in the relative correlated
and uncorrelated error components, rather than the net error
strength.

As a witness of the suppression of error correlations,
Fig. 4(c) shows the ratio of the initial mean variance V (n=1)

k

to the final, fully noise-averaged variance V (n=200)
k . This ratio
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FIG. 4. Suppression of error correlations using DCGs under
noise with varying Mn. Variance scaling of k = 20 sequences with
noise averaging is shown for (a) primitive and (b) CORPSE gates.
Traces are normalized to the initial mean variance for each applied
noise case. Engineered noise is composed of an uncorrelated compo-
nent (Mn � 1) and a block correlated component of length Mn that
is varied from fully correlated (Mn = J) to uncorrelated (Mn = 1)
in units of virtual gates. Dotted lines are means of 1000 randomized
trajectories. (c) Ratio of initial to final variance in (a) and (b) as
Mn is varied for primitive (black) and CORPSE (blue) gates. The
dotted line marks the ratio at which CORPSE gates saturate and the
dashed vertical line indicates the value of Mn where this ratio crosses
the scaling trend for primitive gates. Error bars calculated from the
standard error of the mean of the 200 initial values of variance and
normalized by the fully noise-averaged variance are smaller than
point size.

scales approximately inversely with Mn for primitive gates
but remains nearly constant for CORPSE gates. Extrapolation
of this ratio for CORPSE gates back towards small Mn reveals
a crossover with the primitive data that lies between Mn ≈ 1
and 2. This shows that CORPSE gates can reduce the noise
correlation length to an error correlation length commensurate
with physical noise Mn ≈ 1–2. Because the noise correlation
blocks were matched to the duration of the underlying Clifford
gates, whether through primitive or composite construction,
these data highlight the efficacy of DCGs in virtualizing error
characteristics for the logical gates implemented.

V. THE DCG’S IMPACT ON INTRINSIC ERRORS

After verifying the utility of the theoretical constructs we
have introduced in this work, we now turn to characterizing
the intrinsic errors limiting the performance of our system.
In the trapped 171Yb

+
ion experiment described in Sec. III,

we achieve a single-qubit randomized benchmarking average
error per gate (EPG) of (1.89 ± 0.12) × 10−5 (Appendix A).
Increasing the number of qubits to 5 and performing simul-
taneous randomized benchmarking using a global microwave
control field reveals a monotonic increase in the EPG across
the register, ranging from (5.7 ± 0.5) × 10−5 to (1.3 ± 0.1) ×
10−4. As such, were we to run multi-ion algorithms that
use global state manipulations, e.g., transversal gates in the
seven-qubit Steane code [4], we would not see the net error
rate scale linearly with respect to the initial single-qubit EPG.
This nonlinear scaling with increasing qubit numbers has
been observed in many systems and is often due to crosstalk
between qubits [59]. It is important to note that this experi-
mental observation of inhomogeneous error rates also violates
a common assumption on noise statistics made in studies of
error correcting codes, namely, that the noise is independent
and identically distributed.

In our case, the underlying cause of the observed
error inhomogeneity is a sub-percent-level gradient in the
amplitude of the microwave control field across the ion chain,
caused by interference from metallic surfaces in the proximity
of our in-vacuum antenna. We also observe a small magnetic-
field gradient across the qubit chain such that both amplitude
and detuning noise are present simultaneously. Spatially cor-
related errors have recently been studied in Ref. [60], wherein
it is noted that previous studies of multiqubit errors tend to
assume either spatially independent errors or identically
spatially correlated errors, facilitating the use of a
decoherence free subspace. Our situation, with a gradient of
spatially correlated errors, falls between these two cases, but
can still induce simultaneous multiqubit errors that lower the
efficacy of QEC.

