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The full coherent control of hybridized systems such as strongly coupled cavity-magnon states is a crucial step
to enable future information processing technologies. Thus, it is particularly interesting to engineer deliberate
control mechanisms such as the full control of the coupling strength which can act as a measure for coherent
information exchange. In this work, we employ cavity resonator spectroscopy to demonstrate the complete
control of the coupling strength of hybridized cavity-magnon states. For this, we use two driving microwave
inputs which can be tuned at will. For these inputs, both the relative phase ¢ and relative amplitude ratio §, can
be independently controlled. We demonstrate that for specific quadratures between both tones we can increase the
coupling strength, close the anticrossing gap, and enter a regime of level merging. At the transition, the absolute
cavity signal is modified by 30 dB and we observe an additional linewidth decrease of 13% at resonance level
merging. This kind of control over the coupling, and hence linewidth, opens an avenue to enable or suppress an
exchange of information and bridges the gap between quantum information and spintronics applications.

DOI: 10.1103/PhysRevResearch.2.013154

I. INTRODUCTION

Polaritons are the quasiparticles associated with the
coupling of electromagnetic waves with an excited state
of matter [1,2]. Such hybridized systems are promising
candidates for applications as they can combine the
advantages of the different physical systems and overcome
the limitations of a single one [3-5]. While hybrid quantum
circuits represent a tool for the deliberate control of
quantum states, polaritons originating from light-matter
interactions can be considered as a tool to study macroscopic
systems through different kinds of hybrid systems such
as exciton-photon or magnon-polaritons (MPs) [6-13].
For instance, MPs enable examining the spin-photon
interaction, where the magnons are the associated quanta of
a collective spin excitation [14]. The study and manipulation
of spin-photon interactions could lead to the development
of spintronic applications [15-20]. However, realizing such
applications requires full control over the macroscopic
coupling strength gerr = go+/(2NS), where g is the single
spin coupling strength, N is the total number of contributing
spins and S the spin number of the utilized material [21,22].
Since it represents a measure for the coherent information
exchange, achieving full control over g.; would enable the
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deliberate enhancement or suppression of the information
exchange [23]. This is of broad interest and has been studied
for various systems such as single atoms, optomechanical
circuits, exciton or surface plasmon-polaritons, and
nanocavity-quantum dot systems [24—-28].

Within cavity magnon-polariton (CMP) spectroscopy, var-
ious recent experiments studied MPs using an yttrium-iron-
garnet (YIG) sphere as the magnonic sample in a cav-
ity resonator with a single microwave signal as an input.
At resonance, the photon states fully hybridize with the
magnon states, creating a CMP [29] as originally predicted
in Ref. [21]. In the strong coupling regime, g is related to
the anticrossing gap by Aw = 2g.¢ and set by the resonator
geometry and the sample [22,30]. CMPs have been well stud-
ied for different configurations in recent years [16,20,29,31—
39]. At room temperature, the origin of the coherent cavity-
magnon coupling can be attributed to a fixed phase correlation
of the electromagnetic fields [29]. By finding a possibility to
tune the phase relation between the cavity photon and the
magnon, ge could be manipulated. This has been recently
shown to be possible when changing the position of the
sample inside the cavity [40] and theoretically predicted in the
case when a second field is introduced driving only magnons
[41]. Here, we report on a tunable, and in principle also on-
chip compatible, approach which allows full external control
over the coupling strength g, and thus of the hybridized
states.

Specifically, the coupling strength is tuned by controlling
the relative phase ¢ and amplitude ratio 8, between the cavity
field and the corresponding field of a newly introduced second
microwave drive. This second drive acts only on the magnons
and it is not coupled to the cavity field generated from the
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FIG. 1. (a) Schematics of the experimental setup showing the
coherent signal from port I [output power level —5dBm (0.3 mW)]
divided by a power splitter. The value for §y is controlled by a
variable (0to9dB) permanently inserted attenuator in the path of
the cavity port and, if necessary, fixed attenuators (10dB each).
A mechanically tunable phase shifter in the path of the magnon
port modulates the phase (uncertainty of +0.0277/8). The system’s
response is measured in reflection at port II. (b) Orientation of the
coupling loop and alignment of the intracavity magnetic fields (cf.
Ref. [49]).

cavity port, which corresponds to the only microwave drive
employed in previous experiments on single-input driven
CMPs (e.g., in Refs. [22,30,40]).

