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Role of electron-electron collisions for charge and heat transport at intermediate temperatures
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Electric, thermal, and thermoelectric transport in correlated electron systems probe different aspects of the
many-body dynamics, and thus provide complementary information. These are well studied in the low- and
high-temperature limits, while the experimentally important intermediate regime, in which elastic and inelastic
scattering are both important, is less understood. To fill this gap, we provide comprehensive solutions of the
Boltzmann equation in the presence of an electric field and a temperature gradient for two different cases: First,
when electron-electron collisions are treated within the relaxation-time approximation while the full momentum
dependence of electron-impurity scattering is included and, second, when the electron-impurity scattering
is momentum independent, but the electron-electron collisions give rise to a momentum-dependent inelastic
scattering rate of the Fermi-liquid type. We find that for Fermi-liquid as well as for Coulomb interactions, both
methods give the same results for the leading temperature dependence of the transport coefficients. Moreover, the
inelastic relaxation rate enters the electric conductivity and the Seebeck coefficient only when the momentum
dependence of the electron-impurity collisions, analytical or nonanalytical, is included. Specifically, we show
that inelastic processes only mildly affect the electric conductivity, but can generate a nonmonotonic dependence
of the Seebeck coefficient on temperature and even a change of sign. Thermal conductivity, by contrast, always
depends on the inelastic scattering rate even for a constant elastic relaxation rate.
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I. INTRODUCTION

The temperature dependence of transport coefficients in
an electron liquid is intimately related to the effectiveness
of various microscopic scattering mechanisms [1–3]. At low
temperatures, inelastic electron-electron scattering is usually
not important, and the currents relax through elastic scatter-
ing of electrons by impurities. Electron-electron scattering
plays a more significant role at higher temperatures. Once
it dominates over electron-impurity scattering, the system
approaches the hydrodynamic limit [4–10] and current re-
laxation occurs collectively [11]. These two limiting cases
have been extensively studied [4–10,12–26]. By contrast,
the intermediate-temperature regime, where electron-electron
scattering and electron-impurity scattering are comparable, is
less understood [27–29]. We expect the transport properties at
intermediate temperatures to be highly sensitive to the nature
of both elastic and inelastic collisions. Since many experi-
mental measurements of electric, thermal, and thermoelectric
transport coefficients may well be falling in this regime, our
goal here is to close this gap.

To illustrate the importance of elastic and inelastic scat-
tering processes for transport, let us consider the electric
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conductivity σ : in the absence of inelastic collisions, each
electron loses its momentum only when it is directly scat-
tered by impurities. The electric current is carried by many
independent channels, each corresponding to a single-particle
state. Consequently, the electric conductivity is proportional
to the weighted sum of single-particle momentum relaxation
times σ ∝ ∑

p τei,pp2∂nF (ξp)/∂ξp, where the relaxation time
τei,p may depend on the electron momentum p, and nF (ξp)
is Fermi-Dirac distribution at energy ξp. In this limit, the
conductivity is dominated by the most conducting channel,
as for resistors connected in parallel. This result, known
as the Drude formula, does not hold in the hydrodynamic
limit where the total momentum of the electron fluid relaxes
by impurities only after inelastic interactions give rise to
a uniform flow. As a consequence of the collective nature
of the flow in this regime, the strongest elastic relaxation
process determines the conductivity. Hence, the system is
equivalent to many resistors connected in series, and σ ∝
1/(

∑
p τ−1

ei,pp2∂nF (ξp)/∂ξp). Importantly, the conductivity in
either limit is independent of the details of the inelastic
scattering.

In the intermediate regime, it has been shown [2,32]
that within the relaxation-time approximation (RTA) for the
electron-electron scattering τee, both scattering times τei,p and
τee can enter the electric conductivity. Importantly, τee affects
the conductivity only when the single-particle momentum
relaxation by impurities depends on the energy ξp [33]. If
τei,p ∼ const, the electric conductivity is described by the
Drude formula regardless of the strength of inelastic scatter-
ing. The relatively weak sensitivity of the electric conductivity
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to electron-electron collisions is a consequence of the inability
of these collisions to relax the total momentum of the elec-
tron liquid. By contrast, inelastic scattering alone is typically
sufficient to generate a finite thermal conductivity. This is
because inelastic collisions relax the thermal current, loosely
the energy-weighted sum of single-particle momenta, despite
conserving the total energy and momentum.

The RTA leads to a huge simplification of the full kinetic
problem. In this approximation, all modes that are not pro-
tected by conservation laws relax toward equilibrium with
the same temperature-dependent rate. It is important to re-
member, however, that a generic electron-electron collision
integral gives rise to a scattering rate that depends not only on
temperature, but also on the energy of the scattered particle.
One important goal of this work is to explore the sensitivity
of the various transport coefficients to the exact form of the
inelastic collisions.

Here, we are interested in various transport coefficients
studied in a framework of a semiphenomenological model
where the collision integral is described by the sum of two
scattering processes, arising from (i) electron-electron inter-
actions and (ii) scattering of electrons by impurities. Let us
emphasize that elastic scattering may dramatically modify the
inelastic scattering rate. Also, electron-electron interactions
modify the elastic scattering rate. We assume, however, that
the various renormalizations have already been incorporated,
and our goal is to understand how the two terms in the
collision integral interfere with each other when calculating
transport coefficients.

The main focus of this work lies on the effect that
momentum-dependent scattering processes, both elastic and
inelastic ones, have on various transport properties. Solving
this problem even within the simplified model of two indepen-
dent contributions to the collision integral is a formidable task.
Fortunately, an exact solution can be found in the special case
where the momentum dependence of one scattering process
is included within the Boltzmann equation, while the other
is kept constant. The main result of our work is to derive
response functions of electrons in the presence of an electric
field and a temperature gradient in the framework of the
Boltzmann equation with two collision terms.

We start with an extension of the self-consistent solution
of Keyes [32] to the thermal and thermoelectric transport
coefficients, in addition to the electric conductivity. As an-
ticipated, we find that the inelastic scattering time affects all
transport coefficients. The magnitude of the interaction effects
is, however, qualitatively different for each of them. In par-
ticular, we show that thermal conductivity strongly depends
on the inelastic scattering time, which affects this transport
coefficient even in the presence of a momentum-independent
elastic relaxation rate. By contrast, thermoelectric transport
coefficients are independent of the inelastic scattering time
when τei,p is constant, similar to the electric conductivity. If
the elastic scattering rate is momentum dependent, however,
it induces a τee dependence of the Seebeck coefficient. Con-
sequently, this transport coefficient may develop a charac-
teristic temperature dependence, including the possibility of
nonmonotonic behavior and a change of sign. All obtained
results are applicable for both analytic and nonanalytic energy
dependencies of the relaxation rate.

The energy dependence of the electron-impurity scattering
rate can have a smooth analytic component in the vicinity of
the Fermi energy. This component may originate, for example,
from a nonconstant density of states or through the momen-
tum dependence of the scattering amplitude for the disorder
potential. The energy dependence may also have nonanalytic
contributions. This occurs when Friedel oscillations modify
the scattering of electrons by impurities. Such an effect has
been shown to generate a linear-in-T correction to the electric
conductivity of two-dimensional electron liquids [18,34–37]
in the ballistic regime and under the assumption that 1/τee �
1/τei. As we show here, the nonanalytic form of the elastic
scattering rate can induce a dependence of transport coeffi-
cients on the inelastic scattering rate. Our results suggest that
the existing theory for the transport coefficients needs to be
generalized to include inelastic scattering at the intermediate
temperatures of main interest in this paper (1/τee ≈ 1/τei).

We compare our result for the thermal conductivity and the
solution in the presence of momentum-dependent electron-
electron scattering rate and a constant elastic scattering
rate. For this purpose, we apply the method introduced in
Ref. [38] for calculating thermal conductivity of impure three-
dimensional Fermi liquids (FLs). Based on the strong τee

dependence of the thermal conductivity found within the RTA,
we expected the result to significantly change for the different
type of interactions. We find, however, that the thermal con-
ductivities obtained with the method described in Ref. [38]
can be matched to the expression found with the generalized
Keyes method by properly fixing a single parameter τee. This
surprising observation along with the exact expression for the
conductivities derived within the RTA for inelastic scattering
is the main result of our work. Furthermore, our calculation
for a specific sample interaction provides important insight
into what type of interactions can be described using the RTA
and when strong deviations are expected.

The remainder of the paper is organized as follows: In
Sec. II, we introduce the Boltzmann kinetic equation in the
presence of electric and thermal driving forces. In Sec. III,
we generalize Keyes approach and find the nonequilibrium
distribution function within the RTA. We use this distribution
function to compute the electric, thermal, and thermoelec-
tric transport coefficients. The eigenfunction expansion of
Ref. [38] is employed in Sec. IV to derive the conductivities
in the presence of FL and Coulomb interactions. In Sec. V A,
we then compare the results obtained with both methods for
momentum-independent elastic scattering. In Sec. V B, we an-
alyze the combined effect of electron-impurity and electron-
electron scattering when the elastic scattering rate depends on
momentum. The Seebeck coefficient and its unique temper-
ature dependence due to inelastic collisions are discussed in
Sec. V C. Final remarks appear in the conclusions, Sec. VI.
Several appendices cover technical aspects of the discussion
provided in the main text.

II. LINEARIZED BOLTZMANN EQUATION

We study electric, thermal, and thermoelectric trans-
port in an electron system using the Boltzmann equation
[1] with a collision integral that describes two scattering
processes: I{ f } = Iei{ f } + Iee{ f }, where Iei (Iee) stands for
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electron-impurity (electron-electron) scattering, and f is the
distribution function. For the sake of simplicity, we describe
Iei in the RTA throughout this paper. In this approximation, the
distribution function f (r, p, t ) relaxes toward the angularly
averaged distribution 〈 f (r, p, t )〉, and we formulate

Iei{ f } = − f (r, p, t ) − 〈 f (r, p, t )〉
τei,p

. (1)

Here, we include a momentum dependence in the charac-
teristic time τei,p. We do not distinguish here between the
single-particle scattering time due to disorder, τei,p, and the
transport scattering time. Generalizing the result to cases in
which these two times are unequal is straightforward [39].

To find the transport coefficients for steady-state currents
in linear response, the distribution function is expanded as
f (r, p) ≈ nF (ξp) + δ fp. Here, nF (ξp) = [exp(βξp) + 1]−1 is
the Fermi-Dirac distribution with β = (kBT )−1, and ξp =
εp − μ with the chemical potential μ. The small deviation
from equilibrium δ fp is induced by an electric field E or
a temperature gradient ∇rT , which will be treated in linear
response only. In Eq. (1), the angularly averaged distribution
function may be approximated by the equilibrium distribution
nF since 〈δ fp〉 = 0 in linear response. Consequently, the
linearized Boltzmann equation reads as(

−eE − ξp
∇rT

T

)
· vp

∂nF (ξp)

∂ξp
= − δ fp

τei,p
+ Iee{δ f }. (2)

Here, the collision integral Iee is also linearized.
In the following sections, we will discuss solutions to

Eq. (2) for different types of electron-electron collision inte-
grals. For simplicity, we assume a quadratic band dispersion
εp = p2/2m.

