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Activating critical exponent spectra with a slow drive
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We uncover an aspect of the Kibble-Zurek phenomenology, according to which the spectrum of critical
exponents of a classical or quantum phase transition is revealed, by driving the system slowly in directions
parallel to the phase boundary. This result is obtained in a renormalization group formulation of the Kibble-Zurek
scenario, and based on a connection between the breaking of adiabaticity and the exiting of the critical domain via
new relevant directions induced by the slow drive. The mechanism does not require fine tuning, in the sense that
scaling originating from irrelevant operators is observable in an extensive regime of drive parameters. Therefore,
it should be observable in quantum simulators or dynamically tunable condensed-matter platforms.
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I. INTRODUCTION

Universality near classical and quantum second-order
phase transitions builds on the fact that long-wavelength
fluctuations are freed by the fine tuning to the critical point,
and dominate the macroscopic physics. This is quantified by
only few independent observable critical exponents, univer-
sal numbers which are independent of microscopic details
and determined exclusively by the system’s symmetries and
dimensionality. However, universality extends beyond these
so-called relevant exponents to an entire spectrum of universal
exponents [1–3]. Yet, this fully universal information is not
easily accessible in static experiments (see, e.g., [2,4–6]),
or even numerics, the subleading character of the associated
power laws is easily overwritten by the more dominant ex-
ponents (see, e.g., [7–14]). Exceptions to this scenario are
available in conformal field theories, where a relation between
the scaling dimensions of operators and the energy spectrum
has been established [15–18] as well as in transitions with
dangerously irrelevant parameters, where specific exponents
are accessible [19].

In this work, we demonstrate that irrelevant universal ex-
ponents can be turned into relevant ones by slowly driving
the system in the vicinity of a second-order phase transi-
tion, classical or quantum, thus circumventing the need of
fine tuning. This allows for the detection of these expo-
nents in a robust way, and we provide a simple longitudinal
drive protocol [20] to do so in dynamical experiments [see
Fig. 1(a)].

We describe the underlying physics qualitatively in Sec. II
and derive our main result [detailed below Eq. (9)] in Sec. III.
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In Sec. IV we choose a rather general model to illustrate our
mechanism. In Sec. V we discuss how the breaking of adia-
baticity is reflected in the (RG) flow and how it can be seen
to produce two different scales. We show how our mechanism
can be observed in practice in Sec. VI, and discuss the more
general case of a polynomial drive in Sec. VII. Finally, we

FIG. 1. (a) A generic phase diagram with two independent pa-
rameters (locally τ0 and λ0) and a continuous phase transition. In
the KZ scenario, the critical line is crossed transversally (blue line,
left). As the phase transition is approached, the correlation length
increases as ξ ∼ |τ0|−ν until adiabaticity breaks. At this point, the
usual KZ scaling with the drive amplitude v, emerges ξ ∼ v−ν/(1+zν )

(left inset, log-log). z is the dynamical critical exponent. For more
general drives involving a longitudinal component (red line, right),
the correlation length may exhibit a different scaling ξ ∼ v−1/(z−� ),
which involves an irrelevant exponent � . This behavior is realized
when the drive amplitude is bigger than a crossover amplitude v∗

(right inset), that can be made to interpolate between ∞ and 0 by
changing the angle φ, at which the phase boundary is crossed: thus,
an irrelevant exponent is robustly observable in drive protocols with a
strong enough longitudinal component. (b) Spectrum of equilibrium
(blue, left) and nonequilibrium (right, red) critical exponents result-
ing from a linear drive. The drive shifts the whole spectrum down
by z and makes new relevant exponents out of irrelevant ones. This
mechanism underlies the scaling of the correlation length with the
drive amplitude described in (a) (see text).
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illustrate the full mechanism on an exactly solvable model in
Sec. VIII.

II. BASIC PHYSICAL MECHANISM

Our result is obtained by a systematic reformulation and
generalization of the Kibble-Zurek (KZ) scenario of diabatic
decoupling in a time-dependent adiabatic RG language [3].
The KZ mechanism [21–32] describes the behavior of a sys-
tem when slowly ramping the parameters through a second-
order phase transition: At a point in parameter space close
enough to the phase transition, where the driving rate becomes
comparable to the system’s gap, the system crosses over
from adiabatic to diabatic. Beyond that point, defects lead
to a cutoff for the scaling of the correlation length (and far
from equilibrium dynamics [33]). A quantitative prediction
of this mechanism is the scaling of the correlation length
at the crossover itself; according to the KZ hypothesis, this
scaling involves exclusively the exponents of the underlying
equilibrium critical point.

Crucially, the quantitative predictions of the KZ mecha-
nism rely on identifying the point where adiabaticity breaks.
The key idea of our RG approach is to first formulate adia-
batic flow equations, where time enters only as a parameter,
and then translate the breakdown of adiabaticity into an RG
language to connect to KZ. As a first result of this approach,
we demonstrate that the structure of the adiabatic flow equa-
tions reduces the KZ hypothesis to the conventional scaling
hypothesis: no independent information is encoded in them
[27,34,35]. This is because a slow drive only affects the large-
scale physics (conversely, a fast drive acts at small scales and
can produce new critical exponents [36–39]). The most im-
portant new implication of our analysis is, however, based on
the downshift of the spectrum of critical exponents [see Fig.
1(b)]: exponents that are irrelevant (positive sign) in the static
problem now become relevant (negative sign). This implies
that they must manifest themselves in large-scale physical
observables. And indeed, we show that experiments probing,
e.g., the correlation length can reveal irrelevant scaling expo-
nents, provided that the slow ramp in parameter space crosses
the phase boundary at a shallow enough angle [see Fig. 1(a)].