Then, by simply controlling these inputs, the anticrossing
gap can be enhanced or closed, leading to “level merging”
exactly at the transition and level attraction beyond the closure
of the gap. As we focus here on the special transition point
of “level merging,” we discuss the impact of changing ¢
and &y on the linewidth and total amplitude (in power units),
which is beyond simple interference of the cavity photon and
magnon response. In contrast to other works, our approach
is entirely externally tunable. It is not necessary to modify
the experimental environment such as moving the magnonic
sample in the cavity resonator or changing the resonator
geometry [40,42,43].

II. REALIZING AND MODELING A TWO
DRIVE EXPERIMENT

Our experiment consists of a commercially bought YIG
sphere (Y3FesOp,, r = 0.1 mm) [44], placed in the antinode
of the alternating current (AC) magnetic field of a reentrant
cavity resonator with w./2m = 6.50 GHz [45-48]. The addi-
tional input, called magnon port, is composed of a metallic
loop around the YIG sphere (cf. Ref. [49]). Its driving field
acts only on the magnons and does not couple directly to the
cavity photons [cf. Fig. 1(b)]. Experimentally, we observe a
direct coupling of the signal from the magnon port to the
cavity photons. This coupling is what we denote as crosstalk

and it is measured as a transmission signal at the cavity port;
i.e., it overlaps with the reflection measurement of interest
(cf. Ref. [49]). However, the contribution of crosstalk can be
neglected for the low-8y regime (0 < §y = 1) discussed in this
work, as it has no impact on the signal from the reflection
measurement. The vector network analyzer (VNA) serves as
the only microwave source to obtain two coherent microwave
drives up to this phase and we measure in reflection [S;(w)]
[cf. Fig. 1(a)]. While ¢ is modulated by a mechanically
tunable phase shifter added to path Pj, the relative amplitude
of both tones is controlled by the attenuators inserted in both
paths.

The time-varying intracavity magnetic fields drive the
spins in the YIG sphere out of equilibrium. Their dynamics
can be described by the Landau-Lifshitz-Gilbert equation
[50]. Here, we can quote the effective field acting on the mag-
netization dynamics as Hetr = Hex + hoe” + hys™", where
H . = (0, 0, Hex, ) describes the external static magnetic field,

magnon

RS denotes the AC field from the cavity port, and hyee™™" =
Soe®hS" is the magnon port, driving magnons only. Thus,
the relative phase and ampligﬁ? ratio are defined as ¢ =
|¢cavily - ¢magn0n| and 80 = ‘lhh,\L/‘\_ﬁyll

trol the external amplitude ratAico Sext and derive the internal
ratio §y by fitting Eq. (2) to our data (cf. Ref. [49]).

We focus on controlling the Kittel mode’s coupling
strength with wave vector k = 0 and a linear dispersion wy, =
y Hex [51,52].

Our direct external drive on the magnons by the magnon
port establishes an open system and is described by Ho =
Hoath + Hsys» Where Hpapn denotes the microwave feed-
line couplings including the microwave drives at either
port and Hgy is the interactions in the cavity including
the coupling strength. For the description of the coupling
strength of our two-tone driven CMP, we neglect Hpam
(cf. Ref. [49]). In order to model our open system, we
introduce the non-Hermitian Hamiltonian Hgys = hwe.ata +
howmm'm + higes(mta + a'm) + hQ(a'm). The penultimate
term denotes the intracavity cavity photon-magnon interac-
tion. The magnon port’s contribution as an indirect drive to the
cavity photons via the coupling of the magnons is considered
in the last term by the “driving frequency” Q = ge8oe’®.

The reflection scattering parameter S;;(w) can be derived
employing input-output theory (including the bath contribu-
tions) as [23]

. Experimentally, we con-

2igegrdoe' (1+80e'?)  /Ke1Ke
—i(w—wp )+k,
'm m (1)

. S (1480ei?) °
—i(0 — w) + ki, + SE- S

2Ke,1 —
Sii(w) = -1+

where k. 1, k.2, kr, and k, denote the dissipation parameters
due to the coupling of the feedline into the resonator at the
magnon and cavity port, the total resonator losses, and the
magnon linewidth, respectively.

