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Topology plays an increasing role in physics beyond the realm of topological insulators in condensed
mater. From geophysical fluids to active matter, acoustics or photonics, a growing family of systems presents
topologically protected chiral edge modes. The number of such modes should coincide with the bulk topological
invariant (e.g., Chern number) defined for a sample without boundary, in agreement with the bulk-edge
correspondence. However, this is not always the case when dealing with continuous media where there is no
small scale cutoff. The number of edge modes actually depends on the boundary condition, even when the bulk
is properly regularized, showing an apparent paradox where the bulk-edge correspondence is violated. In this
paper, we solve this paradox by showing that the anomaly is due to ghost edge modes hidden in the asymptotic
part of the spectrum, which have a signature at finite frequency both in the local density of states and in a channel
geometry. We provide a general formalism based on scattering theory to detect all edge modes properly, so that
the bulk-edge correspondence is restored in a broader sense, implying in particular that chiral edge modes are
not necessarily topological, and conversely. Our approach is illustrated through the odd-viscous shallow-water
model and the massive Dirac Hamiltonian.

DOI: 10.1103/PhysRevResearch.2.013147

I. INTRODUCTION

Tools from topology are central to our understanding of a
variety of physical phenomena [1], from quantized vortices in
superfluids [2–4], to defects in ordered media [5–7], or to the
description vorticity knots in classical fluids [8], among other
applications. Over the last decades, topology has also played
a central role in the study of waves, starting with wavefront
dislocations [9] and culminating with the now celebrated
bulk-edge correspondence [10,11] inherited from the quantum
Hall effect. Such a correspondence is a hallmark of topology
in physics which states that, when there exists a topological
number associated to an infinite and gapped system (bulk
picture), then topologically protected edge modes appear in a
sample with a boundary (edge picture) and vice versa. These
modes are confined near the boundary, robust to many pertur-
bations and their number coincide with the bulk topological
quantity.

It was first realized in quantum Hall effect that both
bulk and edge pictures were associated to topological quan-
tities [12–14], which actually coincide [10,11]. It was then
widely expanded through the field of topological insula-
tors [15], where the bulk-edge correspondence was studied
and proved in systems with various dimensions and symme-
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tries [16–20], in presence of (strong) disorder [21–24], or for
periodically driven (Floquet) systems [25–28].

The aim of this paper is to address the relevance of bulk-
edge correspondence for continuous media, focusing and two
emblematic physical systems. In the context of condensed
matter the bulk-edge correspondence usually focuses on lat-
tice models thank to the tight-binding approximation. How-
ever this problem was somehow overlooked in continuous
models, namely beyond this approximation or when there is
no underlying lattice structure. Apart from continuous elec-
tronic models, e.g., the Landau Hamiltonian, topology has
also appeared in virtually all fields of physics, from super-
fluids [29] to photonics [30–34] or molecular spectra [35],
among others. These ideas have then been applied to the
realm of classical fluid and solid mechanics, including elas-
ticity [36–38], acoustics [39–42], geophysical and astrophys-
ical flows [43,44], plasma [45–49], or active matter [50–52].
There, a continuous medium description is natural.

One example is the two-dimensional shallow-water model
describing Earth atmospheric and oceanic layers [43,53], and
its formal analogs encountered in active matter and plasma
physics [52], as well as in optical systems [54]. It appears
as a paradigmatic (spin 1) three band model, by analogy
with the celebrated (spin 1/2) Dirac Hamiltonian [29]. In the
context of geophysical fluids, the topology of the shallow-
water model was recently revealed. Due to the sign change of
the Coriolis force, the existence of unidirectional waves prop-
agating near the equator could be interpreted as topologically
protected [43]. More recently it was shown that a topological
(Chern) number can be assigned to the bulk problem for this
flow, up to a regularization by an odd-viscous term [52,53].
Indeed, in contrast to condensed matter where quasimomenta
live on a compact torus (Brillouin zone), the momentum
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FIG. 1. (a) Continuous model with a sharp boundary. (b) Typical
spectrum: the delocalized bulk modes form a band (in blue) that is
gapped below but unbounded above. It has a topological (Chern)
number C. The gapped region may host n edge modes (in orange)
that are confined near the boundary and unidirectional. Although
topological, this number apparently depends on the boundary condi-
tion. However the bulk-edge correspondence C = n − n∞ is always
satisfied if we take into account possible ghost modes at infinity
(in red).

(or the wave number) is usually unbounded in continuous
models in the absence of any cutoff and has to be properly
regularized. In this way, as in condensed matter, a meaningful
bulk topological number can be defined that is expected to
rule the bulk-boundary correspondence in continuous media
and thus predict the number of chiral edge modes.