III. RELAXATION-TIME APPROXIMATION FOR Iee

It is instructive to start with a simple theory in which
both collision integrals Iei and Iee are described in the RTA.
A model of this type was studied by Keyes for the electric
conductivity [32]. We generalize this approach, and derive
closed-form solutions for the thermal conductivity and the
Seebeck coefficient. Our results provide an instructive exam-
ple of a nonperturbative description of the linear conductivi-
ties in the entire range between the impurity-dominated and
the interaction-dominated transport regimes.

The electron-electron collision integral Iee in the RTA
differs from Iei in an important respect: electron-impurity
collisions change the momenta of the scattered electrons. As
a consequence, in linear response, Iei describes a relaxation
toward the Fermi-Dirac distribution in the laboratory frame
in which impurities are at rest. In contrast, electron-electron
collisions conserve the total momentum of the participating
particles. The collision integral Iee therefore describes a re-
laxation toward a “drifting” Fermi-Dirac distribution function
n(c.m.)

F ,

Iee{ f } = − f (r, p) − n(c.m.)
F (p)

τee
, (3)

where τee is the characteristic time for electron-electron scat-
tering and c.m. stands for “center of mass.” The “drifting”

Fermi-Dirac distribution function is related to the Fermi-Dirac
distribution in the laboratory frame as follows:

n(c.m.)
F (p) = nF (εp − μ − vc.m. · p). (4)

The drift velocity vc.m. appears here because the system is
kept in a nonequilibrium steady state; this quantity can be
interpreted as the velocity of the center-of-mass motion of
electrons for the case of the quadratic dispersion that we
consider. It is worth mentioning that, unlike the case of
electron-impurity scattering, the form of Iee given above in
the RTA is very constrained: τee must be independent of
momentum for Eq. (3) to be consistent with all conservation
laws, the conservation of particle number and energy aside
from the already mentioned momentum conservation.

Note that the drift velocity vc.m.{ f } itself depends on
the nonequilibrium distribution. This is because the total
momentum associated with the distribution functions f and
n(c.m.)

F must be equal. Moreover, the inverse temperature β{ f }
[implicit in Eq. (4)], as well as the chemical potential μ{ f },
also depend on f . For these reasons, linearizing the collision
integral Iee is not entirely straightforward. However, as we
explain in more detail in Appendix A, for the purpose of
our calculation, we may take μ and β as constant. In the
next subsection, we obtain the connection of vc.m.{ f } with the
electric field and the temperature gradient.

In our problem, a finite vc.m. only exists due to the driving
of the system by either the electric field or the temperature
gradient. This is why vc.m. is a small quantity in the linear re-
sponse regime, and we may linearize n(c.m.)

F (p) ≈ (1 − vc.m. ·
p∂ξp )nF (ξp). Using this simplification, one obtains

Iee{ f } = −δ fp + vc.m. · p∂nF (ξp)/∂ξp

τee
. (5)

Here, the center-of-mass velocity can be expressed as vc.m. =
s
∫

p pδ fp/(Nm) with the particle density N = s
∫

p nF (ξp) and
the spin degeneracy s = 2. In this paper, we use the short
notation for integrals

∫
p = ∫

dp/(2π )d as well as units with
h̄ = c = kB = 1.

A. Nonequilibrium distribution

Solving the linearized Boltzmann equation (2) with the
collision integral Iee given in Eq. (5) is still a formidable task.
This is because the explicit dependence on δ fp is accompa-
nied by the implicit dependence through vc.m.. Resolving the
explicit dependence first, one finds

δ fp = τ̃pvp ·
(

eẼ + ξp
∇rT

T

)
∂nF (ξp)

∂ξp
, (6)

with the effective electric field

eẼ = eE − mvc.m.

τee
, (7)

and the total scattering rate

1

τ̃p
= 1

τei,p
+ 1

τee
. (8)

The total scattering rate satisfies the Matthiessen’s rule, which
is a direct consequence of presenting the collision term as a
sum of two terms I = Iei + Iee.
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The key observation of Ref. [32] is that the drift velocity
may be found by computing vc.m. = s

∫
p pδ fp/(Nm) with the

help of Eq. (6). This results in a self-consistent equation for
vc.m. that is easily solved. After some algebra, we arrive at

mvc.m. = τee

τee − 〈〈τ̃p〉〉
(

−〈〈τ̃p〉〉eE − 〈〈ξpτ̃p〉〉∇rT

T

)
. (9)

Here, 〈〈. . . 〉〉 denotes the average

〈〈Xp〉〉 = − 2s

dN

∫
p

Xp(ξp + μ)
∂nF (ξp)

∂ξp
, (10)

with normalization 〈〈1〉〉 = 1, for which the dimensionality d
and the factor ξp + μ appear due to the angular averaging
vp(vp · Y) → v2

pY/d for Y ∈ {E,∇rT }. By inserting Eq. (9)
into Eqs. (6)–(8), we obtain the deviation from the equilibrium
distribution function in response to the electric field and the
temperature gradient, respectively,

δ f E
p = τeeτ̃p

τee − 〈〈τ̃p〉〉vp · eE
∂nF (ξp)

∂ξp
, (11)

δ f T
p = τ̃p

(
ξp + 〈〈ξpτ̃p〉〉

τee − 〈〈τ̃p〉〉
)

vp · ∇rT

T

∂nF (ξp)

∂ξp
. (12)

Note that in metallic systems 〈〈ξpτ̃p〉〉 tends to be small at
low temperatures (in view of 〈〈ξp〉〉 ∝ T 2/εF ). We have to
keep it for two reasons: (i) we are interested in a wide range
of temperatures, and (ii) thermoelectricity is determined by
〈〈ξpτ̃p〉〉 and 〈〈ξp〉〉.

It is instructive to first study the case of constant τei, for
which a drastic simplification occurs,

mvc.m. = τei

(
−eE − 〈〈ξp〉〉∇rT

T

)
(13)

and, therefore,

δ f E
p = τeivp · eE

∂nF (ξp)

∂ξp
, (14)

δ f T
p =

(
τei〈〈ξp〉〉 + ξp − 〈〈ξp〉〉

τ−1
ei + τ−1

ee

)
vp · ∇rT

T

∂nF (ξp)

∂ξp
. (15)

We immediately notice that δ f E
p depends only on the constant

electron-impurity scattering time τei, and is independent of
the electron-electron collisions. The underlying reason is that
δ f E

p is a zero mode of the collision integral Iee. The entire
Fermi surface is shifted by δp = mvE

c.m. with the drift velocity
vE

c.m. = −eEτei/m. This argument remains valid beyond the
RTA because the relevant zero mode of Iee is a result of
momentum conservation during electron-electron collisions.
For a momentum-dependent electron-impurity scattering time
τei,p, electron-electron collisions affect the response of the
electron gas to the electric field. The inelastic collisions
do not change the current directly. Rather, they modify the
occupation of states in different energy shells that determine
the strength of scattering by impurities.

The situation is fundamentally different for thermal driving
because the corresponding force is proportional to ξp, and the
momentum dependence is inherent in this case. Therefore,
the second term in Eq. (15) survives in contrast to Eq. (14),
and δ f T

p depends on the electron-electron collisions even for
constant electron-impurity scattering time τei. We notice that

the Matthiessen’s rule (dependence on τ−1
ei + τ−1

ee ) works for
the two scattering rates if 〈〈ξp〉〉 may be neglected.

B. Transport coefficients

The transport coefficients are fully determined by the
nonequilibrium part of the distribution function. To find them,
we insert Eqs. (11) and (12) into the expressions for the
electric and thermal current densities(

JE
JT

)
= s

∫
p

(−e
ξp

)
vpδ fp =

(
LEE LET

LT E LT T

)(
E

−∇rT

)
, (16)

where s = 2 is due to spin degeneracy. As a result, the electric
conductivity reads as

σ ≡ LEE = N e2τee

m

〈〈τ̃p〉〉
τee − 〈〈τ̃p〉〉 , (17)

and the thermoelectric conductivities satisfy the Onsager re-
ciprocal relation

LET = LT E

T
= −N eτee

mT

〈〈ξpτ̃p〉〉
τee − 〈〈τ̃p〉〉 . (18)

The Seebeck coefficient S, which measures the Seebeck ef-
fect, can be derived from Eqs. (17) and (18):

S ≡ LET

LEE
= − 1

eT

〈〈ξpτ̃p〉〉
〈〈τ̃p〉〉 . (19)

The thermal conductivity is originally of the form

LT T = N
mT

(〈〈
ξ 2

p τ̃p
〉〉 + 〈〈ξpτ̃p〉〉2

τee − 〈〈τ̃p〉〉
)

. (20)

We note that all the response functions found above diverge
for τei → ∞. The divergence of LT T is specific to the thermal
conductivity of open systems in which an electric current
can flow. The thermal conductivity in the absence of electric
current JE = 0, which corresponds to a typical experimental
situation, is given by

κ ≡ LT T − LT E LET

LEE
= N

mT

(〈〈
ξ 2

p τ̃p
〉〉 − 〈〈ξpτ̃p〉〉2

〈〈τ̃p〉〉
)

, (21)

which is free from divergences in the clean limit.
Further discussions and illustrations of the main results

obtained in this section for σ of Eq. (17), S of Eq. (19), and κ

of Eq. (21) are presented in Sec. V below.