To characterize the impact of DCGs on spatially correlated
errors, we utilize simultaneous randomized benchmarking
sequences of length J = 500 applied to all five qubits in the
register and again explore variance scaling with experimental
averaging. We construct DCG sequences using BB1 gates
to combat the dominant microwave-control-amplitude errors.
Data collection proceeds by interleaving a single sequence
implemented using either primitive or BB1 gates to ensure a
fair comparison between the sequences in time, in the event
that any systematic drifts occur.

We examine the scaling of V (r)
k with averaging over

repetitions r, up to r = 500; because noise is native to the
system, we make the substitution n ≡ r. The signature of the
temporally correlated intrinsic errors is observed for all ions
when using sequences of primitive gates in Fig. 5(a) (red).
We observe a staggered, increasing saturation value for V (r)

k
at r = 500, increasing with the spatial distance from qubit 1
[leftmost qubit in Fig. 5(a) inset], which is used to calibrate
the gate operations. As expected, the qubit that is furthest
from the calibration qubit both suffers the worst randomized
benchmarking performance and shows the highest saturation
value in variance scaling. By contrast, the overrotation error
suppressing BB1 gates (blue) saturate at a value of variance
over an order of magnitude lower than achieved by the
primitive gates and recover a 1/r-like scaling for all qubits.
We further find that the relationship between the physical
positions of the qubits and the ordering of saturation variances
has become scrambled. Using the analysis introduced above,
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FIG. 5. Intrinsic errors in a five-qubit chain. (a) Variance over
noise-averaged sequence survival probabilities for five qubits us-
ing k = 60 sequences of length J = 500, averaged over repeti-
tions r, up to r = 500. Each trajectory is produced by shuffling
the order of repetitions used in the graph to avoid bias, dotted
lines indicate the means of 1000 trajectory randomizations, and
solid lines are fits where the correlated and uncorrelated error
strengths were free to vary. The correlated error strengths σ 2

C are
{1.2, 1.5, 1.9, 2.4, 2.7} × 10−4 from qubit 1 to 5 for the primitive
gates and {2.3, 2.5, 1.1, 2.2, 2.3} × 10−5 for the BB1 gates. The
uncorrelated error strengths σ 2

U are {7.5, 8.1, 8.5, 8.6, 8.7} × 10−4

from qubit 1 to 5 for the primitive gates and {6.5, 6.5, 6.3, 6.6, 6.5} ×
10−4 for the BB1 gates. The insert shows the EMCCD image of a
five-ion chain, spaced over ∼30 μm. The control field amplitude
and frequency are calibrated with respect to the highlighted leftmost
ion. (b) Pairwise cross-correlation coefficients between the five-qubit
survival probabilities for primitive gates (left) and BB1 DCGs (right),
revealing a ∼50% reduction in the correlations between qubit errors
when using DCGs.

we fit the mean variance trends with the expression in Table I,
allowing the strengths of the error σ 2

C and σ 2
U to vary. We

extract a reduction in the correlated error strength when using
BB1 gates ranging from ∼5 to 16 times for the five qubits.

To directly probe the action of DCGs in virtualizing
the spatially correlated errors, we calculate the pairwise
cross-correlation coefficient between the survival probabilities
in each experimental realization [Fig. 5(b)]. For primitive
gates, all errors are highly correlated between qubits (cross-
correlation coefficient equal to or greater than 0.9 for all
qubit pairs), whereas for the BB1 gates, a reduction of ap-
proximately 50% can be seen between all qubit pairs, further

supporting the evidence that DCGs provide a suppression of
error correlations in both time and space.

Separate investigations not presented here using a multi-
axis error suppressing DCG called CORPSE in BB1, which
combines the detuning-error robustness of the CORPSE gate
with the amplitude-error robustness of the BB1 [61], showed
no additional benefit. This observation suggests that the off-
resonance error created by the magnetic-field gradient was
sufficiently small that it was dominated by other larger, but
rapidly fluctuating, intrinsic error sources.