However, as we shall see, the regularization of the bulk
does not implies the same for the edge problem. Indeed, in
the shallow water model, we observe that the number of edge
modes depends on the boundary condition, be it with odd-
viscous terms [53], or without it [55]. This looks suspicious
compared to the expected topological nature of these modes in
the presence of odd viscosity, and raises the apparent paradox
of a violation of the bulk-edge correspondence. This anomaly
is not restricted to the shallow-water model and was actually
already noticed in other two-dimensional continuous models,
e.g., in the valley quantum Hall effect [56] or compressible
stratified fluids [57], that are both effectively well described
by a Dirac Hamiltonian.

In this paper, we propose a solution to this paradox and
restore the bulk-edge correspondence for continuous models
with a sharp boundary. The crucial observation is that in such
models, neither the longitudinal momentum nor the frequency
(or energy) are bounded, so that the usual way to count the
edge modes might miss the asymptotic area of the spectrum,
see Fig. 1. Thus we provide an alternative formalism based on
scattering theory, that counts properly the usual edge modes
but also allows to detect ghost edge modes that could be
hidden at infinite frequencies in the spectrum. Applying it
to several boundary conditions, we show that this is indeed
the case so that the bulk-edge correspondence is restored
when all the modes, including the ghost modes that are not
visible in the spectrum at finite frequency and momentum,
are properly taken into account, thus revealing an anomalous
bulk-boundary correspondence for continuous media. Note
that this approach works beyond the illustrative choice of the
shallow-water model and applies similarly to any continuous
model as long as the bulk is properly regularized, such as the
compactified Dirac Hamiltonian that we also tackle at the end.

Scattering theory has been previously involved into the
definition of topological quantities in tight-binding discrete
models, through two independent ways. The first way was
to probe the presence of edge modes of a topological sample
through scattering from outside the sample [58–61], e.g., with
external leads. The second way was to probe the edge through
the scattering of bulk waves, namely inside the sample, at the
boundary [19,62]. Our strategy is to apply the latter approach
to continuous models in order to explore the asymptotic part
of the spectrum, hence revealing the possible presence of
ghost edge modes.

Note that a different way to study the edge problem for
continuous models is to consider a confining potential or
a continuous interface between two topologically distinct
samples [62–66]. Such an interface is smoother than a sharp
boundary and usually regularizes the problem so that there is
no hidden mode at infinity. However, with a few exceptional
cases, the counterpart of this approach is the loss of exact
solvability. The main conclusion of this paper is that the bulk-
edge correspondence for a sharp boundary is also perfectly
valid as long as all edge modes, including the ones hidden at
infinity, are properly taken into account.

The paper is organized as follows. In Sec. II, we present
a continuous model and compute the edge spectrum for dif-
ferent boundary conditions, revealing an apparent anomaly.
Section III discusses the bulk-edge correspondence in details
in order to quantify the previous mismatch. Section IV intro-
duces scattering theory and solves the paradox, and Sec. V
discusses the physical consequences. Section VI shows the
universality of this approach by applying it to the Dirac
Hamiltonian. Section VII concludes and suggest several con-
sequences of this new paradigm.

II. SHALLOW-WATER WITH ODD VISCOSITY

The two-dimensional rotating shallow-water model, lin-
earized around a rest state in a rotating reference frame, is
ruled by the following system:

∂tη = −∂xu − ∂yv, (1a)

∂t u = −∂xη + ( f + ε∇2)v, (1b)

∂tv = −∂yη − ( f + ε∇2)u, (1c)

where (u, v) are the two velocity components in the plane
(x, y), η the interface elevation relative to the mean depth
H = 1, f the Coriolis parameter and ε the odd viscosity
parameter [67]. Time unit has been chosen such that phase
speed is

√
gH = 1, with g the standard gravity. In the absence

of odd viscous terms (when ε = 0 above) it was realized that
equatorial waves on Earth could be interpreted as topological
modes of this flow when f varies with y and changes sign at
the equator [43]. In what follows, we consider both f and ε

positive and homogeneous in space. For geophysical fluids, ε

is nothing but an arbitrarily small regularization parameter,
in contrast to active matter systems described by a similar
model and where ε can be tuned to large values. Indeed,
this models occurs in various context beyond geophysical flu-
ids [52,54,68] and appears as a paradigmatic two-dimensional
model with three bands and spin-1 symmetry, by analogy
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with the Dirac Hamiltonian that has two bands and spin-1/2
symmetry. We also discuss the latter in detail in Sec. VI.