IV. BEYOND THE RELAXATION-TIME APPROXIMATION:
FERMI-LIQUID-TYPE COLLISION INTEGRAL

In the previous section, we focused on the RTA for both
collision integrals. We now improve our approach by mod-
ifying the electron-electron collision integral. Here, we will
focus on the case of a constant scattering time τei, which
allows us to transform the Boltzmann equation into a solvable
form.
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A. Electron-electron collision integral

We start by writing a refined form of the electron-electron
collision integral as

Iee{ f } = − fp

τout,p
+ 1- fp

τin,p
, (22)

where the out- and in-scattering rates are

1

τout,p
=

∫
q,p′,q′

Wpq,p′q′ fq(1 − fp′ )(1 − fq′ ), (23)

1

τin,p
=

∫
q,p′,q′

Wp′q′,pq fp′ fq′ (1 − fq). (24)

The probability for electrons with momenta p, q to be scat-
tered into states with momenta p′, q′ is [40]

Wpq,p′q′ = s(2π )d+1|Upq,p′q′ |2δ(εp + εq − εp′ − εq′ )

× δ(p + q − p′ − q′), (25)

where Upq,p′q′ is the interaction matrix element.
Next, we write the deviation of the distribution function

from the equilibrium one as

δ fp = −�p
∂nF (ξp)

∂ξp
= βnF (ξp)[1 − nF (ξp)]�p, (26)

with −�p being the excess energy generated by the external
perturbation. Inspired by Eqs. (11) and (12), we introduce
the ansatz �p = ∑

α∈{E ,T } φα (ξp)vp · Fα with FE = −eE and
FT = −∇rT . The goal of our calculation is to find the two
unknown functions φE (ξp) and φT (ξp). Finally, linearizing
Eq. (22) in �, and applying the detailed balance principle
to the equilibrium state, we find the canonical form of the
linearized collision integral

Iee{�} = −2(2π )d+1

T

∫
q,p′,q′

|Upq,p′q′ |2

× δ(εp + εq − εp′ − εq′ )δ(p + q − p′ − q′)

× nF (ξp)nF (ξq)[1 − nF (ξp′ )][1 − nF (ξq′ )]

× (�p + �q − �p′ − �q′ ). (27)

The collision integral given in Eq. (27) applied for any type
of two-body interaction. In this work, we focus on two cases:
(i) the FL interaction in three dimensions and (ii) the Coulomb
interaction in two dimensions. For these cases, Eq. (27) can
be reduced to the same approximate form in the degenerate
regime (T � εF ), as will be further discussed below. In order
to formulate the result of this step, it is useful to separate
φα into symmetric and antisymmetric parts φα (ξ ) = φα

s (ξ ) +
φα

a (ξ ), where φα
s (ξ ) = φα

s (−ξ ) and φα
a (ξ ) = −φα

a (−ξ ). Then,
the approximate form of the electron-electron collision inte-
gral reads as

Iee{φ} = − 4nF (ξp)[1 − nF (ξp)]

π2T 3τout

∫ ∞

−∞
dω K (ω, ξp)

×
∑

α∈{E ,T }
vF n̂p · Fα

∑
γ∈{s,a}

[
φα

γ (ξp) − �γ φα
γ (ξp + ω)

]
,

(28)

where we define n̂p = p/|p|, and

K (ω, ξp) = ωnB(ω)
1 − nF (ξp + ω)

1 − nF (ξp)
. (29)

Here, nB(ω) = [exp(βω) − 1]−1 is the Bose-Einstein
distribution, K (−ω,−ξp) = K (ω, ξp), and

∫
dω K (ω, ξp) =

[ξ 2
p + (πT )2]/2. In Eq. (28), 1/τout denotes the out-scattering

rate defined in Eq. (23), evaluated on the Fermi surface
and in equilibrium. The dimensionless parameters �s/a,
relevant to the symmetric and antisymmetric parts of φα ,
respectively, depend on the interaction potential as well as
on the dimensionality of the system. Both quantities 1/τout

and �s,a will be specified below for the two model systems
under consideration. Details of the derivation are described in
Appendix B.

For the FL-type collision integral in three dimensions, one
finds

�s = 1, �a =
〈 |Ũ (θ,ϕ)|2(1+2 cos θ )

cos(θ/2)

〉
av〈 |Ũ (θ,ϕ)|2

cos(θ/2)

〉
av

. (30)

Here, Ũ is obtained from U by fixing all incoming and out-
going momenta to pF . Two angles are used for characterizing
Ũ : θ is the angle between the two incoming momenta and ϕ

is the angle between the two planes spanned by the incoming
momenta and by the outgoing momenta. The angular average
is defined as 〈X (θ, ϕ)〉av = ∫ 2π

0 d (ϕ/2π )
∫ π

0 sin θ dθ X (θ, ϕ).
It follows that �a can take any value between −1 and 3. The
lowest value, �a = −1, corresponds to head-on collisions,
Ũ (θ = π, ϕ), and the highest value, �a = 3, to collinear
scattering, Ũ (θ = 0, ϕ).

The out-scattering rate increases with temperature as T 2,
as is characteristic for FLs:

1

τout
= u

T 2

εF
, (31)

where we define the dimensionless parameter

u = m3εF

32π

〈 |Ũ (θ, ϕ)|2
cos(θ/2)

〉
av

. (32)

For the Coulomb interaction in two dimensions, we find
the simple result

�s = �a = 1. (33)

Our result for �a agrees with the value found in Ref. [41],
where the thermal conductivity of a clean two-dimensional
electron gas was studied. The value of �a for the Coulomb
interaction in two dimensions falls within the range available
for the three-dimensional FL. The only difference between the
two collision integrals is in the out-scattering rate, which for
the two-dimensional case takes the form

1

τout
= πT 2

8εF
ln

∣∣∣∣4εF

T

∣∣∣∣. (34)

In the derivation of the collision integral and the scattering
rate, we assumed that the main contribution to the collision
integral arises from forward scattering. This can be justified
for small-rs systems, for which the random phase approxi-
mation is applicable [41,42]. The low dimensionality limits
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the available phase space for collisions [43]. As a result, the
out-scattering rate differs from the three-dimensional case by
a logarithmic correction.

We emphasize that the renormalization of the collision
amplitude to disorder has not been accounted for in the
derivation. This limits the range of applicability of Eqs. (28),
(33), and (34).

B. Nonequilibrium distribution and conductivities

The solution of the linearized Boltzmann equation with
electron-electron collision integral given by Eq. (28), and
electron-impurity collision integral in the RTA, Iei = −δ f /τei

with δ f given by Eq. (26), was found using the method
introduced in Refs. [44,45] for finding transport coefficients
of a clean three-dimensional FL, and generalized to include
disorder in Ref. [38]. The method essentially amounts to
diagonalizing the collision integral. This is achieved by map-
ping the Boltzmann equation via Fourier transform to an
inhomogeneous second-order differential equation. In the dif-
ferential equation, the inhomogeneity arises from the driving
term of the Boltzmann equation. The associated homogeneous
equation resembles the Schrödinger equation for a particle
in a sech2x potential, and can be solved with the help of an
eigenfunction expansion. This expansion is also the key to
solving the inhomogeneous equation and to the calculation of
transport coefficients. For the convenience of the reader, we
summarize the main steps in Appendix C.

We further simplified the solution for the thermal conduc-
tivity found in Ref. [38], bringing it to a form that is suitable
for numerical evaluation

κ (0)

κ0
= τout

τei

∞∑
n=0

3(2n + ε + 3/2)

8[λ2n+1(ε) − �a]

�(n + 3/2)�(n + ε + 3/2)

�(n + 1)�(n + ε + 1)

× [�[n + (ε + 1)/2]]2

[�(n + ε/2 + 2)]2
. (35)

Here, κ0 = π2NT τei/(3m), λn(ε) = (n + ε)(n + ε + 1)/2,
and ε = √

1 + τout/(2τei ). The thermoelectric transport coef-
ficients are smaller than the electric and thermal conductivities
by a factor of T/εF . Therefore, in the FL approximation, there
is no difference between the thermal conductivity in an open
system where current can flow, LT T , and in a closed system
with JE = 0, κ = LT T − LT E LET /LEE .

One can derive an expression similar to Eq. (35) for the
electric conductivity; see Appendices C and D. However,
as already mentioned in Sec. III A, we know that σ = σ0

is unaffected by electron-electron collisions for the case of
constant electron-impurity scattering, and therefore φE

s (ξp) =
τei. This is also consistent with Eq. (14) in the RTA. This
simple result can be used for a consistency check of the
eigenfunction decomposition obtained from mapping to the
Schrödinger equation; see Appendix E. In Appendices C and
D, we also derive the following expression characterizing the
deviation of the distribution function from the equilibrium
distribution due to a temperature gradient:

φT
a (ξp) = π2

2
τoutcosh

(
βξp

2

) ∞∑
n=0

CT
2n+1Q2n+1(ξp). (36)

Here, we defined

Qn(ξp) = 2ε−2

π2

|�[ε/2 + iβξp/(2π )]|2
�(ε)

×3F2

(−n, n + 2ε + 1, ε/2 + iβξp/(2π )
ε + 1, ε

; 1

)
,

(37)

with 3F2 being the generalized hypergeometric function. A
more detailed analysis of Eq. (36) is presented in the following
section.

V. DISCUSSION

In the two previous sections, we derived formulas for the
nonequilibrium distribution functions and conductivities in
two different approaches. In this section, we present a more
detailed analysis of both approaches, compare, and illustrate
them. In Sec. V A, we discuss properties of conductivities
for constant electron-impurity scattering time τei,p = τei. In
this case, we can compare the results obtained by the two
approaches, the RTA and the eigenfunction expansion, for the
electric and thermal conductivities as well as the correspond-
ing distribution functions. Then, in Sec. V B, we analyze the
influence of momentum-dependent electron-impurity scatter-
ing on the transport coefficients on the basis of the RTA.

The model of two independent terms in the collision inte-
gral used in this paper allows us to discuss in detail how elastic
and inelastic collisions interfere with each other when calcu-
lating transport coefficients. However, it is too simplistic to
cover all aspects of the complicated interplay of disorder and
interactions, even when renormalizations of parameters are
accounted for. A well-known example is the violation of the
Wiedemann-Franz law in the disordered electron liquid that
has been extensively studied in the diffusive [19–21,25,26]
and ballistic transport regimes [20] (under the assumption
that τee � τei). The inclusion of this effect would require a
fully microscopic treatment that is beyond the scope of this
paper. With this reservation in mind, we now turn to the results
obtained in the framework of our model.

A. Momentum-independent electron-impurity scattering

The electric/thermal conductivities [Eqs. (17) and (21)] and
the Seebeck coefficient [Eq. (19)] derived using the method
of Keyes acquire a simple form when the scattering rate by
impurities is constant [27,28,46]:

σ (0) = N e2τei

m
, (38)

κ (0) = N
mT

〈〈
ξ 2

p

〉〉 − 〈〈ξp〉〉2

τ−1
ei + τ−1

ee

, (39)

S(0) = −〈〈ξp〉〉
eT

. (40)

Out of these three coefficients, only κ depends on τee in the
absence of a momentum dependence of τei. It is governed by
the Matthiessen’s rule (∼τ−1

ei + τ−1
ee ) for two scattering rates

[27,28]. For FLs at low temperatures T � εF , the moments
of ξp that enter the transport coefficients become 〈〈ξ 2

p 〉〉 =
π2T 2/3 and 〈〈ξp〉〉 = π2T 2/(3εF ).
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The only difference between the conductivities in
Eqs. (17)–(21) and those obtained using the eigenfunction
expansion is the electron-electron collision integral. In the
RTA, τee is independent of momentum. In the FL case, the
out-scattering rate at finite ξp is τ−1

out,p ∝ ∫
dω K (ω, ξp) =

(ξ 2
p + π2T 2)/2. In a somewhat simplified form, the question

addressed in this section may therefore be stated as follows:
How does the ξp dependence of the out-scattering rate influ-
ence the transport coefficients?

1. Characteristics of the electric conductivity

As argued before, for the system we study, the nonequilib-
rium distribution in the presence of an applied electric field
is independent of the electron-electron collisions when the
electron-impurity scattering is momentum independent [33].
As a result, σ (0) is equal to the Drude conductivity σ0 =
N e2τei/m at all temperatures, and φE

s (ξp) = τei. The momen-
tum dependence of the out-scattering rate is insignificant in
this case. This result was confirmed explicitly for the RTA in
Sec. III and also for the FL-type collision integral in Sec. IV
and Appendix E.