VI. OUTLOOK

The results we have presented suggest that the path to
the practical implementation of QEC may be facilitated by
transforming miscalibrations and common laboratory noise
sources exhibiting slow drifts and low-weight noise spectra,
into effective error processes with dramatically reduced cor-
relations at the virtual layer using DCGs. We believe this is
important as the pursuit of functional quantum computers,
even at the mesoscale, will clearly require major advances in
the control and suppression of errors, as gate counts quickly
exceed 1010 for even moderate problems requiring only ∼200
qubits [62]. Combined with the observation that certain DCGs
can mitigate spatial crosstalk in multiqubit systems [63], we
believe that our demonstration of the suppression of temporal
and spatial error correlations within quantum circuits solidi-
fies the central importance of dynamic error suppression tech-
niques at the virtual level for practical quantum computing.
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APPENDIX A: SINGLE-QUBIT
RANDOMIZED BENCHMARKING

Using the experiment described in Sec. III, with a single
trapped 171Yb

+
ion and microwave gates, we achieve a single-

qubit error per gate of pRB = (1.89 ± 0.12) × 10−5 measured
using randomized benchmarking (Fig. 6). The fit to the mean
survival probabilities used to extract the error per gate is given
by

P = 0.5 + (0.5 − κ )e−pRBJ , (A1)

where P is the mean survival probability, J is the number of
gates in a randomized benchmarking sequence, and κ is the
value of our single-qubit state preparation and measurement
error, found to be κ = (3.3 ± 0.1) × 10−3.
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FIG. 6. Single-qubit randomized benchmarking. Randomized
benchmarking is performed on a single qubit using a total of 300
sequences composed of primitive gates, with 50 sequences each
of length J = 2, 25, 50, 100, 200, and 500. Each sequence was
repeated r = 500 times to reduce quantum projection noise. Black
markers represent individual sequence survival probabilities, red
crosses indicate the mean survival probabilities for each sequence
length, and the solid red line is a fit to the means to extract the average
error per gate.

APPENDIX B: PHYSICAL NOISE TO ERROR
STRENGTH TRANSLATION

We verify the model presented in this paper by using prim-
itive Clifford gates under engineered noise, where the strength
and effect of the noise are known exactly, allowing for
quantitative analysis. For this verification, we need to calcu-
late the translation between the rms magnitude of the physical
noise process ρ and that of the resulting error operators σ .
The noise is applied concurrently with the gate operations
inducing multiaxis and gate-dependent errors for the different
Clifford operations, whose lengths differ between π and π/2
rotations. Due to this introduced gate dependence, an exactly
constant noise process will not be directly translated to a
constant error process with identical error vectors for every
gate, and hence the translation for each gate needs to be
considered explicitly.

The method to transform noise strength to error strength
for noisy primitive Clifford gates is initially presented here
for a general noise process that is static over the duration of
a single gate. Each of the single-qubit Clifford gates is made
up of rotations on the Bloch sphere with the rotation axis and
angle specified by the Clifford gate index η j ∈ {1, . . . , 24}.
If the jth gate in a sequence is affected by laboratory
noise with value δ j ∼ N (0, ρ2), the resulting noisy gate can
be decomposed into an error operator and the ideal gate
C̃η j = �̂ jĈη j , with

�̂ j = exp

(
i

∞∑
α=1

δα
j

[
νη j

]
α

· σ̂
)

≈ Î + iδ j
[
νη j

]
1 · σ̂, (B1)

where σ̂ is the vector of Pauli matrices. In the main text, this
operator was introduced in terms of the error vector ε j as
�̂ j = exp{i ∑∞

α=1[ε j]α · σ̂}. We have now separated the error
vector into two components for the Magnus expansion of
order α, [ε j]α = δα

j [νη j ]α , to explicitly show the dependence
on the physical noise strength δ j , which will change between
different realizations of the noise, and the particular gate’s
susceptibility to the error channel, described by the term
νη j . There will be 24 gate-specific error vector terms νη j

corresponding to the 24 Clifford operations, which can be cal-
culated explicitly for a given noise process. We now consider
how these terms affect our ideal randomized benchmarking
sequence.