A. The bulk picture

We briefly recall some known facts about the bulk prob-
lem, where (x, y) ∈ R2. We look for normal modes of the
form (η, u, v) = (η̂, û, v̂)ei(ωt−kxx−kyy) leading to the eigen-
value problem

ω

⎛
⎝η̂

û
v̂

⎞
⎠ =

⎛
⎝ 0 kx ky

kx 0 −i( f − εk2)
ky i( f − εk2) 0

⎞
⎠
⎛
⎝η̂

û
v̂

⎞
⎠. (2)

There are three bands: ω± = ±
√

k2 + ( f − εk2)2 with k2 =
k2

x + k2
y and ω0 = 0. These band will be reminiscent in the

edge picture, see below. In particular, the system is gapped for
f �= 0 and each band has a well-defined topological invariant:
the Chern number. Respectively, C± = ±2 and C0 = 0 for
f > 0 and ε > 0. Each nonvanishing Chern number captures
a twist in the corresponding eigenfunction (η̂±, û±, v̂±) as
(kx, ky) varies over R2. It is actually not well-defined for ε = 0
and it was realized recently that odd-viscosity ensures that the
bulk problem is properly regularized [52,53]. This is analo-
gous to the regularization of Dirac Hamiltonian [29,64] (see
also Sec. VI). The main issue that remains is the regularization
of the edge picture.

B. The edge picture

In the edge picture, where (x, y) ∈ R × R+, we study
three boundary conditions that are relevant for the topological
aspects:

DD: v(y = 0) = 0, u(y = 0) = 0, (3a)

DM: v(y = 0) = 0, (∂xu + ∂yv)|y=0 = 0, (3b)

DS: v(y = 0) = 0, (∂xu − ∂yv)|y=0 = 0. (3c)

In the following, we call (3a) Dirichlet-Dirichlet (DD), also
called no-slip; (3b) is called Dirichlet-Membrane (DM), by
noticing that from (1a), it implies ∂tη = 0 at the bound-
ary; (3c) is called Dirichlet-Stressfree (DS) since it imposes
a vanishing force by the boundary on the fluid. We stress
that each boundary condition consist of two constraints only.
In particular, η is not always constrained. Moreover not all
the constraints are allowed because the self-adjointness of the
problem has to be preserved. For example, u = 0 and η = 0 at
y = 0 is not an adequate boundary condition. See Appendix A
for a general rule of the allowed boundary conditions.

The system is invariant under translation in the x direc-
tion so we look for normal modes of the form (η, u, v) =
(η̂, û, v̂)ei(ωt−kxx). Inserting it into (1a) we realize that η̂ =
ω−1(kxû + i∂yv̂) can be eliminated when inserted into (1b)
and (1c). We end up with a system of two ordinary differential
equations of order two in y and with constant coefficients,
depending on the parameters ω and kx:(

ε∂yy − kx

ω
∂y + ( f − εk2

x

))
v̂ = i

ω

(
ω2 − k2

x

)
û, (4)(

ε∂yy + kx

ω
∂y + ( f − εk2

x

))
û = − i

ω
(∂yy + ω2)v̂. (5)

−10 −5 0 5 10

−4

−2

0

2

4

(a)kx

ω

(2 )−1

k1 k0

C = +2

C = −2

C = 0

−10 −5 0 5 10

−4

−2

0

2

4

(b)kx

ω

k0

C = +2

C = −2

C = 0

−20 −10 0 10 20

−4

−2

0

2

4

(c)
kx

ω

−1
C = +2

C = −2

C = 0

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

k2 k0k3

FIG. 2. Edge modes confined at the boundary y = 0 for f = 1,
ε = 0.2, and three different boundary conditions, according to (3):
(a) DD, (b) DM, and (c) DS. In all cases, the Kelvin wave is present,
with linear dispersion relation and |kx| < k0. For DM, this is the only
mode. For DD (respectively, DS) one has an extra mode merging into
the upper band at k1 (respectively, k2) and saturating at ω = 1/(2ε)
(respectively, ε). For DS, there is a third mode with almost linear
dispersion relation ω ∼ 2kx and merging with the bulk at k3. The
blue curves delimits the region of the (projected) bulk bands.

This problem is solvable analytically. We look for solu-
tions that are confined near the boundary, namely such that
(u, v) → 0 as y → ∞. In contrast to bulk normal modes, such
solutions appear in the gapped region of the (kx, ω) plane,
complementary to the (projected) bulk bands. We first solve
the general problem for any value of kx and ω in that region,
then apply successively the different boundary conditions
(DD, DM, and DS). The details are provided in Appendix B
and the result is shown in Fig. 2.

We observe that the number of modes in each gap, which
is supposed to be topological, depends on the choice of the
boundary condition. In each gap, we respectively count 2, 1,
and 3 modes for DD, DM, and DS. Moreover we observe the
presence of edge modes leaving a bulk band and saturating
at some constant frequency ω ∝ ε−1, showing that the edge
problem is not compactified at kx → ∞, even if the bulk is.
Moreover, the way to count these edge modes correctly is also
puzzling, but the total number can anyway not coincide with
the Chern number as it depends on the boundary condition.
The bulk-edge correspondence seems anomalous.

III. ANOMALOUS BULK-EDGE CORRESPONDENCE

We define in this section a precise number of edge modes
to quantify properly the bulk-edge correspondence anomaly
reported in the previous section. This is an essential step to
solve the paradox in the next section.
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FIG. 3. The standard bulk-edge correspondence in its most gen-
eral form. The number of edge modes (orange) below and above the
bulk band (shaded blue) is defined by the crossing with its external
lines (solid blue). The sign depends if the mode is disappearing or
emerging in the bulk band, with a relative global sign for the top and
the bottom.