2. Characteristics of the thermal conductivity

As we mentioned in Sec. III B, the underlying mech-
anism for thermal driving is fundamentally different from
electric driving because the driving force in the former case
is proportional to ξp, loading different weights on different
energy shells [see Eq. (2)]. As a result, the nonequilibrium
distribution, and thus the thermal conductivity, depends on
the electron-electron collisions even for constant electron-
impurity scattering time, and violates the Wiedemann-Franz
law. The Matthiessen’s rule works in the RTA, while it is
mildly violated for the more complex collision integral as will
be shown below.

In Fig. 1(a), we plot the thermal conductivity κ (0) of a two-
dimensional electron system found using the RTA, Eq. (39),
and from the eigenfunction expansion for the Coulomb inter-
action. In this figure, the analog of σ0 for the thermal con-
ductivity κ0 = π2NT τei/(3m) is used for the normalization
of κ (0). Any deviation of κ (0) from κ0 is tantamount to a
violation of the Wiedemann-Franz law. Indeed, the relations
σ = σ0 and κ = κ (0) hold in the present situation. It fol-
lows that κ (0)/κ0 = L/L0, where L0 ≡ κ0/(σ0T ) = π2/(3e2)
is the Lorenz number, and L = κ/(σT ) is the generalized
Lorenz number.

To plot Eq. (39), we need to know the inelastic scattering
rate. This is because in the RTA, τee simply plays the role of a
phenomenological parameter, while τout in the eigenfunction
expansion is derived from the microscopic theory. Here, and in
the rest of the discussion, we fix τee by matching the thermal
conductivities in the clean limit (τei � τee, τout). A detailed
explanation of the procedure is provided in Appendix F. In
the following discussion, based on Eqs. (F4) and (F7), we use
τout instead of τee.

We observe that κ (0)/κ0 obtained from the two differ-
ent models are fairly close to each other. Both predict a
strong suppression of the thermal conductivity due to fre-
quent electron-electron collisions at elevated temperatures.
Only a slight mismatch between two results is observed for
0 � τei/τout � 1.

FIG. 1. (a) Thermal conductivity κ (0) measured in units of κ0 =
π 2NT τei/(3m) as a function of τei/τout . The curves were produced
by solving the Boltzmann equation with the eigenfunction-expansion
approach for Coulomb interactions in two dimensions (solid line),
and using Keyes method within the RTA (dashed line). The inelastic
relaxation time τee was chosen such that both results match in
the clean limit (see discussion in Sec. V A). In (b) and (c), we
plot the corresponding κ̃ (x)/κ0 and φT

a (x)/τei, where x = βξp. κ̃ (x)
encodes the contribution from different energy shells. Here, we set
τei/τout = 0.5.

The excellent agreement between the results for the ther-
mal conductivity obtained by the two different models is
very surprising. It stands in contrast to the observation that
electron-electron collisions play an important role in relaxing
thermal currents. In particular, since the force generated by
a temperature gradient is nonuniform in momentum, we ex-
pected the thermal conductivity to be sensitive to the exact
momentum dependence of the inelastic scattering, and then
the two different electron-electron collision integrals would
result in significantly different κ (0). In both cases, the ther-
mal conductivity is determined by integrating the nonequilib-
rium distribution function over different energy shells κ (0) =∫ ∞
−∞ dx κ̃i(x), where x = βξp, and the label i ∈ {RTA, Coul}

distinguishes the RTA and the Coulomb collision integral. For
the RTA, under the approximation of momentum-independent
electron-impurity scattering, the integral is incorporated in the
averages 〈〈. . . 〉〉 in Eq. (39). At low temperatures, where
the first term in the numerator is dominant, this equation takes
the approximate form

κ (0) = − 2ν2μT

m
(
τ−1

ei + τ−1
ee

) ∫
dx x2∂xnF (x), (41)
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where ν2 = m/(2π ) is the density of states at the Fermi energy
in two dimensions. The thermal conductivity calculated using
the eigenfunction expansion can be written in a similar form;
see Eq. (C19). In Fig. 1(b), we compare κ̃RTA and κ̃Coul for
τei/τout = 0.5. A key observation is that the structure of the
two integrands is comparable; they both have a peak between
x = 2 and 3 and decay exponentially for x � 5. The small-
ness at large x stems from the derivative of the Fermi-Dirac
distribution that enters κ̃ in both cases. Likewise, the two
integrands vanish as x → 0 due to the energy ξp that appears
in the definition of the thermal current and another factor ξp
that originates from the thermal force.

To better understand the similarities and differences be-
tween the two methods, we recall that the integrands are
given by κ̃i ∝ φT,i

a (x)x∂xnF (x) (see Appendix C). This allows
us to factor out common terms and to focus on φT,i

a (ξp),
which is defined in Eq. (26), and incorporates the deviation
of the distribution function from the one at equilibrium. In
Fig. 1(c), we plot φT

a that is calculated first using the RTA
and second with Coulomb collision integral. We obtain that
for x � 2 the two distribution functions are approximately

FIG. 2. The counterpart of Fig. 1 for FL interactions in three
dimensions. Each solid line represents a calculation for inelastic
scattering with different angular dependence of the scattering prob-
ability, i.e., for various values of �a. The dashed lines show the
corresponding results for the thermal conductivity calculated using
the RTA. For the RTA, we used the relation 1/τee = C(�a)T 2/εF to
fix the inelastic relaxation time; C(�a) is a temperature-independent
constant defined in Appendix F. The dotted black line is the solution
for �a → 3, where inelastic collisions do not relax the thermal
current. In (b) and (c), we set τei/τout = 0.5.

FIG. 3. Temperature dependence of τei/τout at the Fermi energy
εF (a), and the thermal conductivity κ (0) (b). The latter is shown
in arbitrary units. All curves were obtained treating the electron-
electron collision integral within the RTA in two dimensions. Each
line corresponds to different values of γei = τ−1

ei . In (b), the solid
lines represent the full solution, while the dashed black lines were
obtained through a perturbative expansion in T/εF . The dotted black
lines show κ0 for the same values of τei.

linear in x with almost identical slope. The slope is fixed
by the matching procedure for the inelastic scattering times
τee and τout [recall that φT,RTA

a = x/(τ−1
ei + τ−1

ee )]. The two
curves for φT

a in Fig. 1(c) strongly deviate at larger values
of x. However, the main contribution to the integral over
x arises from small x due to the derivative of the Fermi-
Dirac distribution. Consequently, the thermal conductivity is
only weakly sensitive to the nature of the inelastic colli-
sions. Moreover, we recall that for the Coulomb interaction
τ−1

out,p ∝ ξ 2
p + π2T 2 (up to slowly varying logarithmic fac-

tors). Hence, the out-scattering time is roughly constant for
x � π , and the Boltzmann equations used in the two meth-
ods for finding the nonequilibrium distribution are almost
identical in this range of energies, once τee is appropriately
fixed.

Since τ−1
out,p ∝ ξ 2

p + π2T 2 also holds for FL interactions
in three dimensions, we expect that the RTA gives a very
good approximation for the thermal conductivity in this case
as well. In Fig. 2, we compare the thermal conductivity
found using the RTA and the eigenfunction expansion for FL
interactions in three dimensions. For this purpose, we repeat
the steps performed in Fig. 1. In the FL case, the parameter
�a changes between −1 and 3 depending on the angular
dependence of the collisions; in Fig. 2, we display curves
for different values of �a. We observe that for �a = 3, the
thermal conductivity κ0 is constant. This is a manifestation
of the fact that collinear scattering cannot relax the thermal
current. As the angle between colliding electrons grows, i.e.,
�a decreases, the thermal conductivity decays with increasing
1/τout. At the same time, the difference between the thermal
conductivities obtained by the RTA and from the Coulomb
collision integral grows, despite being overall small. Finally,
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FIG. 4. The counterpart to Fig. 3 for FL interactions in three
dimensions, with u = 1.29. In (b) we fix γei/εF = 0.01 and look at
different values of �a.

we note that the results for the three-dimensional FL with
�a = 1 and for the two-dimensional Coulomb-interaction
coincide, as was discussed in Sec. IV A.

The temperature dependence of the thermal conductivities
is implicit in Figs. 1(a) and 2(a). This is because plotting
κ (0)/κ0 removes the explicit temperature dependence through
κ0, and plotting the thermal conductivities as a function of
τei/τout accounts for the temperature dependence of the out-
scattering rate 1/τout. The only restriction on temperature is
related to the validity of the FL approximation that assumes
T � εF . By contrast, the RTA can be valid at any temperature.
In practice, we use the result obtained from the eigenfunction
expansion to fix the inelastic scattering rate for the RTA.
To complete our analysis, in Fig. 3, we use the temperature
dependence of 1/τout for the Coulomb interaction [Eq. (34)]
to plot κ (0)(T ) found using the RTA. Similarly, in Fig. 4, we
show κ (0)(T ) using the inelastic relaxation rate obtained for
the three-dimensional FL [Eq. (31)].

3. Characteristics of the Seebeck coefficient

Just like the electric conductivity, it is understood that the
Seebeck coefficient S(0) is not modified by electron-electron
collisions within the RTA. For FLs, in which T � εF , we
estimate S(0) ∝ T/εF from Eq. (40). Note, however, that ther-
moelectric power is most sensitive to system details among
the transport coefficients. The reason is that S(0) is small but
nonzero only in the presence of particle-hole asymmetry, an
effect beyond the framework of FL theory. The particle-hole
asymmetry can be caused, for example, from a nonconstant
electron velocity or density of states, or from the dependence
of the elastic scattering rate on momentum. In the estimate
presented for S(0) above, a finite result was obtained due
to a nonconstant velocity in both dimensions as well as
the nonconstant density of state in three dimensions, which
yields 〈〈ξp〉〉 �= 0. Section V C is devoted to a more detailed
discussion of S.

B. Momentum-dependent electron-impurity scattering

We turn to analyzing the conductivities for a general
momentum-dependent elastic scattering term, based on the
RTA. We start by studying the electric conductivity in the two
limits when either elastic or inelastic scattering dominates. As
in Ref. [32], we find

σ = N e2

m

{〈〈τei,p〉〉, τee � τei,p〈〈
τ−1

ei,p

〉〉−1
, τee � τei,p.

(42)

Although τee drops out in both limits, this result clearly
demonstrates that the electric conductivity is modified
by electron-electron collisions for a momentum-dependent
electron-impurity scattering time.

Similarly, in the two limits, the thermal conductivity reads
as

κ = N
mT

⎧⎨
⎩

〈〈
ξ 2

pτei,p
〉〉 − 〈〈ξpτei,p〉〉2

〈〈τei,p〉〉 , τee � τei,p

τee
(〈〈

ξ 2
p

〉〉 − 〈〈ξp〉〉2
)
, τee � τei,p.