III. RESULTS AND DISCUSSION

Our findings begin by comparing the expressions for a
one-port driven CMP [47] with Eq. (1), we introduce a
new expression of the coupling strength considering the
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FIG. 2. Experimental spectra for (a) ¢ =0 and (b) ¢ = 7 for
three different regimes of dy: In I we see level repulsion [§y < 1],
in II the transition [§y =~ 1], and in III level merging [6o > 1]. The
different combinations of values for ¢ and §, lead to different
effective couplings, i.e., g'(8o, ¢). Note that level repulsion is always
observed for ¢ = 0. All plots are normalized by the mean value
of the signal’s background amplitude and displayed in units of the
resonance field Hy, i.e., where w, = w,,.

dependence on ¢ and & as

g0, #) = gerrv/ 1 + oe'?, @

where the value of g denotes a complete suppression of
the magnon drive (§p = 0) and for certain combinations of &y
and ¢, Eq. (2) becomes complex and leads to level attraction
(cf. Figs. 2(b) II, 2(b) III, and 3). This observation is also
in line with the sign change for level merging shown in
Ref. [25]. In addition, the analytical expectation from Eq. (2)
is in accordance with the experimental data and the theoretical
expectation of Ref. [41] for Fig. 3(c). As can be inferred
from Eq. (2), the modulus of the coupling strength contains
a nonzero imaginary part. If [Im(g’)| > |Re(g’)|, that is, the
imaginary contribution dominates, the interaction potential
between the cavity photons and the magnons changes from
repulsive to attractive and the transition to the regime of
level attraction is observed. To date, the occurrence of level
attraction in a strongly coupled cavity photon-magnon system
is associated to the dominance of a dissipative instead of a
coherent coupling [25,41,53,54] regime. Hence, by our ex-
ternal control of the imaginary part, associated to controlling
the amount of dissipative coupling in the expression for the
coupling strength, we can obtain level attraction with our two-
input driven approach. However, in our approach, the magnon
is directly addressed by the fields from the second microwave
input port. This approach is in stark contrast to single-input
driven systems (e.g., Ref. [40]), where, instead, the dissipative
coupling regime is reached by a modulation of the cavity
resonator photon [53,54]. Another ansatz to explain the sign
change in the interaction potential and, hence, occurrence
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FIG. 3. Dependence of the real (a) and imaginary (b) parts of
the coupling strength on §, for ¢ € {0, 7 /2, w}. For all ¢, the real
part value merges to the same value within the error bars at very
low &y. For ¢ = 0 (red circles) and ¢ = /2 (green diamonds), the
coupling strength increases. However, higher values of the coupling
strength are seen for ¢ = 0. For ¢ = 7 (blue squares), we see a
decrease toward the limit §o — 1 where g'(8o, ¢) disappears. These
behaviors are related to the imaginary part shown in panel (b). While
for ¢ = m /2 this increase is suppressed as real (level repulsion)
and imaginary (level attraction) parts are nonzero, for ¢ = m only
Im(g (80, ¢)) is nonzero. (c) Experimental data (points) and fit (solid
lines) of Re(g (80, ¢))|sy=const for four different values of 8y, confirm-
ing the findings in panel (a). The value to § is calculated from the fit
result of panels (a) and (b) (cf. Ref. [49]). The solid lines are fits of
Eq. (2).

of level attraction in CMP systems is the introduction of a
diamagnetic response [55] induced by changing the sample
position within the cavity’s AC magnetic field. However,
this effect is not present in our system. We do not alter the
system and modulate the interaction potential by the effective
magnetic fields acting on the magnons.

In the following, we first summarize the key features of
our work by showing the spectra for relative phase shifts of
Fig. 2(a) for ¢ = 0 and Fig. 2(b) for ¢ = 7 for three different
regimes of &y. These are below (69 = 0.43 £ 0.04, part I), at
the transition to (§p = 1.02 & 0.09, part II), and in the regime
of level merging (6o = 1.32 £ 0.22, part III). Then, we are
going examine the dependence of the coupling strength on &
and ¢ in more detail (cf. Fig. 3), before we focus on the special
case of level merging (¢ = w, §o = 1, cf. Fig. 4 in Ref. [49]).
As expected from Eq. (2), for ¢ = 0, the anticrossing gap
increases towards higher 8p. In the regime of level merging
for ¢ = 7, the imaginary part of the coupling term dominates
the changes, resulting in level attraction [cf. Fig. 2(b), part III].