Our result is best understood by imagining the extreme
case where the system is driven along the phase boundary.
Then, the correlation length is always finite, but can get large
if the system is held close enough to the phase boundary.
In that case, the drive needs to be extremely slow for the
dynamics to be adiabatic. With such a drive, we can imagine
an alternative KZ scenario where the system is driven multiple
times along the phase boundary with the drive amplitude held
fixed and the distance to the phase boundary decreasing. For
large distance to the phase boundary the relaxation time is
short and the system is adiabatic, and the latter increases
as the former decreases. There is therefore a point where
adiabaticity breaks since the drive amplitude is held fixed.
The smaller the drive amplitude, the closer this point is to the
phase boundary. As in the usual KZ scenario, the correlation
length scales with the drive amplitude at this point. The crucial
difference, however, is that this longitudinal drive does not
involve changing the distance to the phase boundary which is
held fixed. It is instead an irrelevant parameter with a different

scaling exponent that is driven. Although this parameter does
not produce a diverging scale at equilibrium, it can still break
adiabaticity when it is driven fast enough. It turns out that driv-
ing an irrelevant parameter in this way can actually produce a
diverging length scale with its own scaling exponent. The KZ
scaling is thus modified as we show in detail below.

Since our scenario comprises both quantum and classi-
cal second-order phase transitions, it comes in timely for
larger-scale quantum simulators such as the recently emerging
Rydberg platforms that have already demonstrated the tra-
ditional KZ scaling [40]. But, it is equally suitable for con-
densed matter [41–43], ultracold atom [40,44–50], supercon-
ducting [51,52], optical cavity [53–56], or even hydrodynamic
[57] setups that offer the opportunity of slow parameter varia-
tions while exploring critical points [28].

III. ADIABATIC RG FLOW EQUATIONS
AND EXPONENT SHIFT

In an adiabatic system, equilibration timescales are much
shorter than those induced externally. Time then only enters
through the parameters characterizing the system’s partition
function. The full set of nonequilibrium adiabatic flow equa-
tions, encoding the exact scaling dimensions of all operators,
is then obtained from its equilibrium counterpart by promot-
ing the static parameters to time-dependent ones. They are

k∂k ĝ = [D1 + η D2]ĝ − z ĝ′t̂ + β(ĝ). (1)

This equation depends on time through the parameters, which
are bundled in the vector ĝ = ĝ(t̂ ) = (ĝ1(t̂ ), ĝ2(t̂ ), . . . ). We
work in rescaled units where the canonical and anomalous
components of the scaling dimensions are accounted for by
the diagonal matrices Di and the anomalous dimension η.
k is a momentum RG scale, and the prime denotes a time
derivative. Here, time must be rescaled like any other param-
eter. This produces the second term on the right-hand side
because ĝ depends on the rescaled time t̂ = kzt , where z is
the dynamical critical exponent.

In principle, the above equation describes the renormaliza-
tion of the full drive protocol through the entire time depen-
dence of ĝ. We will, however, focus on linear drive protocols
and simplify the problem accordingly. But first, we briefly
sketch the derivation of the rescaled RG flow equation (1),
starting from dimensionful adiabatic flow equations. In the
adiabatic approximation, the dimensionful RG flow equations
are given by

k∂kg(t ) = B(g(t ), Z (t ), Q(t )),

k∂kZ (t ) = η(g(t ), Z (t ), Q(t )) Z (t ),

k∂kQ(t ) = z(g(t ), Z (t ), Q(t )) Q(t ). (2)

Z (t ) and Q(t ) are the field strength and time rescaling factors,
respectively. At an RG fixed point they scale as Z ∼ kη

and Q ∼ kz and provide the anomalous dimension and the
dynamical scaling exponent, respectively. These equations
are obtained from the dimensionful flow equations of the
equilibrium system (which are computed in a standard way
[3,58]) by promoting all the parameters to time-dependent
ones. This is the definition of an adiabatic time dependence.
Equation (2) is converted to its dimensionless form [Eq. (1)]
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by rescaling the time and the coordinates of g with appropriate
powers of the RG scale k, and the rescaling factors Z and Q,

t̂ = Qt, ĝ(t̂ ) = kD1 ZD2 g(t̂/Q). (3)

We define

β(ĝ) = kD1 ZD2 B(ĝk−D1 Z−D2 , Z, Q), (4)

where the rescaling (choice of D1 and D2) is made in such a
way that k, Z , and Q drop out on the left-hand side. Then,
we obtain Eq. (1) with the anomalous dimension and the
dynamical critical exponents being functions of the rescaled
parameters

η(ĝ) = k∂kZ

Z
, z(ĝ) = k∂kQ

Q
. (5)

Again, this is a standard procedure in RG theory [3,58].
Notably however, due to time being involved as an additional
parameter to be rescaled in the presence of the slow drive, an
additional term in Eq. (1) (the middle term on the right-hand
side) arises because the rescaled couplings now also depend
on the cutoff through Q [see Eq. (3)].

Now, to fix ideas, we choose the adiabatic time dependence
of the parameters to be ĝ(t̂ ) = ĝ0 + ĝ1t̂ . Expanding Eq. (1) to
first order in t̂ then leads to

k∂k ĝ0 = (D1 + D2η)ĝ0 + β̂,

k∂k ĝ1 = (D1 + D2η − z)ĝ1 +
[
∂η

∂ ĝ
·ĝ1

]
D2ĝ0 + ∂β̂

∂ ĝ
· ĝ1. (6)

This equation describes a stationary system (with parameters
given by ĝ0) in the presence of a small drive amplitude ĝ1. The
explicit time dependence of Eq. (1) is traded for a doubling of
the number of flowing parameters. The entire system’s beta
functions are obtained by joining Eqs. (6) into a single vector
k∂k�g = (k∂k ĝ0, k∂k ĝ1) = �β(�g), with �g = (ĝ0, ĝ1). The critical
physics is then characterized by the equilibrium fixed point
�gfp = (gfp, 0), that satisfies �β(�gfp) = 0 and the flow close to
it. In particular, if we define

�G(k) = �g(k) − �gfp = (Ĝ0(k), ĝ1(k)), (7)

the components of �G(k) are small in the critical region, and
the flow is approximated as

k∂k �G(k) = M �G(k), (8)

with M the Jacobian matrix of �β(�g), evaluated at the fixed
point (see Appendix A). We see from Eq. (8) that the eigensys-
tem of M plays an important role at criticality. Its eigenvalues
are the critical exponents and its eigenvectors are used to
define the corresponding parameters (see Appendix B).