(43)

In these limits, κ is determined by the dominant scattering
process since both elastic and inelastic scattering can relax
thermal currents. Unlike the electric conductivity, the thermal
conductivity remains finite in the absence of impurities. The
results for σ and κ in the limit of frequent electron-electron
collisions suggest a strong violation of the Wiedemann-Franz
law. Obviously, the momentum dependence of τei,p has no
influence on the result for κ in this limit. This is different in the
disorder-dominated limit, where the momentum dependence
of τei,p can play an important role.

For the Seebeck coefficient, we find from Eq. (19)

S = − 1

eT

{
〈〈ξpτei,p〉〉/〈〈τei,p〉〉, τee � τei,p

〈〈ξp〉〉, τee � τei,p.
(44)

We see that, similar to the thermal conductivity, the momen-
tum dependence of τei,p can be important in the disorder-
dominated limit, while it has no influence in the electron-
electron collision-dominated regime.

Next, we study perturbatively the effect of a momentum-
dependent elastic scattering rate on the transport coefficients.
Therefore, we separate the electron-impurity scattering rate
into two parts:

1

τei,p
= 1

τei
+ δ�p. (45)

We expand the electric/thermal conductivities [Eqs. (17)
and (21)] and the Seebeck coefficient [Eq. (19)] up to linear
order in δ�p. The zeroth-order terms have already been dis-
played in Eqs. (38)–(40). The first-order corrections in δ�p
take the form

δσ (1) = −N e2τ 2
ei

m
〈〈δ�p〉〉, (46)

δκ (1) = N
mT

2〈〈ξp〉〉〈〈ξpδ�p〉〉 − 〈〈ξp〉〉2〈〈δ�p〉〉 − 〈〈
ξ 2

pδ�p
〉〉

(
τ−1

ei + τ−1
ee

)2 ,

(47)

δS(1) = 1

eT

〈〈ξpδ�p〉〉 − 〈〈ξp〉〉〈〈δ�p〉〉
τ−1

ei + τ−1
ee

. (48)
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For the electric conductivity, both the zeroth- and first-order
terms in δ�p are independent of τee. In fact, electron-electron
collisions affect σ starting from the second order only. As
expected, τee enters both κ (0) and δκ (1). Interestingly, while
the leading term, S(0), has no dependence on scattering times,
the correction δS(1) reflects the interplay of both scattering
times τei and τee. The momentum dependence of τei there-
fore induces a sensitivity of S to electron-electron collisions
already at the first order in δ�p, unlike for the electric conduc-
tivity. Next, we examine the corrections to the conductivities
and the Seebeck coefficient in the presence of two types of
momentum-dependent elastic scattering rates.

1. Analytic form of the elastic scattering rate

We first consider an electron-impurity scattering rate that
is an analytical function of energy. Then, we can expand δ�p
as a power series in ξp,

δ�p

γei
=

∑
n∈N

wn

(
ξp

εF

)n

, (49)

where we define the constant electron-impurity scattering rate
γei = τ−1

ei , and the expansion coefficient wn. The corrections
to the transport coefficients are then easily found with the help
of the general formulas derived in the previous section. For the
purpose of illustration, we assume wn �= 0 only for n = 1, 2.

Then, the corrections to the conductivities at low tempera-
tures (T � εF ) become (in dimensions d = 2, 3)

δσ (1)

σ0
= −

(
1

6
dw1 + 1

3
w2

)(
πT

εF

)2

, (50)

δκ (1)

κ (0)
= −

(
11

30
dw1 + 7

5
w2

)
(πT/εF )2

1 + τei/τee
, (51)

δS(1)

S(0)
= −

[
2

d
w1 + 16

15
w2

(
πT

εF

)2] 1

1 + τei/τee
. (52)

These results show the additional temperature dependence
that arises from the momentum-dependent contributions to
the elastic scattering rate. These formulas clearly reflect the
general features discussed in connection with Eqs. (46)–(48).

The simplicity of the RTA in Keyes model gives us
the opportunity to isolate the impact of the momentum-
dependent electron-impurity scattering in the presence of
interactions beyond the perturbation expansion. In particular,
we are interested in the relative deviations of the conduc-
tivities and the Seebeck coefficient from their values in the
presence of strictly momentum-independent elastic scattering
[Eqs. (38)–(40)]

δA

A(0)
= A − A(0)

A(0)
, A ∈ {σ, κ, S}. (53)

In Fig. 5, we present the relative deviations of the elec-
tric/thermal conductivities and the Seebeck coefficient for
δ�p/γei ≈ w1ξp/εF . For every value of w1, the deviations
were found within perturbation theory (dashed lines) and ex-
actly (solid line). The former cases are given by Eqs. (46)–(48)
and in the displayed temperature range well approximated by
Eqs. (50)–(52). For the latter cases, we used Eqs. (17), (19),

FIG. 5. The relative deviations of the electric conductivity
δσ/σ (0) (a), thermal conductivity δκ/κ (0) (b), and Seebeck coeffi-
cient δS/S(0) (c) caused by a momentum-dependent elastic scattering
rate 1/τei,p = γei + δ�p where δ�p = w1γeiξp/εF . All the curves
were calculated within the RTA, with the relaxation rate matched
to the one for two-dimensional Coulomb interactions (Sec. V A).
Each curve corresponds to a different value of w1, and γei/εF =
0.01. The dashed black lines show the results of the perturbative
expansion with respect to w1. In (d) we present the relative deviation
of the thermal conductivity for Fermi-liquid interactions in three
dimensions with various values of �a and fixed u = 1.29 [Eq. (32)]
as well as w1 = 0.5.

and (21). In Figs. 5(a)–5(c), the relation between τout and τee

is fixed by the procedure discussed in the previous section.
Overall, the first-order result gives an excellent estimate

both of the general trends and the magnitude of the effect.
Thus, the analysis via perturbation theory provides us with
an accurate picture for the temperature dependence of the
transport coefficients. Specifically, we can see the quadratic
temperature dependence of the conductivity originating from
the averaged energy 〈〈ξp〉〉 ∝ T 2/εF in Fig. 5(a). Figure 5(c)
shows the relative deviation for the Seebeck coefficient. In this
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case, the τee dependence is induced by δ�p. The deviation has
the maximum strength, estimated by −w1, at zero tempera-
ture, but diminishes for higher temperatures as expected from
Eq. (52).

The three-dimensional FL case is shown in Fig. 5(d). Here
we observe the strong sensitivity of δκ/κ (0) to the angular
dependence of the electron-electron scattering characterized
by �a, similar to that shown in Fig. 4(b) for κ (0). In particular,
changing the dominant collision angles via �a for a given
temperature amounts to tuning τee/τout in the RTA.

2. Nonanalytic form of the elastic scattering rate

The momentum dependence of the elastic scattering rate
may contain nonanalytic contributions. A known example
arises due to the modification of the disorder potential by den-
sity modulations (Friedel oscillations) forming near impurities
in electron liquids. For sufficiently weak disorder, the temper-
ature for which the elastic and inelastic scattering rates are of
similar order may be reached for T � εF [47]. Consequently,
the 1/τee dependence induced by the nonanalyticity in τei,p
could have a strong influence on the temperature dependence
of the transport coefficients in the degenerate electron liquid.
Our goal here is to describe and illustrate the impact such a
term has on various transport coefficients.

To this end, we consider a simple model for the
momentum-dependent contribution to the elastic scattering
rate δ�p/γei = w̃1�(ξp)ξp/εF , where �(x) is the Heaviside
step function. This model is motivated by the microscopic
treatment of electron-impurity scattering in the presence of
electron-electron interactions for the two-dimensional elec-
tron liquid [18,34,35]. In this approach, the simple functional
form we use is obtained when the temperature dependence
of the Friedel oscillations is neglected. Despite this sim-
plification, the model should be sufficient for capturing the
key qualitative consequences of the nonanalytic momentum
dependence of the scattering rate. Here, we implicitly assume
that the inelastic scattering does not substantially modify
the Friedel oscillations. The range of these oscillations is
of the order of vF /T , while the average distance between
elastic scattering events, the mean-free path lei = vF τei can
be much larger in the ballistic regime characterized by the
inequalities 1/τei < T < εF . The effects we will discuss here
most important for τei ∼ τee, and therefore inelastic scattering
events are unlikely to occur in the area affected by the Friedel
oscillations.

The first-order corrections in δ�p, Eqs. (46)–(48), are
easily evaluated at low temperatures (T � εF ) for d = 2,

δσ (1)

σ0
= − ln(2)w̃1

T

εF
, (54)

δκ (1)

κ (0)
= −27ζ (3)

2π2
w̃1

T/εF

1 + τei/τee
, (55)

δS(1)

S(0)
= − w̃1

2(1 + τei/τee)
, (56)

where ζ (x) is the Riemann zeta function. These corrections
show a different temperature dependence compared to the
analytic form δ�p ∝ ξp considered above.

FIG. 6. The counterpart of Figs. 5(a)–5(c) for the nonanalytic
form δ�p = w̃1γei�(ξp)ξp/εF of the elastic scattering rate.

In Fig. 6, we show the relative deviations for the elec-
tric/thermal conductivities, and the Seebeck coefficient. Sim-
ilar to Fig. 5, we plot both the perturbative and the exact
solutions, and use the same τee. For w̃1 > 0, the overall trend
is quite similar to Fig. 5. At low temperatures, the correction
to the electric conductivity features the well-known linear
temperature dependence caused by the Friedel oscillations
formed around each impurity [18,34,35,51,52]. The dashed
line is the linear approximation in w̃1, which does not depend
on τee. As this approximation is fairly accurate over the entire
range displayed in Fig. 6, we conclude that the linear temper-
ature dependence we see here is robust against the influence
of electron-electron collisions, even beyond the temperature
for which τee = τei. At sufficiently low temperatures, this
correction dominates the T 2 dependence obtained from the
analytic expansion in the previous section.

For δS/S(0) as displayed in Fig. 6(c), we see a dependence
resembling that of the analytic correction shown in Fig. 5(c).
Indeed, unlike for the electric conductivity, both the analytic
term studied in the previous section and the nonanalytic term
studied here give rise to the same temperature dependence at
T � εF . This temperature dependence arises solely from τee,
and reflects the functional form of the factor (1 + τei/τee)−1

in Eq. (56). As a consequence, in systems where both analytic
and nonanalytic contributions to δ�p exist, they need to be
studied on equal footing unless one of them is parametri-
cally small. Figures 5(c) and 6(c) clearly demonstrate that
for δS/S(0) the sensitivity to τee induced by the momentum
dependence of the elastic scattering rate (both analytical and
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FIG. 7. The Seebeck coefficient in arbitrary units as a func-
tion of T/εF . All curves were obtained by treating the electron-
electron collision integral within the RTA and taking the momentum-
dependent part of the electron-impurity scattering rate to be of the
form δ�p/γei = w1ξp/εF + w2(ξp/εF )2. Different values of w1 and
w2 lead to the solid lines for fixed γei/εF = 0.01 and u = 1.29. The
dotted black line represents S(0) for the same value of γei/εF . A sign
change of S occurs for w1 > 1.5.

nonanalytical) is crucial for capturing the substantial temper-
ature dependence in the intermediate temperature regime for
which τei ∼ τee. Note that we do not consider here effects of
valley degeneracy [53] which may considerably increase the
strength of the nonanalytic corrections.