Starting with the standard randomized benchmarking pro-
cedure, we compile a sequence of randomly composed single-
qubit Clifford operations

∏J
j=1 Ĉη j = Î, which are mathemat-

ically right multiplied to the preceding operator such that they
act sequentially on an initial state. Then the complete noisy
sequence is given by

S̃ =
J∏

j=1

�̂ jĈη j . (B2)

The survival probability for a qubit prepared in |0〉, averaged
over n noise instances, is calculated using

P = 1 − 〈P(|1〉)〉n = 〈|〈0|S̃|0〉|2〉n. (B3)

To approximate the sequence, the method from [32] is
employed: The first-order term of each error operator can be
translated to a step in Pauli-error space, with the total random
walk in three dimensions for a given noise instance i given by

R(i)
3D =

J∑
j=1

δ
(i)
j r3D, j . (B4)

The jth random-walk step r3D, j is calculated from the product
of the preceding ideal gates modifying the first-order gate-
specific error for the jth operation in the sequence [νη j ]1 · σ̂,

Ĉη1 · · · Ĉη j−1

([
νη j

]
1 · σ̂

)(
Ĉη1 · · · Ĉη j−1

)† = r3D, j · σ̂. (B5)

To obtain the sequence survival probability that would
be measured via a single-axis projective measurement, the
relevant steps are then the projection of r3D, j in the two-
dimensional σ̂xσ̂y plane r2D, j ≡ r j of Pauli-error space. As
with the original model, it can be shown that a sequence’s
survival probability is given by

P = 1 − 〈‖R‖2〉n + O(ρ4), (B6)

where R is the two-dimensional random walk. From this
expression, the expectation and variance of the distribution
over noise-averaged sequence survival probabilities have been
calculated for arbitrary step lengths; the results of this cal-
culation are summarized in the noise-to-error translation in
Table II of the main text. These expressions are based on the
expected random-walk steps induced by the 24 error maps,
which are shown in Table III for a range of physical noise
processes. We proceed here by showing an example derived
for a concurrent detuning error.
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TABLE III. Expected step lengths in the Pauli σ̂xσ̂y plane based on the average Clifford gate error for different engineered noise. These
quantities are used to predict the statistical moments of the sequence survival-probability distributions in Table II.

Engineered noise process E[‖r j‖2] E[‖r j‖4] Cov(‖rU, j‖2, ‖rC, j‖2)

interleaved dephasing
2

3

2

3

2

9

concurrent detuning with one value per 2

3

(1

2
+ π 2

96

) 2

3

( 7

24
+ π 4

384

) 2

3

( 7

24
+ π 4

384

)
− 4

9

(1

2
+ π 2

96

)2

primitive (π or π/2) gate

concurrent detuning with one value every 2

3

(1

2
+ π 2

192

) 2

3

(1

4
+ π 4

1536

) 17

108
+ π 4

1152
− 4

9

(1

2
+ π 2

192

)(1

2
+ π 2

96

)
primitive π/2 gate time

over- and underrotation with one value per π 2

18

5π 4

576

29π 4

5184primitive (π or π/2) gate

over- and underrotation with one value every π 2

36

5π 4

2304

29π 4

10 368primitive π/2 gate time

1. Example for concurrent detuning noise

Combined Tables I and II predict the form of the noise-
averaged survival-probability distribution for different engi-
neered noise processes, given the expected random-walk steps
in the σ̂xσ̂y place of Pauli-error space, E[‖r j‖2] and E[‖r j‖4].
As an explicit example, these quantities are calculated here
for concurrently applied detuning noise, produced by an offset
between the qubit frequency and the control field frequency,
normalized to the Rabi frequency δ = 
/�. An ideal rotation
of angle θ about the n axis of the Bloch sphere is modified by
detuning noise as

Ũ (n, θ, δ) = e−i(θ σ̂·n+|θ |δσ̂z )/2. (B7)

From this, the eight physical error maps affecting the Clifford
operations are calculated to be