A. Bulk-edge correspondence in condensed matter

Consider a conventional band of a Hamiltonian ruling a
two-dimensional system, e.g., a tight-binding model, with
Chern number C. In the edge picture (half-plane geometry
with boundary at y = 0), the projection of this band may be
connected to edge modes coming from the gap above and
below, as illustrated in Fig. 3. As kx is increasing, these modes
can disappear into the band or emerge from it. For the bottom
of the band, we define the number of edge modes nbottom

as the algebraic counting of the points where an edge state
disappears (+1) or emerges (−1). For the top of the band, we
define similarly ntop, except that the signs are inverted [69].
This is equivalent to count the number of crossing of edge
modes with the external lines of the bulk band, with a sign
depending on the dispersion relation ∂E

∂kx
at the crossing. The

bulk-edge correspondence is given by [10]

C = nbottom − ntop. (6)

Moreover if the problem satisfies a further assumption, quite
common in condensed matter, this correspondence can be
rewritten in a simpler form. Consider a system with N bands
denoted by i ∈ {1, . . . , N}, ordered by increasing energy and
separated by spectral gaps, the corresponding topological
numbers are Ci, ni

top, and ni
bottom. If we assume that both kx and

H are bounded (e.g., in a tight-binding model with a Brillouin
zone), then necessarily ni

top = ni+1
bottom := ni for 1 � i � N − 1

so that there is only one edge invariant ni per gap i above
the band i, that can be computed by the algebraic crossing
with a horizontal line inside the gap (e.g., constant Fermi
level). Moreover n1

bottom = 0 and nN
top = 0. In that case, the

correspondence can be rewritten ni = −∑i
j=1 Ci, namely the

number of edge modes in a gap is given by the sum of the
Chern numbers of all band below it (up to a global sign
depending of the orientation of the boundary) [10]. However,
we claim that this relation is less general than (6), the latter
being still satisfied when the previous assumption is not.

B. Anomaly in the continuous model

In the continuous model from Sec. II, neither kx nor ω

(analogue to E ) are bounded so that the aforementioned

TABLE I. The number of edge modes around each band for
different boundary conditions.

Boundary condition DD DM DS

n+
bottom 2 1 3

n0
top 1 1 2

n0
bottom 1 1 2

n−
top 2 1 3

assumption is not satisfied. We can however define a precise
number of edge modes for each boundary condition, even for
the modes that saturates asymptotically at a constant ω. This
is summarized in Table I.

The middle band is never anomalous since n0
top = n0

bottom
regardless of the boundary condition, which is compatible
with (6) and C0 = 0. Moreover we notice that n0

top �= n+
bottom

although it corresponds to the same gap between the middle
and the upper band, but this is not a problem for the bulk-edge
correspondence (6), since it focuses on a specific band rather
than a gap. However the upper and lower band are anomalous:
they are not bounded so the numbers n+

top and n−
bottom make

no sense. If we naively set them to 0, then the bulk-edge
correspondence is satisfied for DD boundary condition: C+ =
n+

bottom = 2 and C− = −n−
top = −2, but we see immediately

that the boundary conditions DM and DS are anomalous.
Nevertheless we claim that the bulk-edge correspon-

dence (6) still makes sense, and the purpose of the next section
is to provide a more general definition of the edge numbers,
allowing for an explicit computation of n+

top and n−
bottom and so

that (6) is restored for each band and any boundary condition.

IV. SCATTERING THEORY

In this section, we provide an alternative formalism to
define and compute the number of edge modes above and
below each band. As we shall see it reproduces the result from
Table I independently, but it also allows for a definition of
(generalized) edge modes at infinite ω, so that the bulk-edge
correspondence (6) is recovered.

The formalism of scattering theory was developed in
Ref. [19] to prove the bulk-edge correspondence for tight-
binding models of condensed matter. We first review the
general concepts involved and implement them explicitly in
our case. The scattering matrix S encodes how bulk waves,
that propagate inside the sample, are reflected at its edge
[Fig. 4(a)]. The normal modes from Sec. II A are not solution
to the boundary problem from Sec. II B, but a linear combi-
nation of an incoming state ψin and an outgoing state ψout

can be. The scattering matrix S is then defined as the relative
coefficient between these two states. See the precise definition
below.