C. Nonmonotonic behavior and sign change
of the Seebeck coefficient

We can make an interesting observation concerning the
temperature dependence of the Seebeck coefficient. Focusing
on the low-temperature regime (T � εF ) in Eq. (48), the first
term on the right-hand side gives the leading temperature
dependence. This term is also the origin of the w1 dependence
in the low-temperature expansion given in Eq. (52). As one
can immediately see from Eq. (52), δS(1) is not necessarily
smaller than S(0). Generally speaking, they can be of the
same order of magnitude, and correspondingly w1 ∼ 1, be-
cause they both depend on the same effect, the particle-hole
asymmetry. Indeed, S(0) ∝ 〈〈ξp〉〉 is finite either due to the ξp
dependence of v2

p ∝ ξp + μ entering the momentum integral
in the definition of the average, Eq. (10), or due to the ξp
dependence of the density of states which becomes explicit
once the integration variable is changed from p to ξp. δS(1), in
turn, is finite due to the ξp dependence of the scattering rate
encoded in δ�p. In three dimensions, for example, the origin
of this dependence may (again) be the density of states. The
origin of the particle-hole asymmetry necessary to render S
finite is therefore similar in both cases, and S(0) and δS(1) can
be of the same order.

For w1 > 0, a natural behavior in three-dimensional sys-
tem, when the density of states mainly determines the momen-
tum dependence of the elastic scattering rate, one finds that
S(0) and δS(1) have opposite signs. This may lead to an inter-
esting nonmonotonic temperature dependence of the Seebeck
coefficient if w1 > d/2, as illustrated in Fig. 7 for a three-
dimensional system. At the lowest temperatures, S is bound to
vanish. At low but finite temperatures, S then takes a positive

value since δS(1) is dominant. When increasing the temper-
ature further, a change in the sign of S can occur because
τee becomes shorter and starts suppressing δS(1) relative to
S(0); compare Eq. (52). After the sign change occurred when
raising the temperature, the Seebeck coefficient is generically
negative as can be seen from Eq. (40). The nonmonotonic
temperature dependence described above could be utilized in
experiment to extract the relative strength of the two scattering
mechanisms.

Finally, let us mention that δS(1) has an appealing structure
δS(1) ∝ κ (0)∂τ−1

ei,p/∂ξp, i.e., it resembles the thermal conduc-
tivity albeit transformed for the response to the electric field.

VI. CONCLUSION

We studied the electric, thermal, and thermoelectric trans-
port coefficients in the presence of elastic and inelastic colli-
sions. Our approach was based on the Boltzmann equation for
analyzing the effect of momentum-dependent collisions. For
this purpose, two different solution methods were employed:
(i) Keyes approach was generalized to derive the transport
coefficients when the elastic scattering rate changes with
momentum while the inelastic collision rate is momentum
independent. (ii) An eigenfunction expansion was used for
obtaining the conductivities in the case of a constant elastic
scattering rate and Fermi-liquid and/or Coulomb interactions.
Computing the transport coefficients in the various limits
provided us with a clear understanding of their sensitivity to
electron-electron collisions. We found that inelastic collisions
can significantly affect both the thermal conductivity and the
Seebeck coefficient. In particular, we showed that the latter
can undergo a sign change with increasing inelastic scattering
rate or, equivalently, as a function of temperature.

One of the main results of the paper is that for Fermi-
liquid as well as Coulomb interactions the RTA captures the
temperature dependence of the transport coefficients well for a
constant elastic scattering rate. This observation is particularly
important for the thermal conductivity, which is affected by
the electron-electron collisions even in this situation. More-
over, it suggests a general guideline for understanding thermal
conductivity in other systems: when there are no other energy
scales and the temperature and energy enter similarly into
the collision integral as ξ 2

p + π2T 2 (or, equivalently, into the
quasiparticle self-energy), we expect the RTA to be sufficient.
Then, κ can be found simply by calculating 1/τee. By contrast,
we expect the collision integral to acquire a more complicated
dependence on ξp and T when additional energy scales are
present.

Finally, it would be very interesting to study the different
transport coefficients when elastic and inelastic scattering
rates are both momentum dependent. This would lead to a
better understanding of the accuracy of the RTA for inelastic
collisions also when the elastic scattering rate depends on
momentum. While a general solution of this problem would
require the development of a new calculation scheme, we
were able to gain insights by perturbatively extending the
eigenfunction-expansion technique. We found that under the
conventional simplifications of Fermi-liquid theory, a constant
inelastic relaxation rate gives a good approximation for ob-
taining the thermal and the electric conductivities.
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APPENDIX A: RELAXATION-TIME
APPROXIMATION FOR Iee

In this Appendix, we provide a more careful justification
for the form of the electron-electron collision integral See in
the RTA as presented in Eq. (5). For the sake of notational
simplicity, we consider a spinless system, and drop the degen-
eracy factor s. For a related discussion in the zero-temperature
limit, see Ref. [54].

For the purpose of this discussion, we first present the
collision integral in the RTA as

Iee{ f } = − fp − Feq{ f }
τee

. (A1)

Here, the dependence of Feq on fp originates from the f
dependence of β, μ, and vc.m.:

Feq{ f } = Feq(β{ f }, μ{ f }, vc.m.{ f }). (A2)

A natural choice for Feq is the drifting Fermi-Dirac distribu-
tion

Feq{ f } = nF (εp − μ{ f } − p · vc.m.{ f }), (A3)

where we kept the dependence on β{ f } in the right-hand side
implicit in order to stay in line with previous notation. The
parameters β, μ, and vc.m. are determined by the conditions∫

p
Feq(β{ f }, μ{ f }, vc.m.{ f }) =

∫
p

fp = N , (A4)

∫
p

pFeq(β{ f }, μ{ f }, vc.m.{ f }) =
∫

p
p fp = P, (A5)

∫
p
εpFeq(β{ f }, μ{ f }, vc.m.{ f }) =

∫
p
εp fp = E . (A6)

Using the form of Feq given in Eq. (A3) and the identity
εp − p · vc.m. = εp−mvc.m.

− 1
2 mv2

c.m., one obtains the relation
P = Nmvc.m.{ f } and finally an explicit formula for the f
dependence of vc.m.,

vc.m.{ f } =
∫

p p fp

m
∫

p fp
. (A7)

At finite temperatures, the definitions for μ{ f } and β{ f }
remain implicit in Eqs. (A4) and (A6).

We now linearize Feq around the distribution function
f (0)
p = Feq{ f (0)} as

Feq{ f (0) + δ f } = f (0)
p +

∫
dp

δFeq{ f }
δ fp

∣∣∣∣
fp= f (0)

p

δ fp, (A8)

where we expand using the chain rule

δFeq{ f }
δ fp

= ∂Feq

∂β

δβ{ f }
δ fp

+ ∂Feq

∂μ

δμ{ f }
δ fp

+ ∂Feq

∂vc.m.

· δvc.m.{ f }
δ fp

.

(A9)

In this expression, the derivatives δμ/δ fp and δβ/δ fp can
be found by differentiating Eqs. (A4) and (A6), using the
explicit form of δvc.m./δ fp = (p − mvc.m.)/((2π )2Nm) ob-
tained from Eq. (A7), and solving the resulting system of
equations. However, the general form is not very instructive
for our purposes. A considerable simplification occurs in the
special case vc.m.{ f (0)} = 0 that is relevant to our problem,
for which f (0)

p = nF (ξp). We may anticipate further that the
solution of the Boltzmann equation will have a form δ fp ∝ Y ·
p with the driving field Y ∈ {E,∇rT }. Since the scalar quanti-
ties (∂Feq/∂β )(δβ/δ fp) and (∂Feq/∂μ)(δμ/δ fp) depend only
on |p|2 for vc.m.{ f (0)} = 0, their contribution to the right-hand
side of Eq. (A8) vanishes upon angular integration. With the
explicit form of δvc.m./δ fp at hand, one obtains the final form
of the linearized collision integral (5) in the main text, with
vc.m. = ∫

p pδ fp/(Nm).

APPENDIX B: DERIVATION OF THE APPROXIMATE
FORM OF THE ELECTRON-ELECTRON

COLLISION INTEGRAL

1. FL-type collision integral in three dimensions

In this Appendix, we derive the approximate form of the
collision integral given in Eq. (28) for the case of a FL in
three dimensions (d = 3) [55]. Using Eq. (27) as a starting
point, we first introduce ω as the energy transferred during the
electron-electron scattering by using the identity δ(εp + εq −
εp′ − εq′ ) = ∫ ∞

−∞ dω δ(ω − εp′ + εp)δ(ω − εq + εq′ ). This al-
lows us to write the collision integral as

Iee{φ} = −2(2π )4

T

∑
α∈{E ,T }

∫
q,p′,q′

∫ ∞

−∞
dω|Upq,p′q′ |2δ(ω − εp′ + εp)δ(ω − εq + εq′ )δ(p + q − p′ − q′)

×nF (ξp)nF (ξq)[1−nF (ξp + ω)][1−nF (ξq − ω)][φα (ξp)vp + φα (ξq)vq−φα (ξp + ω)vp′−φα (ξq−ω)vq′] · Fα. (B1)

We next separate the angular part of the momentum integrals by writing
∫

q = ∫
dn̂q

∫ ∞
−εF

dξqν3(εq), where we defined the
unit vector n̂q = q/|q|, used the normalization

∫
dn̂q = 1, and introduced the density of states in three dimensions ν3(εq) =

(2m)3/2√εq/(4π2).
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The integrations in ξp′ and ξq′ are trivially performed with the help of the delta functions containing ω. With the aim of
extracting the leading dependence on T and ξp, we may project the density of states, the velocities and the interaction matrix
element onto the Fermi surface, and approximate δ(p + q − p′ − q′) ≈ p−3

F δ(n̂p + n̂q − n̂p′ − n̂q′ ). These steps result in

Iee{φ} = −2(2π )4

T
[ν3(εF )]3

∑
α∈{E ,T }

FαvF

p3
F

∫ ∞

−εF

dξq

∫ ∞

−∞
dω nF (ξp)nF (ξq)[1−nF (ξp+ω)][1−nF (ξq−ω)]�α (n̂p; ξp, ξq, ω) · n̂Fα

,

(B2)

where we wrote Fα = Fαn̂Fα
, and introduced

�α (n̂p; ξp, ξq, ω)

=
∫

dn̂qdn̂p′dn̂q′
∣∣Ũn̂pn̂qn̂p′ n̂q′

∣∣2
δ(n̂p + n̂q − n̂p′ − n̂q′ )[φα (ξp)n̂p + φα (ξq)n̂q − φα (ξp + ω)n̂p′ − φα (ξq − ω)n̂q′], (B3)

where Ũ is obtained from U by fixing all momenta to pF . For parametrization of the matrix element Ũ , it is customary in
FL theory to use two angles: θ is the angle between the two incoming momenta p and q, and ϕ is the angle between the
planes spanned by p and q and by p′ and q′, respectively. With this parametrization, the momentum transfer is k = |p − p′| =
2pF sin(θ/2) cos(ϕ/2).