As a result of the adiabatic structure of the problem, the
stability matrix M has a relatively simple structure

M =
(

M0 X
0 M1

)
. (9)

(i) Its elements are square matrices of the same dimension-
ality as ĝ.

(ii) Its lower-left block vanishes identically because
nonzero entries would signal that drive parameters (g1, left-
hand side) can be generated from equilibrium ones (g0, right-
hand side) alone.

(iii) Its diagonal blocks M0 and M1 represent the equilib-
rium and nonequilibrium critical physics, respectively. They
are given in Appendix A.

(iv) As a result of the adiabatic setup, the diagonal blocks
are directly related: M1 = M0 − z [cf. Eq. (6)].

(v) The upper-right block of M describes the part of the
renormalization of the equilibrium parameters that is gen-
erated by the drive. Although we find X = 0 from Eq. (6),
taking into account nonadiabatic correction leads to X �= 0
(see Appendix A).

The critical exponents (including all subleading correc-
tions) can be identified with the eigenvalues of M [see Eq. (8)].
The upper-triangular-block structure of Eq. (9) implies that
these are the eigenvalues of M0 and M1, and are thus inde-
pendent of X . This leads to two key observations: First, the
upper-left block is the only element of M capable of producing
independent exponents. This provides an RG justification of
the KZ hypothesis: a slow drive does not produce any new
critical exponents (see also [34,35]). Second, the relation
M1 = M0 − z implies that the spectrum of critical exponents
is doubled with the nonequilibrium copy shifted downward
by a factor z [see Fig. 1(b)]. Intriguingly, a parameter that
is irrelevant at equilibrium, and characterized by a positive
exponent � , can thus be made relevant if � < z. This means
that this exponent must be associated with a diverging length
scale, i.e., it must be observable macroscopically. This will be
elaborated on below.

IV. EXAMPLE

We now consider a concrete model. We show how the
newly relevant operators can be observed in Sec. VI. The
general picture depends, however, on the precise form of
the exponent spectrum and must be evaluated separately for
each universality class. In particular, different combinations
z and drive protocol will lead to different scaling behaviors.
We choose interacting O(N ) models. These provide common
examples of well-known universality classes such as the Ising
(N = 1) [40] and Bose condensation (N = 2) transitions. The
spectrum of critical exponents of O(N ) models is estimated in
[59] for all values of N and d = 3. For example, the first four
critical exponents of the Ising phase transition are found to be
θ1

∼= −1.54, θ2
∼= 0.66, θ3

∼= 3.18, and θ4
∼= 5.91. Moreover,

θm = 2m − 3 + O(1/N ) at large N (with m � 1, integer). In
all cases, θ1 = −y is the only relevant exponent and θm>1 > 0
is irrelevant. The dynamical critical exponent z can take dif-
ferent values that depend on the dynamical conservation laws
[3]. We choose the example of a dissipative order parameter
(model A) where z ∼= 2 + 0.36(N + 2)/(N + 8)2 for d = 3
[3,58]. Then, a linear drive changes the relevance of a single
parameter, and the four most relevant exponents

θ1 = −y, θ2 = �, −z − y, −z + � (10)

are associated with three relevant and one irrelevant param-
eters. The corresponding equilibrium system is controlled by
the two parameters associated with the relevant and irrelevant
exponents −y and � , which we refer to as τ0 and λ0, respec-
tively. We denote the corresponding drive parameters as τ1 and
λ1, which are associated to −z − y and � − z, respectively.
See Appendix B and Eq. (B4) for a precise relation between
these parameters and �g.
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V. ADIABATICITY BREAKING AND RG ANALYSIS

The RG approach provides a direct connection between
the physical breaking of adiabaticity and the emergence of a
scale resulting from the drive: adiabaticity can be quantified
by taking the ratio of the relaxation time1 Tr = 1/g1

0 and the
drive timescale T α = |gα

0/gα
1| for each parameter. Under RG

transformations, these quantities acquire a scale dependence

εα (k) = Tr (k)

T α (k)
∼=

∣∣∣∣∣
ĝα

1 (k)

g1
fp gα

fp

∣∣∣∣∣. (11)

Adiabaticity is then signaled by a small such dimensionless
ratio, and it gets broken once |ε(k)| ∼= 1.

To derive Eq. (11), we focus on linear drive protocols.2

We write the dimensionful parameters as g = g0 + g1t [see
Eq. (3)]. In terms of the microscopic parameters εα is given
by εα = |gα

1/(g1
0gα

0 )|. The two timescales involved (Tr and T α)
are, however, strongly renormalized in the critical regime.
Fluctuations are included by using cutoff-dependent param-
eters and choosing k as small as possible:

εα =
∣∣∣∣ gα

1 (k)

g1
0(k)gα

0 (k)

∣∣∣∣ =
∣∣∣∣∣

ĝα
1 (k)[

g1
fp + Ĝ1

0(k)
][

gα
fp + Ĝα

0 (k)
]
∣∣∣∣∣. (12)

We have inserted the rescaled variables in the second equality,
and Ĝα

0 is the αth component of Ĝ0. We consider the RG flow
close to an equilibrium fixed point where �gfp = (gfp, 0). For
this reason, the coordinates of the distance from the fixed point
can be identified with ĝ1 in the nonequilibrium sector. Close
to the fixed point we can expand the above equation to leading
order in

−→
G and obtain Eq. (11).

We emphasize that ε does not depend on the equilibrium
couplings τ0 and λ0, at criticality. Adiabaticity can only be
broken if the system is driven. This is a consequence of the
block-diagonal structure of M (see Appendix B 1). Indeed,
expanding the solution of the linearized RG flow onto the
eigenvectors of M eventually provides (see Appendix B 2)

ĝ1(k) = τ1

(
�

k

)y+z

v1 + λ1

(
�

k

)z−�

v2, (13)

with τ1 and λ1 characterizing the two components of the drive
and vα the two eigenvectors of the equilibrium stability matrix
[see Eq. (B10)]. τ0 and λ0 do not enter in the flow of ĝ1, which
vanishes identically if the system is not driven.