�̂(Î)(π, δ) = Î − i
πδ

2
σ̂z + O(δ2), (B8a)

�̂(σ̂x )(π, δ) = Î + iδσ̂y + O(δ2), (B8b)

�̂(σ̂x )

(
± π

2
, δ

)
= Î ± iδ

2
σ̂y − iδ

2
σ̂z + O(δ2), (B8c)

�̂(σ̂y )(π, δ) = Î − iδσ̂x + O(δ2), (B8d)

�̂(σ̂y )

(
± π

2
, δ

)
= Î ∓ iδ

2
σ̂x − iδ

2
σ̂z + O(δ2), (B8e)

�̂(σ̂z )(θ, δ) = Î, (B8f)

more generally expressed for the jth operation in the sequence
as

�̂ j = Î + δ j
[
νη j

]
1 · σ̂ + O

(
δ2

j

)
. (B9)

Only eight error maps are required to treat all 24 Clifford
operations due to the error-free nature of σ̂z rotations, which
are generally implemented via instantaneous phase changes
on the control field. Following the definition of the Clifford
operations given in Ref. [32], there is only one non-σ̂z rotation
per Clifford, which exactly corresponds to one of the eight
error maps described in Eq. (B8). If σ̂z operations were also
affected by the noise, the procedure would follow similarly
but all error maps would need to be calculated.

To find the expected random-walk steps for this unitary
error channel, recall from (B5) that the direction of the
Pauli-error steps is determined by the preceding operations
in the randomly composed sequence. As such, a given step
will remain deterministic in its size, yet be performed along
an arbitrary direction in Pauli-error space, determined by
the preceding gates. Studying the error maps for concurrent
detuning noise, we can write the gate-dependent steps as

�̂(Î)(π ) → π

2
m̂1, (B10)

�̂(σ̂x )(π ) → 1m̂1, (B11)

�̂(σ̂x )

(
π

2

)
→

(
1

2
m̂1 + 1

2
m̂2

)
, (B12)

�̂(σ̂y )(π ) → 1m̂1, (B13)

�̂(σ̂y )

(
π

2

)
→

(
1

2
m̂1 + 1

2
m̂2

)
, (B14)

�̂(σ̂z )(θ ) → 0, (B15)

with m̂1, m̂2 ∈ ±{σ̂x, σ̂y, σ̂z}. This implies that π rotations
about the x and y axes of the Bloch sphere produce a unit-
length step in Pauli-error space that will be randomly oriented
along one of the six principal axes. Similarly, π/2 rotations
produce a 1/

√
2-length step oriented at 45◦ between two

principal axes, Î gates produce a π/2-length step along a
principal axis, and rotations about the z axis contribute no step
due to their error-free nature.

The probability of producing a particular nonzero ‖r j‖ is
shown in Table IV, based on the prevalence of different gates
in the 24 Clifford gates and the likeliness of their projection
into the σ̂xσ̂y plane. Note that these steps are completely
independent of the strength of the particular noise realization
δ

(i)
j . The noise will eventually rescale each step length, but

here we only consider the unscaled walk. For this particular
noise type and bandwidth, it is not necessary to distinguish
between E[‖rC, j‖2] and E[‖rU, j‖2], as both the correlated and
uncorrelated error processes are static over the duration of an
individual gate and hence will result in the same expected
average walk steps; it is only when increasing the bandwidth
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TABLE IV. Likelihood of producing particular
length random-walk steps in the σ̂xσ̂y plane of Pauli-
error space when engineered detuning noise is ap-
plied, based on the number of Clifford gates cor-
responding to the error map and the chance of a
randomly oriented step in the σ̂xσ̂y plane.