We focus on the angular integral �α now. The integration in n̂p′ and n̂q′ is most conveniently performed in spherical
coordinates with the z axis aligned with the total momentum of the incoming particles, i.e., along n̂p + n̂q = n̂p′ + n̂q′ , with
the help of the identity

δ(n̂p + n̂q − n̂p′ − n̂q′ ) = δ(θp′ − θq′ )δ(ϕq′ − ϕp′ − π )δ(θp′ − θ/2)

2 cos(θ/2) sin2(θ/2)
. (B4)

We see that the angle between the outgoing momenta equals that between the incoming momenta θ . We can adjust the coordinate
system so that ϕp′ = ϕ. It is important to note that the coordinate system used so far depends on n̂q. We now choose coordinates
so that the z axis points along n̂p, and the polar angle coincides with the angle θ used for the parametrization of the interaction
matrix element θq = θ . The unit vectors n̂q, n̂p′ , and n̂q′ depend on ϕq, and need to be averaged. Denoting n̄k = ∫

d (ϕq/2π )n̂k,
one finds

�α (n̂p; ξp, ξq, ω) = π

(4π )3

∫ π

0

sin θ dθ

cos(θ/2)

∫ 2π

0
dϕ|Ũ (θ, ϕ)|2[φα (ξp)n̄p + φα (ξq)n̄q − φα (ξp + ω)n̄p′ − φα (ξq − ω)n̄q′ ], (B5)

with n̄p = n̂p, n̄q = cos θ n̂p, and n̄p′/q′ = [cos2(θ/2) ∓ cos ϕ sin2(θ/2)]n̂p. Returning to the full collision integral, the
integrations in ω and ξq remain, where the lower integration limit is safely extended to −∞. For this, we use∫ ∞

−∞
dξq

∫ ∞

−∞
dω nF (ξq)[1 − nF (ξp + ω)][1 − nF (ξq − ω)]φα (x j ) =

∫
dω ωnB(ω)[1 − nF (ξp + ω)]φα (y j ), (B6)

for (x1, x2, x3, x4) = (ξp, ξq, ξp + ω, ξq − ω) and (y1, y2, y3, y4) = (ξp,−ξp − ω, ξp + ω, ξp + ω). In order to obtain these
results, we used the identities nF (−ξ ) = 1 − nF (ξ ) and

∫
dξ nF (ξ )[1 − nF (ξ − ω)] = ωnB(ω), and shifted or relabeled

integration variables when convenient. Combining the results for the angular integral �α in Eq. (B5) with those for the energy
integrations listed in Eq. (B6), one arrives at the form for collision integral reported in the main text, Eq. (28).

2. Coulomb collision integral in two dimensions

In the case of two dimensions (d = 2), we consider electron-electron scattering mediated by the Coulomb interaction along
similar lines as Ref. [41]. In the random-phase approximation, the Coulomb interaction has the form

U (k, ω) = U0(|k|)
1 − sU0(|k|)χ (k, ω)

, (B7)

where we define the bare Coulomb interaction U0(|k|) = 2πe2/k, and the Lindhard function

χ (k, ω) =
∫

p′

nF (ξp′ ) − nF (ξp′+k )

ω + εp′ − εp′+k + iη
, (B8)

with s = 2 counting spin degeneracy, and η → 0+.
We now simplify Eq. (27) step by step. Using the two identities δ(p + q − p′ − q′) = ∫

dk δ(k − p′ + p)δ(k − q + q′) and
δ(εp + εq − εp′ − εq′ ) = ∫

dω δ(ω − εp′ + εp)δ(ω − εq + εq′ ) with momentum transfer k and energy transfer ω, Eq. (27) turns
into

Iee{φ} = − 4π

mT

∑
α∈{E ,T }

∫
q,k

∫ ∞

−∞
dω|U (εk, ω)|2δ(ω − εp+k + εp)δ(ω − εq + εq−k )nF (ξp)nF (ξq)[1 − nF (ξp + ω)]

×[1 − nF (ξq − ω)][{φα (ξp) − φα (ξp + ω)}p + {φα (ξq) − φα (ξq − ω)}q + {φα (ξq − ω) − φα (ξp + ω)}k] · Fα. (B9)
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If we separate the angular part from the coordinate such that
∫

q = ∫ 2π

0 d (θq/2π )
∫ ∞

0 dεqν2 with the angle θq defined relative to
the reference vector Fα , and the density of states in two dimensions ν2 = m/(2π ), Eq. (B9) is rearranged into

Iee{φ} = − 4πm

(2π )4T

∑
α∈{E ,T }

Fα

∫ ∞

0
dεq

∫ ∞

0
dεk

∫ ∞

−∞
dω|U (k, ω)|2nF (ξp)nF (ξq)[1 − nF (ξp + ω)][1 − nF (ξq − ω)]

× [{φα (ξp) − φα (ξp + ω)}�1(θp; εp, εq, εk, ω) + {φα (ξq) − φα (ξq − ω)}�2(θp; εp, εq, εk, ω)

+ {φα (ξq − ω) − φα (ξp + ω)}�3(θp; εp, εq, εk, ω)], (B10)

where we define the angular integral parts ( j = 1, 2, 3)

� j (θp; εp, εq, εk, ω) = √
2mε j

∫ 2π

0
dθk

∫ 2π

0
dθq cos θ jδ(ω − εk − 2

√
εpεk cos(θk − θp))δ(ω + εk − 2

√
εqεk cos(θq − θk )),

(B11)

with (ε1, θ1) = (εp, θp), (ε2, θ2) = (εq, θq), and (ε3, θ3) = (εk, θk ). The result of the integration in (B11) can be written in the
form

� j (θp; εp, εq, εk, ω) = |p| cos θp� j (εp, εk, ω)√
εpεk − [(ω − εk )/2]2

√
εqεk − [(ω + εk )/2]2

, (B12)

where �1 = 1, �2 = (ω2−ε2
k )/(4εpεk ), and �3 = (ω−εk )/

(2εp).
It is convenient to introduce two approximations to pro-

ceed. First, in the degenerate regime of T � εF , the combina-
tion of distribution functions in Eq. (B10) pins all momenta of
incoming particles to the Fermi surface such that εp ≈ εq ≈
εF . Second, in the regime of dominant forward scattering,
the phase-space factor in Eq. (B12) is greatly simplified. We
notice that the phase-space factor is maximized in case of
(ω ± εk )2 � 4εF εk, which is consistent with |ω| � 4εF and
ω2/(4εF ) � εk � 4εF . The scattering angles are governed by
the conservation law in Eq. (B11) such that p ⊥ k and q ⊥ k,
thus, we conclude p ‖ p′ and q ‖ q′. We can now simplify

�1(θp; εp, εq, εk, ω) ≈ |p| cos θp

εF εk
, (B13)

while �2 ≈ �3 ≈ 0 are parametrically smaller. In the same
parameter regime we may use the universal limit for the
Coulomb interaction

U (k, ω) ≈ 1

2χ (k, ω)
, (B14)

and further simplify U (k, ω) ≈ 1/(2ν2) = π/m. For T � εF ,
the remaining energy integral may now be approximated as∫ 4εF

ω2/(4εF )

dεk

εk
≈ 2 ln

∣∣∣∣4εF

T

∣∣∣∣, (B15)

where we replaced ω by the typical scale T . Collecting all
results, we finally derive the approximate form of the electron-
electron collision integral (28).

APPENDIX C: SOLVING THE BOLTZMANN EQUATION
IN THE FL APPROXIMATION

Plugging Eq. (28) and Iei = −δ f /τei with δ f given in
Eq. (26) in Eq. (27), taking E and ∇rT as independent, and
matching symmetries on both sides, one can represent the
nontrivial parts of the resulting Boltzmann equation in the

two-component form(
1

βξp

)
= 1

τei

(
φE

s (ξp)

φT
a (ξp)

)
+ 4

(πT )2τout

∫ ∞

−∞
dω K (ω, ξp)

×
(

φE
s (ξp) − �sφ

E
s (ξp + ω)

φT
a (ξp) − �aφ

T
a (ξp + ω)

)
. (C1)

Here, it can be shown that φE
a and φT

s trivially vanish. We
conveniently recast Eq. (C1) in the standard form [45,56]

X(x) = (x2 + π2ε2)Q(x)

−
∫ ∞

−∞
dy(y − x) csch

(
y − x

2

)
MQ(y), (C2)

where we define the two-component functions

X(x) =
(

1
x

)
sech

(
x

2

)
, (C3)

Q(x) =
(

Q̂E
s (x)

Q̂T
a (x)

)
= 2

π2

1

τout

(
φ̂E

s (x)

φ̂T
a (x)

)
sech

(
x

2

)
, (C4)

with respect to the dimensionless variables x = βξp and y =
βω, and the diagonal matrix M = diag(�s,�a), and intro-
duce the parameter ε = √

1 + τout/2τei. Hereafter, we conve-
niently define Ŷ (x) = Y (x/β ) = Y (ξp) for Y ∈ {Q, φ}. After
a Fourier transformation

Q̃(x̃) =
∫ ∞

−∞
dx eix̃xQ(x), (C5)

Eq. (C2) can be converted to a second-order inhomogeneous
differential equation[

I
d2

dx̃2
+ π2[2 sech2(π x̃)M − ε2I]

]
Q̃(x̃) = −X̃(x̃), (C6)

where X̃(x̃) = 2π sech(π x̃)(1, iπ tanh(π x̃))t , and I is the
identity matrix. It would be the standard solution strategy for
Eq. (C6) (i) to derive the eigensolutions for the homogeneous
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equation, and (ii) to find the series solution for the inhomoge-
neous equation as an eigenfunction expansion.

We first consider the homogeneous equation with X̃ = 0 in
Eq. (C6), and promote it to the eigenvalue equation with the
parameter λ,[

d2

dx̃2
+ π2[2λ sech2(π x̃) − ε2]

]
Q̃(x̃) = 0, (C7)

which is analogous to the time-independent Schrödinger
equation [57]. Changing the variable by ξ = tanh(π x̃), we
recast Eq. (C7) in the self-adjoint form[

(1 − ξ 2)
d2

dξ 2
− 2ξ

d

dξ
+ 2λ − ε2

1 − ξ 2

]
Q̃(ξ ) = 0. (C8)

In the clean limit of ε = 1, Eq. (C8) is satisfied by the asso-
ciated Legendre polynomial Pε=1

n+1 (ξ ) with λn = (n + 1)(n +
2)/2 for n ∈ {0,N}. For a disordered system with noninteger
ε > 1, we need to recast further Eq. (C8) in terms of Q(ξ ) =
(1 − ξ 2)−ε/2Q̃(ξ ) and ζ = (1 − ξ )/2. For the choice of the
eigenvalue λn(ε) = (n + ε)(n + ε + 1)/2, Q is governed by[
ζ (1−ζ )

d2

dζ 2
+ (ε +1)(1−2ζ )

d

dζ
+ n(n + 2ε +1)

]
Q(ζ ) = 0.