From the point of view of the RG, |ĝ1(k)| and therefore
|ε(k)| increases as k is lowered [see Eq. (13)]. To see how this
is related to the emergence of a scale, we first recapitulate
how the correlation length is extracted from the RG under
static equilibrium conditions. The RG flow is initialized at a
large momentum scale k = � with the physical microscopic
parameters, and evolves to effective macroscopic parameters
as the RG scale k is lowered. In particular, for a near critical

1We choose the system’s gap to be the first coordinate of g0.
2Higher-order drives can, however, be taken into account by not-

ing that they produce additional means of adiabaticity breaking. ε

then acquires an additional index denoting the order of the drive
εα → εα

i ∼ |gα
i (k0 )| (with i � 1), and the following reasoning can

be directly applied.

FIG. 2. RG flow close to the fixed point. In the presence of
a drive, there are three relevant directions, and the RG flow can
escape (empty circles) the fixed point from its microscopic initial
conditions (filled circles) along different paths. There are three
distinct scenarios, separated by the gray surface and identified by
the biggest parameter at the point where the flow exits the cube: If
the drive is slow enough (gray lines at the front), then the system
is adiabatic and ξ ∼ |τ0|−ν . When |τ1| dominates (blue lines on the
top), then ξ ∼ |τ1|−ν/(1+zν ) (KZ scaling) and when |λ1| is big enough
(red lines on the right) then ξ ∼ |λ1|−1/(z−� ) (new scaling).

system, the distance from the fixed point is very small and
|τ0| 	 1. As a relevant parameter,3 τ̂0(k) grows large under
RG transformations, and a scale k0 emerges when |τ̂0(k0)| ≈
1: k0 ∼ ξ−1 provides the correlation length.

As demonstrated above, however, the system of adiabatic
flow equations contains additional relevant directions emanat-
ing from the fixed point and associated to the slow drive.
The three relevant directions for the case of O(N ) models
are illustrated in Fig. 2. Along any of these directions, the
flow will leave the critical scaling regime once the associ-
ated dimensionless parameters grow to O(1). We discuss the
physics of the flow initialized close to the fixed point along
the primitive axes of the coordinate system first:

(i) The flow along the τ̂0 axis corresponds to the case
of an undriven system τ1 = λ1 = 0. In that case, the entire
flow is controlled by the equilibrium critical exponent and
we have |�g(k) − �gfp| ∼ τ̂0(k) ∼ τ0 k−y, with τ0 = (T − Tc)/Tc

the reduced temperature. The correlation length, extracted
from the solution of the flow equation where |τ̂0(k0)| ≈ 1,
scales as ξ ∼ τ−ν

0 with ν = 1/y. In particular, we recover the
Ising exponent ν ∼= 0.65, when y ∼= 1.54. This reproduces the
usual link between the critical exponents Eq. (10), and the
scaling of the correlation length.

3We use (τ̂0(k), τ̂1(k), λ̂1(k)) and (τ0, τ1, λ1) to denote the flowing
couplings and the microscopic initial conditions, respectively. In
particular, we have (τ̂0(�), τ̂1(�), λ̂1(�)) = (τ0, τ1, λ1).
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(ii) The nonequilibrium drive provides two additional
scaling regimes, defined by the plane τ0 = 0. Crucially, the
emergence of a scale along these directions [i.e., τ̂1(k) or λ̂1(k)
becoming O(1)] coincides with the breaking of adiabaticity,
as can be read off from Eq. (11). Indeed, the coordinates of
ĝ1(k) are linear combinations of τ̂1(k) and λ̂1(k) [see Eq. (13)
and Appendix B 2] and the fixed point parameters gfp are
O(1). The observable scaling is eventually determined by the
relative amplitude of the different components of g1: when the
flow follows the τ̂1 axis (τ0 = λ1 = 0), we have |�g(k) − �gfp| ∼
|τ1| k−y−z. Then, we can extract k0 just as before, and recover
the usual KZ scaling ξ ∼ |τ1|−ν/(1+zν). Conversely, when the
flow follows the λ̂1 axis, we get |�g(k) − �gfp| ∼ |λ1| k�−z, and
ξ ∼ |λ1|−1/(z−� ). The new scaling exhibiting the irrelevant
exponent � takes place.

Thus, all together there are three possible ways for a scale
to emerge and two ways to break adiabaticity. We represent
the crossovers from the different scaling regimes as gray
surfaces in Fig. 2 with the scaling in each region determined
by its encompassed axis. The system is adiabatic in the lower-
left corner only, where we have ξ ∼ |τ0|−ν . Conversely, if
the drive is strong (or if |τ0| is small) enough, the system is
diabatic. Then, the correlation length at the crossover from
adiabatic to diabatic behaves according to one of the two
nonequilibrium relevant scalings. Crucially, there are two pos-
sible exponents: ν1 = ν/(1 + zν) is the usual KZ exponent,
and ν2 = 1/(z − � ) is a new one containing the irrelevant
exponent � . We emphasize that the difference in exponents
is significant: for example, for model A at N−1 = 0, ν1 = 1

3
and ν2 = 1.

We close this section by using Eq. (12) to extract the
scaling of the crossover between the adiabatic and diabatic
cases. We have seen that |ε| increases as k decreases and that
adiabaticity is broken if |ε(k0)| ∼ 1. There are two possibil-
ities: If |τ0| is large enough for |Ĝ0(k)| to become of order
1 before |ĝ1(k)|, then the denominator of Eq. (12) becomes
order 1 before its numerator has a chance to become large and
|ε(k0)| 	 1. The system is adiabatic and the correlation length
scales as ξ ∼ |τ0|−ν . When |τ0| is smaller, it is |ĝ1(k)| that is of
order 1 at k0. Then, adiabaticity is broken and the correlation
length scales as ξ ∼ |g1|−ν1,2 . In other words, adiabaticity is
broken when the scaling of ξ with τ0 saturates. Equating
the two scales |τ1|−ν = |g1|−ν1,2 provides different crossovers
for the two drive protocols: the usual KZ scaling emerges
(|τ1| � |λ1|) when |τ1| � |τ0|1+zν and the new scaling is visi-
ble when |λ1| � |τ0|ν(z−� ). Additionally, we find that ε scales
as |ε| ∼ |τ0|−ν/νi in the adiabatic regime and thus diverges as
τ0 → 0. Indeed, in that regime we have k0 ∼ |τ0|ν . Inserting
this in Eq. (13) provides |ĝ1(k0)| ∼ |τ0|−ν/νi with νi chosen
according to the nature of the drive protocol.