The dispersion spectrum of the CMP changes for various
combinations of 8y and ¢ because the AC magnetic field
from the magnon port exerts an additional torque on the
precessing magnetization where its orientation depends on
¢ [41]. Furthermore, the transmission coefficient’s amplitude
and linewidth depend on the interplay (controlled by §y and ¢)
between individual dissipation and coupling strength between
the cavity photon and the magnon. For the specific case of
level merging (¢ = w, 8o = 1) and on resonance, this addi-
tional torque compensates the intrinsic damping and coupling-
induced linewidth broadening. Being a measure for the energy
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exchange between cavity photons and magnons, the coupling
quantified by the coupling strength can be considered as an
additional channel for energy dissipation for one subsystem or
gain for the other subsystem within a single oscillation period
for the energy exchange. Thus, for a dominating imaginary
part in Eq. (2), the dissipative coupling is the strongest con-
tribution which results in level attraction. Depending on the
orientation of the effective acting torque (with contributions
by both tones), the damping of the magnons is either enhanced
or compensated for &y = 1.02 £ 0.09 [cf. Fig. 2(b), part II].
Hence, a strong absolute change |AA|? of the signal of S11(w)
and decrease of the linewidth at level merging are expected at
resonance.

Figure 3 shows the dependence of real [Fig. 3(a)] and
imaginary [Fig. 3(b)] parts of (8¢, ¢) for 8 = const and ¢ €
{0, m /2, 7} and the real part for ¢ = const [Fig. 3(c)], includ-
ing a fit based on Eq. (2) for the same range of &y and ¢. While
Re[g (8o, ¢)] was determined from the minimal gap distance
evaluating both the amplitude and phase data (cf. Ref. [49]),
the imaginary contribution for ¢ # 0 and §y > 1 was ex-
tracted from the horizontal width of level merging, which
corresponds to 4Im[g’ (8o, ¢)] [cf. Figs. 3(a) and 3(b)] [25,49].
For 8y — 0, the three curves merge and g (8¢, ¢) = gegr as the
influence of ¢ on g (8¢, ¢) vanishes. The cavity driven photon-
magnon coupling dominates and results in an anticrossing
gap of 2¢'(8p — 0). Since for ¢ = 0, Im[g' (89, ¢)] = O for
all 8y, and Re[g'(8y, ¢)] = 0 for ¢ = 7 and &y > 1, the real
part can be attributed to a repulsive interaction (anticrossing)
and the imaginary part to an attractive one (level merging). In
accordance with the expectation from Eq. (2) [cf. Fig. 3(a)]
for ¢ = 0, Re[¢'(6y, ¢)] = O increases toward 8§y = 1. On the
other hand, for ¢ = 7 and 8y < 1, the increasing contribution
from the additional torque decreases the gap. The increase is
lower than the total decrease at ¢ = 7, because here the cou-
pling strength is “just” increased by g(8p, 0) o< /(1 + &).
Furthermore, for ¢ = %, we also observe a coexistence of
anticrossing and level merging (cf. Ref. [58]). This results in
a smaller increase for Re[g (8o, ¢ = 7 /2)] and demonstrates
the broad tunability of our system. Figure 3(c) confirms
both that the two-tone driven CMP can be effectively de-
scribed as a single-tone driven CMP with ¢ = g for §g — 0
(black triangles), and that the onset of level merging is ob-
served for ¢ = m and §y = 1 [cf. Fig. 3(c), blue squares].

Previously, for a CMP created by the cavity port only, an
increase of the signal’s linewidth at resonance has also been
reported [40]. However, in the transition to level merging,
a decrease in linewidth accompanied by a strong absolute
change of the resonance amplitude is expected [41]. As shown
in Fig. 4, we observe an absolute change of the signal in
power units by 30dB and decrease in linewidth at the level
merging transition for 6o = 1 and ¢ = 7 below the simple
addition of the cavity photon’s and the magnon’s linewidth
from interference. Figure 4(a) shows the relative increase of
the amplitude compared to the off-resonant cavity resonator’s
amplitude (Hex, < Hpes, cf. inset) below, at, and above the
cavity’s resonance frequency.