(C9)

The solution is the hypergeometric function 2F1(−n, n + 2ε +
1, ε + 1, ζ ). After representing the eigenfunction in the origi-
nal variable x̃, one arrives at

Q̃n(x̃) = [sech(π x̃)]ε 2F1[−n, n + 2ε + 1, ε + 1,

[1 − tanh(π x̃)]/2]. (C10)

The eigenfunctions are even (odd) symmetric in x̃ for even
(odd) integer n, and satisfy the orthogonal relation∫ ∞

−∞
dx̃ sech2(π x̃)[Q̃m(x̃)]∗Q̃n(x̃)

= n!22ε+1[�(ε + 1)]2δmn

π (2n + 2ε + 1)�(n + 2ε + 1)
, (C11)

where �(z) is the gamma function, and δmn is the Kronecker
delta.

The series expansion of Q̃(x̃) in the eigenfunctions reads
as

Q̃E
s (x̃) =

∞∑
n=0

CE
2nQ̃2n(x̃), (C12)

Q̃T
a (x̃) =

∞∑
n=0

CT
2n+1Q̃2n+1(x̃), (C13)

with the expansion coefficients [38]

CE
2n =

∫ ∞
−∞ dx̃ sech(π x̃)[Q̃2n(x̃)]∗

π [λ2n(ε) − �s]
∫ ∞
−∞ dx̃ sech2(π x̃)|Q̃2n(x̃)|2 , (C14)

CT
2n+1 = i

∫ ∞
−∞ dx̃ sech(π x̃)tanh(π x̃)[Q̃2n+1(x̃)]∗

[λ2n+1(ε) − �a]
∫ ∞
−∞ dx̃ sech2(π x̃)|Q̃2n+1(x̃)|2 ,

(C15)

where λn(ε) = (n + ε)(n + ε + 1)/2. We found that the ex-
pansion coefficients can be simplified as

CE
2n = 2n + ε + 1/2

π [λ2n(ε) − �s]

�(n + ε + 1/2)�[n + (ε + 1)/2]

�(n + ε/2 + 1)�(n + 1)�(ε + 1)
,

(C16)

CT
2n+1 = i(2n + ε + 3/2)

λ2n+1(ε) − �a

�(n + ε + 3/2)�[n + (ε + 1)/2]

�(n + ε/2 + 2)�(n + 1)�(ε + 1)
.

(C17)

In the clean limit of ε = 1, the coefficients reduce to CE
2n =

(4n + 3)/[2π (λ2n − �s)] and CT
2n+1 = i(4n + 5)/[2(λ2n+1 −

�a)], which are consistent with Ref. [56].
The above solutions are represented in the conjugate vari-

able x̃, and are useful to determine the linear conductivities. If
we want to investigate directly the nonequilibrium distribution
fluctuations, we should represent them in the original variable
x = βξp,(

φE
s (ξp)

φT
a (ξp)

)
= π2

2
τoutcosh

(
βξp

2

) ∞∑
n=0

(
CE

2nQ2n(ξp)

CT
2n+1Q2n+1(ξp)

)
,

(C18)

where we define the inverse Fourier transform Q̂n(x) =∫ ∞
−∞ d (x̃/2π )e−ix̃xQ̃n(x̃) that can be written in the closed form

given in Eq. (37) of the main text; see Appendix D.
The thermal and electric conductivities can be obtained

from the solution of the Boltzmann equation in the dimen-
sionless variable x = βξp as

(
LEE

LT T

)
= π2N τout

2m

∫ ∞

−∞
dx

∂nF (x)

∂x
cosh

(
x

2

)(
−e2Q̂E

s (x)

−T xQ̂T
a (x)

)
.

(C19)

Equation (C19) can also be represented in the conjugate
variable x̃:(

LEE

LT T

)
= π2N τout

8m

∫ ∞

−∞
dx̃ sech(π x̃)

(
e2Q̃E

s (x̃)

−iπT tanh(π x̃)Q̃T
a (x̃)

)
.

(C20)

Plugging Eq. (C12) in (C20), we can write the electric con-
ductivity σ ≡ LEE in the series form

σ (0)

σ0
= π2

8

τout

τei

∞∑
n=0

CE
2n

∫ ∞

−∞
dx̃ sech(π x̃)Q̃2n(x̃)

= τout

τei

∞∑
n=0

2n + ε + 1/2

8[λ2n(ε) − �s]

�(n + 1/2)�[n + ε + 1/2]

�(n + 1)�(n + ε + 1)

× [�[n + (ε + 1)/2]]2

[�(n + ε/2 + 1)]2
, (C21)

in a unit of σ0 = N e2τei/m. As explained before, one can
easily find the closed-form solution for Q̃E

s (x̃). It follows im-
mediately that σ (0) = σ0. For the eigenmode decomposition
developed here, this result can be confirmed numerically; see
Appendix E.
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For the thermal conductivity, plugging Eq. (C13) in (C20)
(we identify κ ≈ LT T here as explained in the main text), we
find the form

κ (0)

κ0
= − i

3π

8

τout

τei

∞∑
n=0

CT
2n+1

×
∫ ∞

−∞
dx̃ sech(π x̃)tanh(π x̃)Q̃2n+1(x̃)

in units of κ0 = π2NT τei/(3m). The final result is displayed
in Eq. (35) of the main text.

APPENDIX D: INVERSE FOURIER
TRANSFORM OF Q̃n(x̃)

In this Appendix, we derive Eq. (37), the inverse Fourier
transform of Q̃n(x̃). It is useful to consider the following
identity [58]:

∫ ∞

−∞
dz̃ e−iz̃z(1 − tanh z̃)α (1 + tanh z̃)βP(γ ,δ)

n (tanh z̃)

= 2α+β+1 �(α + iz/2)�(β − iz/2)

�(α + β + n)

× i−n pn(z/2; α, δ − β + 1, γ − α + 1, β ), (D1)

which holds for Re(α), Re(β ) > 0, and −γ �∈ N. Here, we
define the Jacobi polynomial P(α,β )

n (ξ ), the continuous Hahn
polynomial pn(ζ ; a, b, c, d ), and the gamma function �(z).
The Jacobi polynomial and the continuous Hahn polynomial
have the connection to the (generalized) hypergeometric func-
tion, respectively,

P(α,β )
n (ξ ) = �(n + α + 1)

�(n + 1)�(α + 1)
2F1(−n, n + α + β + 1,

α + 1, (1-ξ )/2) (D2)

and

pn(ζ ; a, b, c, d ) = in �(a + c + n)�(a + d + n)

�(a + c)�(a + d )�(n + 1)

× 3F2

(−n, n + a + b + c + d − 1, a + iζ
a + c, a + d

; 1

)
. (D3)

We now evaluate the inverse Fourier transform of Eq. (C10):

Q̂n(x) = �(n + 1)�(ε + 1)

2π�(n + ε + 1)

∫ ∞

−∞
dx̃ e−ix̃x[1 − tanh(π x̃)]ε/2

× [1 + tanh(π x̃)]ε/2P(ε,ε)
n (tanh(π x̃)), (D4)

where we used Eq. (D2) and the identity sech2(π x̃) =
1 − tanh2(π x̃) = [1 − tanh(π x̃)][1 + tanh(π x̃)]. Finally, ap-
plying Eqs. (D1) to (D4) with replacement 2α = 2β = γ =
δ = ε, z̃ = π x̃, and z = x/π , and using the identity �[ε/2 +
ix/(2π )]�[ε/2 − ix/(2π )] = |�[ε/2 + ix/(2π )]|2, we arrive
at the resultant form (37).

FIG. 8. (a) Convergence of the electric conductivity σ (0)/σ0

[Eq. (C21)] as a function of the cutoff Nc. Here, different values
of τei/τout are assigned to each solid line. (b) Plot for φE

s (x)/τei as
a function of x = βξp. Here, different values of Nc are assigned to
each solid line for fixed τei/τout = 0.5. The black dotted line is the
guideline for the solution in the RTA [Eq. (14)].

APPENDIX E: NUMERICAL EVALUATION
OF THE DRUDE CONDUCTIVITY

In this Appendix, we check numerically that the eigenfunc-
tion decomposition of σ (0) reproduces the robustness of the
Drude conductivity σ0 against electron-electron scatterings
in the case of a momentum-independent electron-impurity
scattering rate.

In Fig. 8(a), we confirm that, whatever we choose for
τei/τout, σ (0) approaches σ0 as increasing the cutoff Nc in
the summation of Eq. (C21). Noticeably, the convergence is
achieved with smaller Nc for larger τei/τout. A more stringent
test is given by Fig. 8(b). Using Eq. (C18), we find that
φE

s (ξp)/τei approaches a plateau in the energy domain as
increasing the cutoff Nc. This is fully consistent with the
Keyes solution, Eq. (14).

APPENDIX F: FIXING τee: BOUNDARY CONDITION
IN THE CLEAN LIMIT

In two and three dimensions, we commonly evaluate
〈〈ξ 2

p 〉〉 ≈ π2T 2/3 and 〈〈ξp〉〉 ≈ π2T 2/(3εF ) in Eq. (39) for
T � εF . Consistently neglecting the small quantity 〈〈ξp〉〉2, we
derive the thermal conductivity in the RTA in the clean limit

κ

κ0
≈ τee

τei
. (F1)

In two dimensions, we take the same limit for the FL
solution (35),

κ

κ0
≈ 3

8
C2

τout

τei
, (F2)
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where we define

C2 =
∞∑

n=0

n + 5/4

(n + 1)(n + 2)(n + 1/2)(n + 3/2)
= 1, (F3)

if we plug �a = 1. Comparing Eqs. (F1) and (F2), we find the
relation

τee

τout
= 3

8
. (F4)

In three dimensions, the FL solution Eq. (35) is approxi-
mated by

κ

κ0
≈ 3

8
C3(�a)

τout

τei
, (F5)

where we define

C3(�a) =
∞∑

n=0

n + 5/4

(n + 1)(n + 3/2)[(n + 1)(n + 3/2) − �a/2]

= 1

�a

[
2(1 − ln 2) −

∑
γ=±

H

(
1 + γ

√
1 + 8�a

4

)]
,

(F6)

with H (x) being the harmonic number for x ∈ C. Comparing
Eqs. (F1) and (F5), we find the relation

τee

τout
= 3

8
C3(�a). (F7)
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