VI. OBSERVABILITY AND ROBUSTNESS

We now connect these RG findings to concrete observ-
ables. To this end, we start from the drive protocol illustrated
in the phase diagram of Fig. 1(a) (in red, on the right) and
parametrize

ĝ1 =
(

τ1

λ1

)
= v

(
cos(φ)
sin(φ)

)
. (14)

FIG. 3. (a) Time dependence of the correlation length for dif-
ferent drive amplitudes. As the system is driven across the phase
transition ξ increases as ξ ∼ |τ0|−ν until adiabaticity breaks at t =
tsat. At this time, ξ scales with the drive amplitude as ξ (tsat ) ∼ v−νi .
There are two scaling regimes [inset in (a), log-log plot]. For v < v∗

(transversal drive), the usual KZ scaling is visible νi = ν/(1 + zν ),
while for v > v∗ (longitudinal drive) the new exponent νi = 1/(z −
� ) emerges. (b) The crossover amplitude v∗ depends on the drive
direction (parametrized by the angle φ), and can be made arbitrarily
small by choosing φ close enough to π/2.

v denotes the drive amplitude and φ its direction. τ1 and λ1

are, respectively, associated with driving the system across
and along the phase boundary because they are analogous to
(i.e., they scale with the shifted exponent of) τ0 and λ0 [see
Fig. 1(a), green arrows, and Appendix B 1]. This provides
the following interpretation: when the drive is perpendicular
to the phase boundary (φ = 0), it is characterized by τ1 and
the scaling is ξ ∼ v−ν1 . In that case, we recover the usual KZ
scaling. When the system is driven along the phase boundary
(φ = π/2), λ1 takes over, and the irrelevant critical exponent
� is visible.

Crucially, a fine tuning of φ is not necessary, and both
scalings can be observed for an extended set of parameters.
Indeed, we find that the scaling of ξ with v displays two
regimes separated by a crossover drive amplitude v∗. The KZ
and the new exponents are visible for v smaller and bigger
than v∗, respectively. Notably, φ provides a means to bring
either one of these regimes forward because v∗ interpolates
from infinity to zero as φ is tuned from zero to π/2 [see
Fig. 3(b)].

The dependence of the crossover drive amplitude on φ can
be estimated for angles close to zero and to π/2 [see Eq. (17)].
This is readily understood by viewing the system as depending
on τ0 with a fixed drive amplitude. For τ0 large enough (the
system is adiabatic and) the correlation length scales as ξ ∼
τ−ν

0 . We see that ξ is bigger for smaller τ0. It can, however,
not be arbitrarily large since adiabaticity eventually breaks if
τ0 is decreased while v is held fixed. This happens when the
correlation length reaches the smallest of the two underlying
scales

ξ1 ∼ v−ν/(1+zν), ξ2 ∼ v−1/(z−� ). (15)

See [30] where a similar picture emerges. For v small enough,
ξ1 is always smaller than ξ2 because ν/(1 + zν) < 1/(z − � ).
This means that the usual KZ scaling is always visible when
v → 0. A crossover emerges because ξ1 is bigger than ξ2
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when v is large enough. v∗ is obtained by equating the two
scales

|v∗ cos(φ)|1/(y+z) = |v∗ sin(φ)|1/(z−� ) (16)

[see Eq. (14)]. Its dependence on φ can be estimated for angles
close to zero and π/2 [see Fig. 3(b)]:

v∗ ∼ φ−(zν+1)/(�ν+1) for φ 	 1,

v∗ ∼ |φ − π/2|ν(z−� )/(1+ν� ) for φ ∼= π/2. (17)

We see that v∗ vanishes when φ = π/2 and is small when
φ is close enough to π/2. The longitudinal scaling emerges
when the system is driven at a shallow angle with the phase
boundary.

Finally, we connect our quasistatic findings to an experi-
mental procedure where the system is driven across the phase
transition, taking into account the instantaneous value of the
distance from the phase transition τ (t ) = τ0 + v cos(φ)t [see
Fig. 1(a)]. Adiabaticity inevitably breaks since τ (t ) crosses
zero, and the above results are applied at this moment. In
particular, v∗ can be made arbitrarily small by crossing the
phase boundary at a shallow enough angle.

The above scaling phenomenology is not bound to the
correlation length showcased so far. It will emerge in all
typical KZ observables, such as the relaxation time Tr ∼
ξ z ∼ v−zν , or the defect density (if these are created as the
system crosses the phase boundary), which is evaluated from
the correlation volume nd ∼ ξ−d ∼ vdνi (see, e.g., [29]). Both
carry information on the irrelevant exponent for v > v∗.

VII. SPECTRUM OF IRRELEVANT EXPONENTS

In principle, the whole spectrum of irrelevant exponents is
accessible through an appropriate slow drive. For example, a
higher-order drive ĝ = ĝ0 + ĝ2t̂ 2/2 produces a doubly shifted
copy of the spectrum of critical exponents: M2 = M0 − 2z
(see Appendix A). In particular, the newly relevant exponent
θ3 − 2z produces a scaling regime with ξ ∼ v−1/(2z−θ3 ) and
enables the observation of the next irrelevant exponent θ3

by adjusting ĝ2 longitudinally to the phase boundary. In that
case, however, two exponents are made relevant since the first
irrelevant exponent is also shifted by 2z, and two irrelevant
couplings must be taken into account. The second-order drive
must follow the phase boundary in a direction that favors the
observation of θ3 over � (see Appendix B 2). As this proce-
dure is iterated, the dimensionality of the required parameter
space grows by one for each newly relevant critical exponent.
The general principle is as follows: Consider an equilibrium
phase diagram with r + 1 axes and an r-dimensional crit-
ical surface, i.e., with one direction crossing the transition
(equilibrium relevant parameter, transversal direction) and r
irrelevant (longitudinal) directions. Then, a polynomial drive
of order r can activate the first r irrelevant critical exponents.