The interest of S resides in the application of Levinson’s
theorem [19]. At fixed kx and for ω → ωmin(kx ), the bottom
of the bulk band (when it exists), the argument of the scat-
tering matrix is equal to the number of bound states below
it [Fig. 4(b)]. In this context, they are precisely the edge
modes that could appear below the bulk band. Then, as kx

increases, the argument of S stays the same until an edge mode
disappears in (respectively, emerges from) the bulk band, in
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×

(b)

x
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ψin(kx, ω) ψout(kx, ω)

ψscat ∼
y∞

ψin + S ψout

(a)

FIG. 4. The concept of scattering theory. (a) A linear combina-
tion, encoded by S, of incoming and outgoing bulk states is solution
to the edge problem. (b) The scattering matrix [here a U(1) phase] is
defined for kx and ω in the projected bulk band. When approaching
its extremity, the argument of S counts the number of bound states
below: the edge modes in our case. As kx varies, the relative argument
of S counts the number of edge modes that have vanished (or
emerged) in the band.

which case the argument changes by 2π (respectively, −2π ).
The number of edge modes between k1 and k2 is thus counted
by [19]

n = lim
ε→0

1

2π
Arg[S(kx, ωmin(kx ) + ε)]

∣∣k2

k1
. (7)

Note that a similar discussion is valid for the upper limit of the
band (when it exists), up to a global sign. For usual condensed
matter systems, we take k2 = k1 + 2π , namely a full loop over
the reduced Brillouin zone, so that we get n = nbottom from
Sec. III A. In our case, we will take k1 → −∞ and k2 → ∞.

A. The scattering matrix

To define S we recall some data from the bulk. For the
rest of the discussion, we focus on the upper bulk band
since the lower one can be studied in an analogous way. The
normal mode associated to (2) and ω = ω+ is (η, u, v) =
ψ̂ei(ωt−kxx−kyy) with

ψ̂ (kx, ky ) = 1√
2 k

⎛
⎝ k2 /ω+(k)

kx − iky( f − εk2)/ω+(k)
ky + ikx( f − εk2)/ω+(k)

⎞
⎠. (8)

This family is singular at k = 0 and k → ∞ but each
singularity can be removed up to a gauge transforma-
tion: ψ̂0/∞ := λ0/∞ψ where λ0 = k−1(kx + is f ky) and λ∞ =
k−1(kx − isεky) are U(1) phases (s f and sε are the respec-
tive sign of f and ε), see Ref. [53]. In the following, we
shall consider ψ̂0 or ψ̂∞ according to the region we are
looking at.

In the edge picture, we fix ω > f and kx in the projected
bulk band and away from the singular points, and denote
ky := κ to emphasize that it is not conserved. In the bulk,
it is a fact that the equation ω+(kx, κ ) = ω always has at
least two real solutions in κ , and possibly other solutions
with nonvanishing imaginary part [19]. In our case, ω2 =
k2

x + κ2 + ( f − ε(k2
x + κ2))2 has four solutions in κ , that we

denote by κin/out = ∓√
K+ and κ̃± = ±i

√−K−, where

K± = 1

2ε2

[−(1 − 2ε
(

f − εk2
x

))±
√

1 − 4ε f + 4ε2ω2
]
. (9)

Indeed for ω and kx in the region of the upper bulk band, K+ �
0 and K− � 0 so that κin/out ∈ R and κ̃± ∈ iR. Since ∂ω+

∂κ
< 0

(a) κ

kx
kx

ω

ω+(kx, κ)

(b)

FIG. 5. (a) 3D Plot of the bulk band ω+(kx, κ ). The red dashed
curve is ω+(kx, κ ) for fixed κ and the blue one is for κ = 0.
(b) Projection of ω+ in the edge picture. We shall look at the winding
number of the scattering matrix as kx varies along the dashed red
curve, namely, for fixed κ , and then take the limit κ → 0.

for κ = κin then ψin := ψ̂ (kx, κin )ei(ω+t−kxx−κiny) is an incom-
ing normal mode at frequency ω+. Similarly κout describes an
outgoing mode ψout. The two other solutions describe modes
that are exponentially increasing and decreasing away from
the boundary y = 0. One of them is allowed and is a bound
state, namely ψb := ψ̂ (kx, κ̃−)ei(ω+t−kxx)e−|κ̃−|y. This state is
actually necessary to satisfy nontrivially the constraints of a
boundary condition. The scattering state is defined by

ψscat (x, y, t ) = αψin + βψout + γψb (10)

with α, β, and γ are coefficients that depends on kx and
ω which are adjusted to satisfy the boundary condition at
y = 0, so that ψscat is a solution of the edge problem as a
superposition of bulk solutions. The scattering matrix is

S(kx, ω) := β

α
. (11)

In our case, the eigenspace is of dimension 1, so that S ∈ U (1)
(the unitarity is ensured by a proper normalization of the
scattering state [19]).

B. Bottom band scattering

We would like to look at the scattering matrix along the
bottom of the band ω+ instead of a fixed ω. In the edge picture
the bulk band is projected: for fixed κ , ω+(kx, κ ) describes a
curve into the bulk band region that goes to the bottom of it
when κ → 0, see Fig. 5.