Since the CMP can be regarded as the quasiparticle from
a system of two coupled harmonic oscillators, the linewidth
is found by fitting the sum of two Lorentzian functions to the
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FIG. 4. (a) Absolute change |AA|?> in power units of the signal
at level merging (§p = 1.02 +0.09, ¢ = ) corresponding to the
absolute difference between the signal peaks off (Hey 7# Hies, inset:
black) and on (Hey = Hes, inset: red) resonance below (green), at
(red), and above (blue) w./27w = 6.4985 GHz. The inset shows the
signal for (uoHyes & 232.4mT), i.e., the maximal absolute change of
30dB. The small kink is due to an asymmetry in the spectrum [cf.
Fig. 2(b)II]. The absolute signal is increased for a field interval of
~ £0.1 mT around resonance. The vertical lines show the area for a
decreased linewidth at level merging and the solid lines are a fit to
Eq. (1) at fixed frequency. (b) Field dependence of the linewidths
between a lower bound (maximal function, green) and an upper
bound (summed linewidth of two Lorentzians, blue) and the average
(red). Around the field value for resonant coupling (vertical black
bars), there is an decrease of the linewidth at level merging as the
linewidth is lower than the geometric mean (dashed, including the
error shown in gray) from the individual, off-resonant cavity photon
and magnon linewidths. The invisible error bars of some data points
are smaller than the marker size.

data and determined by the geometric mean between lower
and upper bounds. While the lower bound is given by the
maximal function, which always takes the higher value of the
set of both linewidths [56], the upper bound is given by the
sum of the individual linewidths. For a further decrease of
the linewidth at level merging, the average from both bounds
needs to be below the average of the off-resonant linewidths
of magnon and cavity photon. They are determined to be
kr/2m =3.79 £0.003 MHz and «,, /27 = 1+ 0.5MHz; i.e.,
the linewidth has to be below its geometric mean of 2.4 +
0.25 MHz. On average, we observe an additional decrease of
the linewidth by ~13% below the geometric mean including
the error bar [gray shaded, cf. Fig. 4(b)]. This decrease in
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level merging is supported by the observation of a correspond-
ing increase in the total linewidth for ¢ = 0 (cf. Fig. 4 in
Ref. [49]).

IV. CONCLUSIONS

In summary, we demonstrated a method to achieve full
control of the coupling strength of CMPs. This is done by
tuning the relative phase ¢ and via the external attenuators the
internal amplitude ratio §, between the cavity photon’s and
magnon’s AC magnetic fields (through a second port and the
coupling into both ports). By controlling these parameters, we
observe a full collapse of the anticrossing gap at resonance,
a regime we call “level merging.” This is observed only if
the relative phase is set to ¢ = m as well as the relative
amplitude ratio to §o = 1 [57]. We note that this transition,
mediated by the two-toned system, is particularly interesting
as it can be used to strongly increase the absolute amplitude
of the signal. Moreover, our system realizes a fully automated
tuning mechanism wherein we can easily shift through various
levels of coupling, i.e., from level repulsion to recently studied
level attraction [40]. We achieve level merging by externally
controlling the coupling strength, whereas in other works,
level attraction is observed by tuning the hybrid system’s
dissipation [25] or adding a “dielectric” contribution to the
system [40,55]. With our system, it is also possible to deeply
move into the regime of level attraction (using higher 8y’s)

[58]. In our two-tone driven CMP experiment, however, the
control over the coupling regime is realized without any direct
changes of the experimental setup, thus reducing the error and
being advantageous for real applications. Such an automated
control mechanism over the spin-photon interaction could
pave the way for deliberately turning the coherent exchange
of information on and off. Furthermore, the presented spec-
troscopic two-tone control can be extended to time-dependent
control to cavity-magnon polariton modes (cf. Ref. [59]). This
could enable future applications for data storage and informa-
tion processing by the addition of a nonlinear component such
as a superconducting circuit to the spin-photon system.
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