We point out that in the case of a transversal polynomial
drive of order r, the most relevant operator, which is −y −
rz, immediately leads to the known scaling ξ ∼ v−ν/(1+zrν)

[27,60–62]. Moreover, our approach can also be applied to the
problem of adiabaticity restoration with a symmetry-breaking
field (see, e.g., [63,64]). These fields are relevant and produce
a breaking of scale invariance with an additional negative crit-

ical exponent −y2. In particular, driving the system through
its critical point with such a field will produce a new scaling
with ξ ∼ v−1/(z+y2 ).

VIII. SOLVABLE MODEL

In this section we illustrate our result with a noninteracting
toy model, which is not particularly realistic but exactly
solvable. In particular, we recover our result without using the
RG. We consider the fluctuating steady state of the Langevin
dynamics in d spatial dimensions,

∂tψ = −m ψ − ∇4ψ + Q ∇6ψ + ζ . (18)

ψ is a real-space and time-dependent field and ζ a Gaussian
white noise with 〈ζ (t, x)ζ (t ′, x′)〉 = 2δ(t − t ′)δ(x − x′). We
scale the field ψ such that the temperature that usually appears
in the noise correlator is set to one. We start with the applica-
tion of our RG analysis. The renormalization of Eq. (18) is
simple because there is no interaction. The flow of m and Q is
given by

k∂km̂ = −4 m̂, k∂kQ̂ = 2 Q̂. (19)

There is a fixed point at m̂ = Q̂ = 0 with one relevant (y =
4) and one irrelevant (� = 2) exponent. Furthermore, the
dynamical critical exponent is given by z = 4. In the presence
of a linear drive

m(t ) = m0 + m1t, Q(t ) = Q0 + Q1t, (20)

our work predicts the equilibrium (ν = 1
4 ), transversal, and

longitudinal scaling to be

ξ ∼ |m0|−1/4, ξ ∼ v−1/8, ξ ∼ v−1/2, (21)

respectively. The drive amplitude is given in terms of the
dimensionless parameters at the beginning of the RG flow:
v2 = (m1/�

8)2 + (Q1/�
2)2.

We now reproduce these results from a less formal, in-
dependent argumentation. Although Eq. (18) can be solved
exactly with the parameters of Eq. (20), this is actually not
necessary. The equal-time correlation function

〈ψ (t, r)ψ (t, 0)〉 = G(t, r; m0, Q0, m1, Q1) (22)

depends on space r = |(r1, r2, . . . , rd )|, time t , and the system
parameters. We apply dimensional analysis and write the
above equation in terms of dimensionless quantities. The
different elements of Eq. (22) have the following dimension:

[r] = L, [t] = L4, [ψ] = L(4−d )/2,

[m0] = L−4, [Q0] = L2, [m1] = L−8, [Q1] = L−2.

These dimensions can all be written as powers of a single
length L because the parameter in front of ∇4 in Eq. (18)
and the temperature have both been set to 1. This dimensional
analysis implies that the equation of motion in terms of the
rescaled parameters

r̂ = r

L
, t̂ = t

L4
, ψ̂ = ψ

L(4−d )/2
,

m̂0 = m0L4, Q̂0 = Q0

L2
, m̂1 = m1L8, Q̂1 = Q1L2
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is identical to Eq. (18), with L not appearing explicitly. In
particular, this implies that

〈ψ (t, r)ψ (t, 0)〉 = L4−d〈ψ̂ (t̂, r̂)ψ̂ (t̂, 0)〉, (23)

for any choice of L. We now insert the rescaled variables,
choose L = r, and identify G on both sides of the above
equation

G(t, r; m0, Q0, m1, Q1)

= r4−d G

(
t

r4
, 1; m0r4,

Q0

r2
, m1r8, Q1r2

)

= r4−d Ĝ

(
t

Tr
;

r

ξm0

,
r

ξQ0

,
r

ξm1

,
r

ξQ1

)
, (24)

with Tr = r4, and

ξm0 = m−1/4
0 , ξQ0 = Q1/2

0 ,

ξm1 = m−1/8
1 , ξQ1 = Q−1/2

1 .

Ĝ is a dimensionless function that does not depend on the
couplings.

We see that the four couplings m0, m1, Q0, and Q1 together
with the ramp time t , each produce a different scale. Further-
more, the scale produced by the ramp time t/Tr = [t1/4/r]4

is ξt = t1/4. We choose small values of |t | because we are
interested in the near critical physics. Close to the fixed point
(where all the couplings vanish and |t | is small) we find that,
in accordance with the RG analysis:

(i) ξt is small.
(ii) Q0 produces a scale that asymptotically vanishes as we

approach the fixed point. It does not diverge and therefore
is not visible on large spatial scales. Q0 is an irrelevant
parameter.

(iii) The scale of m0 diverges with the critical exponent
ν = 1

4 .
(iv) The scale of m1 diverges with the usual KZ exponent

ν1 = ν/(1 + zν) = 1
8 .

(v) The scale of Q1 diverges with the predicted scale ν2 =
1/(z − � ) = 1

2 .
We now set Q0 = t = 0 for simplicity and, as in the general

analysis, we introduce m1 = �8v cos(φ), Q1 = �2v sin(φ).
Then, the correlation function behaves as a power law
(G ∼ r4−d ) as long as r 	 Min(ξm0 , ξm1 , ξQ1 ) and then de-
cays exponentially. We can therefore identify the correlation
length with the smallest of the three observable scales ξ =
Min(ξm0 , ξm1 , ξQ1 ). For a fixed value of φ we extract v∗ as the
value of v where ξm1 = ξQ1 . It is given by [v∗ cos(φ)]1/8 =
[v∗ sin(φ)]1/2. Then, the three regimes that we discuss in our
paper emerge naturally:

(i) If m0 is large enough, ξm0 is the smallest scale and
ξ = m−1/4

0 . The system is adiabatic and exhibits equilibrium
scaling.