Thus we consider the scattering problem at fixed kx and κ ,
the latter being small, and ω = ω+(kx, κ ). Then we look at
the winding number as kx varies, and eventually take the limit
κ → 0. We now set κin = −κ < 0 and deduce from (9) and
definitions of κout and κ̃± below it that κout = −κin = κ and

κ̃− = −i

√
κ2 + 1

ε2

(
1 − 2ε

(
f − εk2

x

))
. (12)

In particular, notice that lim κ̃− �= 0 as κ → 0. The scattering
state becomes

ψscat (y) = αψ̂0(kx,−κ )eiκy + βψ̂0(kx, κ )e−iκy

+ γ ψ̂0(kx, κ̃−(kx, κ ))e−|κ̃−(kx,κ )|y. (13)
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FIG. 6. Argument of S at the bottom of the band ω+ for f = 1,
ε = 0.2, and κ = 0.3, 0.1, and 0.02 (respectively in green, blue, and
red) for different boundary conditions. For DD (a), DM (b), and DS
(c), the winding number of S is −2, −1, and −3, in agreement with
n+

bottom from Table I. The points kx = ki, where the jumps occur in the
κ → 0 limit, are the same than in Fig. 2 where the edge modes merge
into the bulk band.

We dropped the x and t dependence that is trivial, and used ψ̂0

that is regular around kx, κ = 0. Then we impose a boundary
condition from (3) that will constraint two of the three pa-
rameters α, β, and γ , allowing a nonambiguous definition of
S(kx, κ ) = β/α. Note that this is not a coincidence: the num-
ber of conditions required at the boundary is deeply related to
the number of solutions κ to ω+(kx, κ ) = ω, which fixes the
number of free parameters in the scattering states [19].

For each boundary condition in (3), we can define and
compute S ∈ U(1) and look at its complex argument at the
bottom of ω+, namely, when kx varies from −∞ to +∞ and
κ → 0. The scattering data is detailed in Appendix C and
the argument of S is plotted in Fig. 6. We observe that the
winding number of S is w+

bottom = 2, 1, and 3, respectively,
for DD, DM, and DS, in agreement with n+

bottom from Table I.
Moreover, as κ → 0, the jump of Arg(S) occurs precisely at
the points kx = ki (i = 0, . . . , 3) where the edge modes merge
into the bulk band, compare with Fig. 2.

C. Infinite top band scattering

As we have seen the scattering formalism provides an
alternative way to compute the number of (standard) edge
modes below the band, that is consistent with the method
from Sec. III. However, it is more general than the latter
because it allows to count the number of edge modes at the
top of the band, even if the upper band is not bounded from
above. Indeed, we simply compute the scattering matrix as
before, but instead we take κ → ∞, which corresponds to
the (infinite) edge of the upper band. Moreover, in that case,
we are near the k → ∞ point that may be singular, so we
compute the scattering data with ψ̂∞ that has no singularity
there, instead of ψ̂0. This is done in Appendix C and the
argument of S is plotted in Fig. 7.

−400 −200 200 400

−

(a)

−400 −200 200 400

−

(b)

κ = 10
κ = 50
κ = 100

kx

Arg(S)

−400 −200 200 400

−

(c)
κ → ∞

FIG. 7. Argument of S at the (infinite) top of the band ω+ for
f = 1, ε = 0.2, and κ = 10, 50, and 100 (respectively, in green,
blue, and red) with different boundary conditions. For DD (a) the
three curved are superposed to the constant value π , so that S does
not wind. For DM (b) and DS (c) one has a nonvanishing winding
number: respectively, −1 and 1. Note that the red curve is the closest
to the κ → ∞ limit, so that this winding is delocalized in kx , rather
than converging to a localized jump, in contrast to the scattering at
the bottom of the band (Fig. 6).

We observe that S has a well-defined winding number for
DD, DM, and DS as we explore the upper limit of the band:
respectively, 0, −1, and 1. Moreover we stress that in this limit
the argument of S is not converging to a localized jump but
rather completely delocalized in kx, so that one has to explore
the whole parameter kx ∈ R in order to compute it. Finally
we call this winding number n+

∞, which we interpret as the
number of edge modes at the (infinite) top of the band ω+.
If we compare it with the edge number at the bottom of the
band, we conclude that the bulk-edge correspondence (6) is
not anomalous anymore, namely, the difference between the
two numbers always gives the Chern number of the upper
band (see Table II).

V. SOME PHYSICAL CONSEQUENCES

The scattering matrix detects the presence of generalized
edge modes at infinite frequency that we dub ghost modes. A
posteriori, we can actually see a footprint of these modes at
finite frequency from various perspectives.

A. Channel geometry

A striking manifestation of shallow water ghost modes is
found when considering a channel (or ribbon) geometry of

TABLE II. The number of (generalized) edge modes for the
upper band. The bulk-edge correspondence (6) is properly satisfied
regardless of the boundary condition if we identify n+

∞ = n+
top.