‖r j‖ Prσ̂x σ̂y

1 4
24 × 2

3
1√
2

16
24 × 4

12

1
2

16
24 × 8

12
π

2
1

24 × 2
3

of the uncorrelated noise that they need be distinguished.
Using Table IV one finds

E[‖r j‖2] = 2

3

(
1

2
+ π2

96

)
, (B16)

E[‖r j‖4] = 2

3

(
7

24
+ π4

384

)
, (B17)

E[‖rU, j‖2‖rC, j‖2] = E[‖r j‖4]. (B18)

Using Tables I and II, this produces the expectation value

E[P] ≈ Jσ 2 2

3

(
1

2
+ π2

96

)
(B19)

for both correlated and uncorrelated errors. This again il-
lustrates the equivalence of the distribution mean, which is
related to the parameter that standard randomized benchmark-
ing analysis returns, for noise of the same strength despite
vastly different correlation lengths. The difference between
the correlated and uncorrelated processes becomes evident
when looking at the variance over survival probabilities with
increased noise averaging.

For uncorrelated errors,

V [PU ] ≈ J2σ 4

n

{
4

9

(
1

2
+ π2

96

)2

+ 1

J

[
3

(
7

36
+ π4

576

)

− 8

9

(
1

2
+ π2

96

)2]
+ (n − 1)

J

[
7

36
+ π4

576

− 4

9

(
1

2
+ π2

96

)2]}
, (B20)

noting that in the limit n → ∞, the variance scaling saturates
at a value proportional to 1

J relative to the starting variance.
For correlated errors,

V [PC] ≈ J2σ 4

n

(
12

9

(
1

2
+ π2

96

)2

+ 1

J

[
3

(
7

36
+ π4

576

)

− 8

3

(
1

2
+ π2

96

)2]
+ (n − 1)

{
4

9

(
1

2
+ π2

96

)2

+ 1

J

[
7

36
+ π4

576
− 8

9

(
1

2
+ π2

96

)2]})
, (B21)

again tending towards a constant; however, this occurs at
a significantly smaller number of noise averages than for
uncorrelated noise and saturates at a much larger variance
proportional to 1 + 1

J relative to the starting variance.
Using the revised model, the noise-averaged survival-

probability distributions under correlated noise remain 
 dis-
tributed with an updated scale parameter. While this is yet
to be shown explicitly for the uncorrelated case, the behavior
is approximated in the limit of large n and J , with n < J by
modifying the distribution in Eq. (3), to yield

PC ∼ 


(
a = 1, b = 2

3
Jσ 2

(
1

2
+ π2

96

))
, (B22)

PU ∼ 


(
a = n, b = 2

3n
Jσ 2

(
1

2
+ π2

96

))
. (B23)

The normalized 
 distributions for correlated error processes
shown by solid gray lines in Figs. 2(a)–2(c) were calculated
from first principles using (B22) with no free parameters.
The distributions for the uncorrelated error process in red
were calculated from an altered version of (B23), which was
modified for higher bandwidth noise that took multiple values
of δ in a single error map. This made use of the relation

δ1 ± δ2 ∼ N (0, 2ρ2) ≡
√

2N (0, ρ2) (B24)

such that the multiple values of δ could be expressed as

δ1 ± δ2 ≡
√

2δ, (B25)

with δ ∼ N (0, ρ2), from which point the previous method can
be followed. The equivalence in Eq. (B25) occurs because δ1

and δ2 are independent samples from a Gaussian distribution,
meaning their combination is also Gaussian distributed.

TABLE V. Gate parameters required to construct a target rotation about the x axis by angle θt using different pulse constructions. An
additional π/2 shift in φ is required for rotations about the y axis. Here k = arcsin [ sin [θt /2]

2 ], φk = arccos [ −θt
4π

], and for WAMF DCGs the
target rotations θt = ( π

4 , π

2 , π ) have X0 = (2 1
4 , 2 1

2 , 3)π and X3 = (0.36, 0.64, 1)π determined explicitly.