(ii) If m0 is small and v < v∗, then ξm1 is the smallest scale
and we see the usual KZ scaling ξ ∼ v−1/8.

(iii) If m0 is small and v > v∗, then ξQ1 takes over and we
see the new scaling ξ ∼ v−1/2.

We conclude with a remark concerning our choice of
model. We have chosen this somewhat unusual equation (with
∇4 and ∇6) because it illustrates our result very cleanly.

Indeed, with a more typical model (with ∇2 and ∇4), our RG
analysis would still be applicable, but we would have to resort
to a quadratic drive because z = � . In this case, the linear
drive makes the irrelevant parameter marginal (vanishing crit-
ical exponent), not relevant.

IX. CONCLUSION

In an RG language, the KZ mechanism allows one to
observe relevant critical exponents by driving along a relevant
scaling direction, i.e., transversally to the phase boundary.
We find that irrelevant exponents can be made relevant, and
therefore observable, by driving longitudinally to the phase
boundary. The observability is robust, persisting to the pres-
ence of weak transversal drive components. The quantitative
difference between the exponents is quite significant if, as
usually the case, the full critical exponents are close enough to
the canonical ones. It therefore stands to reason that the mech-
anism uncovered here may underlie some of the difficulties in
determining critical exponents in KZ experiments [52], and
may help to foster progress in this direction.
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APPENDIX A: STRUCTURE OF THE STABILITY MATRIX

In this Appendix we show how the structure of the stability
matrix that is described in the main text emerges from the
adiabatic approximation. In particular, we recover Eq. (9),
provide an explicit expression for M0 and M1, and identify
the role of the adiabatic approximation for each element.

We now formally consider the full RG flow equations
without approximation, but use a representation of the flowing
parameters that is particularly suited to the adiabatic approxi-
mation

ĝ(t̂ ) =
∑

i

ĝi
t̂ i

i!
. (A1)

In general, the dimensionless RG flow equations take the form

k∂k ĝ(t̂ ) = (D1 + η[ĝ]D2)ĝ − z[ĝ]ĝ′t̂ + β(ĝ) + L(ĝ)[ĝ′].
(A2)

Every term in the above equation depends on the rescaled
time t̂ explicitly, or through ĝ(t̂ ) and its time derivatives. The
square brackets denote a functional dependence of the form
X [ f ] = X ( f (t ), f ′(t ), f ′′(t ), . . . ). The last term on the right-
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hand side of Eq. (A2) contains the diabatic loop corrections. It
vanishes in the absence of drive L(ĝ)[0] = 0. The remaining
diabatic effects are included in the functional dependence of η

and z on ĝ. In the adiabatic approximation we recover Eq. (1)
by setting L(ĝ)[ĝ′] = 0, η[ĝ] = η(ĝ), and z[ĝ] = z(ĝ).

In the presence of an arbitrary drive (A1), the RG flow
equations of ĝi are obtained by Taylor expanding Eq. (A2) in
powers of t̂ ,

k∂k ĝi = ∂ i

∂ t̂ i
k∂k ĝ(t̂ )

∣∣∣∣
t̂=0

, (A3)

with Eq. (A2) inserted on the right-hand side. Then, the
different blocks of the stability matrix are obtained by differ-
entiating the above equation with respect to ĝi and evaluating
at ĝ(t̂ ) = gfp,

Mi j = ∂ i+1

∂ ĝ j∂ t̂ i
k∂k ĝ(t̂ )

∣∣∣∣∣
t̂=0,ĝ0=gfp,ĝn>0=0

, (A4)

with Eqs. (A2) and (A1) inserted on the right-hand side.
It is easier to evaluate Eq. (A4) if we start with the deriva-

tives with respect to ĝi. Indeed, evaluating the parameters at
ĝ(t̂ ) = gfp simplifies greatly the time dependence since gfp
does not depend on time. We find that the stability matrix is
block upper triangular (Mi j = 0 if j < i) with the different
blocks being square matrices with the dimension of the space
of equilibrium parameters. They are

Mii = D1 + ηD2 + D2gfp
∂η

∂ ĝ0
− iz + ∂β

∂ ĝ
,

Mi< j = ∂η

∂ ĝ j−i
D2gfp + ∂L

∂ ĝ j−i
. (A5)

We use Latin indices (i, j = 0, 1, . . . ) to denote the different
drive sectors. We give an explicit expression for upper-left
block M00 that couples g0 to itself (equilibrium physics):

[M00]αβ = [D1]αβ + η[D2]αβ + [D2gfp]α
∂η

∂ ĝβ

∣∣∣∣
gfp

+ ∂β̂α

∂ ĝβ

∣∣∣∣
gfp

.

We use Greek indices [with α, β = 1, 2, . . . , dim(g)] to de-
note the coordinates within each block. The above equation
makes the notation used in Eq. (A5) clear. We see that all
the diagonal blocks [referred to as M0 and M1 in Eq. (9)] are
determined from the equilibrium block

Mii = M00 − i z. (A6)

We see from Eq. (A5) that the diagonal blocks of M are
not affected by the adiabatic approximation. The off-diagonal
blocks, however, are because they contain on L(ĝ)[ĝ′] and the
derivatives of η[ĝ] with respect to the time derivatives of ĝ.

APPENDIX B: EMERGENCE OF SCALES

In this Appendix we discuss the emergence of scales
obtained through the RG. In particular, we show how these
are related to the critical exponents and the eigenvectors of
the stability matrix. This in turn provides precise definitions
for the parameters τ0, λ0, τ1, and λ1 that were introduced in
the main text. Moreover, we show that the upper-triangular

structure of M leads to a classification of the different drive
protocols as longitudinal and transversal when the drive pro-
tocol is truncated to a finite order

ĝ(t̂ ) =
r∑

i=0

ĝi
t̂ i

i!
. (B1)

ĝ and ĝi (with i = 0, 1, . . . , r) are vectors that can be repre-
sented on the system’s phase diagram. They have as many
coordinates as there are parameters in the equilibrium system.