Boundary condition DD DM DS

n+
∞ 0 −1 1

n+
bottom 2 1 3

C+ 2 2 2
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FIG. 8. Shallow water spectrum with condition DD (a), DM (b),
and DS (c) for a channel geometry of size Ly (d). The color bar
indicates the localization of each state along the transverse direction.
On top of edge modes, one also observes quasilocalized states in the
bulk bands, in agreement with the existence and position of ghost
modes from the semi-infinite configuration.

finite size Ly. We compute numerically such a spectrum using
DEDALUS code [70,71] for each boundary condition discussed
above, see Fig. 8. The same condition is used at both edge. In
the three cases, we recover both bulk bands and edge modes,
as computed analytically in the semi-infinite case. However,
we also notice that some of the bulk modes are actually
quasilocalized at one of the channel edges for DM and DS.
We check that this quasilocalization vanishes as Ly → ∞ for
a given kx and ω. Thus, although such effect appears at both
edges, it seems impossible to see it on each one separately, in
contrast to standard edge modes. Hence this quasilocalization
may be interpreted as a resonant state between the two edges.

We interpret such a quasilocalisation effect within the bulk
band as a manifestation of the ghost modes computed in the
semi-infinite case: for DD, no ghost mode is found and no
quasilocalized state is obtained here; for DM, one ghost mode
is obtained at infinite ω and negative kx [see Fig. 7(b)], con-
sistently with a quasilocalized mode that originates from the
bulk itself (this mode becomes more and more delocalized as
ω increases towards negative kx); for (DS), one ghost mode is
found at infinite ω and positive kx [see Fig. 7(c)], consistently
with the quasilocalized bulk mode that seems to originate
from one of the three edge modes in the gap. Moreover, in
(b) and (c), there is a peak of maximal quasilocalization for
a given ω in the bulk wave band. Such a peak becomes less
intense and more spread as ω increases, and has a well-defined
dispersion relation which slope’s sign matches with n+

∞. These
observations suggest that measuring the spatial structure of
wave-band eigenmodes in a finite geometry could be a way to
probe at finite ω the presence of ghost modes in the shallow
water system.

B. Local density of states

In a semi-infinite geometry, it is possible to observe a
similar effect in the bulk spectrum by studying the local

0 10−10 kx

0

20

ω

(a)

−5 7.50

0 10−10 kx

(b)
0 10−10 kx

(c)

FIG. 9. Excess of local density of states R(y = 0, kx, ω) at the
boundary for (a) DD, (b) DM, and (c) DS boundary conditions. The
diffuse peaks appearing in the two latter cases is reminiscent of ghost
modes.

density of states ρ(y, ω). It can be computed analytically
thanks to the explicit expression of ψscat, see Appendix D. It
reads

ρ(y, ω) = ρ0(ω) +
∫ kmax

−kmax

dkx R(y, kx, ω), (14)

where ρ0 is the “free” part in absence of boundary and kmax(ω)
is the maximal value of kx in the bulk band for a given ω. The
quantity R(y, kx, ω) represents the excess of local density of
states due to the presence of a boundary. It is plotted for y = 0
in Fig. 9 and each boundary condition.

For boundary condition DD, R is homogeneous and close
to zero almost everywhere, except at the limit of the band
where it diverges (slowly) as kx → kmax. Moreover, it also
shows a peak at the bottom of the spectrum, which is rem-
iniscent of some proper edge modes merging with the bulk
band. R shares similar features for DM and DS but with
an extra diffuse peak, respectively, on the left and the right
of the spectrum, in agreement with the previous section.
However, even though Figs. 8 and 9 bear striking similar-
ities, the interpretation is different: a peak for R does not
necessarily imply the decay of the corresponding state as
y → ∞. Nevertheless, we interpret such a peak as a mani-
festation at finite ω of the existence of a ghost mode near
kx → ±∞. In particular, the value of n∞ can be read of
the “dispersion relation” of the diffuse peak.

Moreover, the local density of states is closely related to
the scattering matrix S, emphasizing its physical relevance.
Indeed, the expression for R involves the quantity S (kx, ω) =
〈ψ̂in, Sψ̂out〉, see (D6). This dressed S matrix also matches
with the one of [72]. Remarkably, S is gauge invariant, in
contrast to S that depends on the choice of ψ . Moreover, it
also counts the number of ghost modes:∫ km

−km

S∗ ∂S

∂kx
dkx = 2π i n+

∞ (15)

for any ω finite but sufficiently large, similarly to Fig. 7. Thus
the presence of ghost modes (n+

∞ �= 0) has a concrete physical
manifestation on the local density of states at finite ω via R.