��������������Gate
Gate construction

(θ1, �1, φ1) (θ2, �2, φ2) (θ3, �3, φ3) (θ4, �4, φ4)

primitive (θt ,�, 0)

CORPSE (2π + θt/2 − k, �, 0) (2π − 2k, �, π ) (θt/2 − k, �, 0)

WAMF ( X0+X3
4 , �, 0) ( X0−X3

2 ,
X0−X3
X0+X3

�, 0) ( X0+X3
4 , �, 0)

BB1 (θt ,�, 0) (π,�, φk ) (2π,�, 3φk ) (π,�, φk )
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APPENDIX C: THE DCG CONSTRUCTIONS
EMPLOYED IN THIS WORK

Three error suppressing DCGs are utilized in this work:
CORPSE and WAMF gates, which suppress detuning errors,
and BB1 gates, which suppress overrotation errors. For each
of these constructions, the target angle θt = π, π/2 gates are
created as multisegment pulses described by the segments’
rotation angles θi, phase angles φi, and Rabi frequencies �i

normalized to the maximum frequency �. The constructions
of the different gates are shown in Table V. To ensure that
the error suppressing aspects of the DCGs are maintained
for all Clifford gates, the identity gate is implemented as a
rotary spin echo by concatenating a π rotation about the x axis
with its inverse −π rotation. While this results in a net zero
rotation, effectively identical to the simple wait time used for
primitive Î gates, it makes the identity operation first-order
insensitive to detuning errors during its implementation. The
physical motivation here is that if a qubit is remaining idle at
any point during a multiqubit circuit, it may be preferable to
continuously drive this type of rotary spin echo to ensure that
it does not accumulate phase errors during its idle period.

APPENDIX D: INFLUENCE OF QUANTUM
PROJECTION NOISE

Quantum projection noise (QPN) describes the intrinsic
uncertainty in qubit measurements due to the binomial nature
of measurement outcomes [64] and its scaling with the num-
ber of samples. The variance of a measurement due to QPN is
p(1−p)

r , where p is the true state projection onto the z axis of the
Bloch sphere and r is the number of identical measurements
performed. Our work studies variances over distributions of
noise-averaged survival probabilities, and consequently it is
necessary to demonstrate that we were not limited by QPN
bounds.

We consider the CORPSE data shown in Fig. 3(c); in
order to ensure that our results are not measurement artifacts
from quantum projection noise, we average each sequence and
noise realization combination r = 220 times. At this number
of repetitions, the largest possible projection noise variance
is given by 0.5(1−0.5)

220 = 1 × 10−3. In addition to the worst-
case QPN, we compare the variance scaling results for the

10
-5

10
-4

10
-3

10
-2

N
oi

se
-A

ve
ra

ge
d 

Va
ria

nc
e,

 

10
0 2 3 4 5 6 7 8

10
1 2 3 4 5 6 7 8

10
2 2

Noise Averages, n

CORPSE Mean
Worst case QPN
Data QPN

FIG. 7. Quantum projection noise limits for measured survival
probabilities with the CORPSE DCG. Comparison of mean CORPSE
variance scaling from Fig. 3(c) (blue) to QPN variance limits given
by p(1 − p)/r. The dashed line is the worst case QPN for r = 220
when p = 0.5. Black lines show additional QPN limits where, for
each n, p(1 − p)/r is calculated for 100 randomizations of noise
realizations. The lower line scaling as 1/n is divided by n × r rather
than r.

CORPSE DCG under simultaneously applied correlated and
uncorrelated noise to the QPN given by the measured survival
probabilities. Figure 7 shows the mean trajectory for the
CORPSE variance scaling under the combined noise process
presented in Fig. 3(c) in dark blue. The dashed black line gives
the worst-case QPN and the two other sets of trajectories are
calculated directly from the measured probabilities. For these,
the QPN was calculated at each n for 100 randomizations
of noise realizations to reduce bias, and the 100 values are
plotted. The lower set of trajectories is divided by n × r rather
than just r. Our results are well above this lower limit, sug-
gesting that this is the most valid measurement of setting our
QPN limit. Furthermore, we note that the saturation observed
at large values of n is not set by any static QPN bound limiting
our measurements.
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