1. Eigenvectors of M and diagonal parameters

We start by relating the eigensystem of the stability matrix
to the microscopic parameters. The structure of the stability
matrix enables its diagonalization in terms of the eigensystem
of the equilibrium stability matrix M0, which we denote as as

M0v
α = θαvα, (B2)

with α � 1 integer. vα has the same dimension as g and
α = 1, 2, . . . runs from 1 to the dimension of g as well. In
the notation of the main text we have θ1 = −y = −1/ν and
θ2 = � .

The eigenvalues of the full stability matrix M are given
by the eigenvalues of its diagonal blocks because M is upper
triangular. Moreover, the general relation between the dif-
ferent diagonal blocks [Eq. (A6)] implies that the spectrum
of M comes in downward-shifted copies of the equilibrium
spectrum. The eigensystem of M is therefore

M�vα
j = (θα − j z)�vα

j . (B3)

The eigenvectors �vα
j are composed of r + 1 vectors with the

same dimension as ĝ each [see Eq. (B9)].
The RG flow is best interpreted when the parameters are

written in terms of �vα
j . In particular, we can expand the vector

denoting the microscopic distance from the fixed point in this
basis

�G(�) = �g(�) − �gfp =
∑
α j

λα j �vα
j . (B4)

� is the scale at which the RG flow is initiated and where the
microscopic parameters are defined. This equation provides a
definition of the parameters λα j as a linear combination of the
microscopic parameters. In the critical region, the components
of �G(�) (and therefore λα j) are small, and the flow is given
by

�G(k) ∼=
∑
α j

λα j

(
k

�

)θα− jz

�vα
j . (B5)

We have

λ̂α j (k) = λα j

(
k

�

)θα− jz

. (B6)

λα j and λ̂α j (k) are the parameters that we use in the main text
for the O(N ) model, with the notation being

τ0 = λ10, λ0 = λ20, τ1 = λ11, λ1 = λ21. (B7)
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In particular, Eq. (B5) becomes

�G(k) ∼= τ0

(
k

�

)−y

�v1
0 + λ0

(
k

�

)�

�v2
0

+ τ1

(
k

�

)−y−z

�v1
1 + c2

(
k

�

)�−z

�v2
1, (B8)

which reproduces Fig. 2 where λ̂0 is not represented. We see
that | �G(k)| increases as k decreases and there is a scale k0,
below which Eq. (B8) is no longer applicable. Away from the
fixed point (and thus on spatial scales larger than 1/k0), the
physics is nonuniversal. k0 then separates the universal and
nonuniversal regimes, and can be identified with the inverse
correlation length ξ = 1/k0. It can be estimated by picking the
largest among the three values of k for which the projections
of �G(k) along �v1

0 , �v1
1, and �v2

1 are, respectively, ±1,

1/ξ ∼ k0 = � Max[|τ0|1/y, |τ1|1/(y+z), |λ1|1/(z−� )].

This reproduces the three scaling regimes that are identified in
the main text.

2. Transversal and longitudinal drives

We now provide some information on the eigenvectors of
M and the projection (B4). We will see that this provides
the interpretation of the different scaling regimes as being
transversal and longitudinal.

The eigenvectors of M are expressed in terms of the eigen-
vectors of M0 [see Eq. (B2)] and the off-diagonal elements of

M. They take the following form:

�vα
j = (

Aα
j1, Aα

j2, . . . , Aα
j j−1, v

α, 0, 0, . . .
)
. (B9)

Aα
jk are vectors that depend on vα and the different blocks

of M. They can be computed recursively starting from
Aα

j j−1 = [θα − z − M0]−1Mj−1, jv
α . The important element of

the above equation is that the jth subvector of �vα
j is given by

the equilibrium eigenvector vα .
From Eq. (B9) we find that the highest-order part of the

drive is a linear combination of the equilibrium eigenvectors.
From Eq. (B4) we can extract

∑
α

λαrv
α = ĝr (B10)

because �gfp = (gfp, 0, . . . ) only has nonvanishing components
in its equilibrium (i = 0) part. Moreover, the coordinates λαr

do not depend on the lower-order drives ĝi<r . This is the
main result of this Appendix. It implies that the equilibrium
eigenvectors provide the basis on which to decompose the rth-
order part of the drive. If gr is taken to be aligned enough with
a given equilibrium eigenvector vα , then the nonequilibrium
scaling will be ξ ∼ v−1/(rz−θα ). The usual KZ scaling emerges
from a drive along the relevant direction and is therefore
transversal. A drive that follows an irrelevant eigenvector will
not cross the phase boundary and is longitudinal.

[1] J. Cardy, Scaling and Renormalization in Statistical Physics
(Cambridge University Press, Cambridge, 1996), Vol. 5.

[2] A. Pelissetto and E. Vicari, Phys. Rep. 368, 549 (2002).
[3] U. Täuber, Critical Dynamics: A Field Theory Approach to Equi-

librium and Non-Equilibrium Scaling Behavior (Cambridge
University Press, Cambridge, 2014).

[4] S. N. Kaul, Phys. Rev. B 38, 9178 (1988).
[5] S. N. Kaul and M. S. Rao, Phys. Rev. B 43, 11240 (1991).
[6] S. N. Kaul and M. S. Rao, J. Phys.: Condens. Matter 6, 7403

(1994).
[7] H. W. J. Blöte and M. P. M. den Nijs, Phys. Rev. B 37, 1766

(1988).
[8] B. Li, N. Madras, and A. D. Sokal, J. Stat. Phys. 80, 661 (1995).
[9] H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, and A.

Muñoz Sudupe, Phys. Lett. B 387, 125 (1996).
[10] P. Grassberger, P. Sutter, and L. Schäfer, J. Phys. A: Math. Gen.

30, 7039 (1997).
[11] M. Hasenbusch, Phys. Rev. B 82, 174433 (2010).
[12] J. Kaupužs, R. V. N. Melnik, and J. Rimšāns, Int. J. Mod. Phys.
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