C. Inertial-like edge modes at infinity

Finally, to connect ghost modes with previous works from
the fluid dynamics literature, we study perturbatively the
asymptotic regions of the gap in the limit of large wave
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number |kx|. Let us consider ε > 0, f > 0 and let us as-
sume ω = α|kx|β for some 1 < β < 2 and α > 0 (i.e., be-
low the band ω+ when kx → ±∞). At the leading order
in kx, the solutions localized near the edge are of the form
[see (B14) and (B19)]

v(y) ∼ V3es+y + V4es−y, (16)

u(y) ∼ −i(V3es+y − V4es−y), (17)

where s± = −|kx|(1 ± α
2ε

|kx|β−2).
These solutions are superpositions of inertial-like waves,

defined as waves with polarization relation (η, u, v) =
(0, 1,±i). In the absence of odd viscosity, these waves are
constant frequency modes ω = ± f , hence their name inertial.
Because the odd viscous terms added into the problem have
the structure of the Coriolis force (but depending on the wave
number), it is not surprising that we recover such states at
large wave numbers.

The possible existence of a solution is discussed by ap-
plying the different boundary conditions. In the three cases
considered above, the impermeability constraint v(0) = 0
leads to V4 = −V3. Thus, for DD (3a), the second condition
u(0) = 0 leads to V3 = 0 so that there is no asymptotic mode,
in agreement with n+

∞ = 0. However, for DM (3b), we get
from (B30) the condition 2kx = −(α/ε)|kx|β−1 to have V3 �=
0. For kx → −∞, there is a solution when β → 2 and α = 2ε.
Instead, for kx → +∞, there is no solution. This indicates
the presence of an edge mode in the asymptotic upper-left
region of the spectrum, whereas upper-right is empty. That
is consistent with Fig. 7(b) where the jump of the argument
seems to be “pushed” to kx → −∞ as κ → +∞. Thus the
scattering matrix counts the mismatch in the number of modes
between kx = −∞ and +∞. In this picture, it seems that one
mode has merged from the right to the “top” of the band, in
agreement with n+

∞ = −1. Conversely, for DS the asymptotic
expansion indicates the presence of a mode in the upper-right
region, in agreement with Fig. 7(c) and n+

∞ = +1.
Interestingly, in the context geophysical fluid dynamics,

an interpretation of the dispersion relation in shallow-water
models with different boundary conditions was proposed by
Iga [55], also by considering different asymptotic regimes
in (kx, ω) diagram. In these regimes, the initial problem is
simplified and more tractable. Using an argument based on the
conservation of the eigenfunction’s zeros when kx is varied,
Iga predicted the global shape of the spectra [55], and gen-
eralized this method to other geophysical flow models [57].
This method gives robust information on the spectrum, such
as the existence of modes that transit from one band to another
when kx is varied (spectral flow), under fairly general assump-
tions (channel or cylinder geometry, parameters enforcing the
existence of discrete spectrum, etc.). Here we have provided
a complementary point of view using topology, where, again,
asymptotic regions of the (kx, ω) diagram must be taken into
account to understand to the global shape of the spectrum.

VI. DIRAC HAMILTONIAN

The choice of the shallow-water model was made here to
illustrate the consequences on coastal waves in classical flu-
ids, but our analysis of the bulk-edge correspondence applies

to any two dimensional continuous model, as long as the bulk
problem is properly compactified.

Postponing a general rigorous theorem to future work, we
illustrate the power of our approach by applying the scattering
formalism to the celebrated (massive) Dirac Hamiltonian,
regularized by a εk2 mass term

H =
(

m + ε
(
∂2

x + ∂2
y

)
i∂x + ∂y

i∂x − ∂y −m − ε
(
∂2

x + ∂2
y

)). (18)

Such an Hamiltonian could describe for instance a two-
dimensional 3He -A superfluid phase, where the mass term m
would correspond to the chemical potential [29].

When the mass m is fixed, the presence of a regularization
term εk2 makes possible the introduction of well-defined
Chern numbers of value

C± = ± sign(m) + sign(ε)

2
(19)

for the two eigenstates ψ±(kx, ky) of the bulk Hamiltonian

Hbulk =
(

m − εk2 kx − iky

kx + iky −m + εk2

)
(20)

with k2 = k2
x + k2

y , that is derived from (18) by using a Fourier
basis e−i(kxx+kyy) (see Appendix E and Ref. [64]).

Let us then set m and ε so that C+ = 1 and address the
question of the boundary modes. For that purpose, we con-
sider two different boundary conditions for ψ := (φ1, φ2)T at
y = 0 that satisfy hermiticity (see Appendix A)

A: φ1|y=0 = 0, φ2|y=0 = 0, (21a)

B: φ1|y=0 = 0, ∂yφ2|y=0 = −i∂xφ2|y=0. (21b)
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FIG. 10. Dirac Hamiltonian with m = 1 and ε = 0.1 (a) Edge
spectrum with boundary condition A (21a) (b) Arg(S) at the bottom
of the upper band, for κ = 0.3, 0.1, and 0.02 (respectively in green,
blue, and red) (c) Arg(S) at the “top” of the upper band, for κ =
10, 50, and 100 (respectively in green, blue, and red). (a′), (b′) and
(c′) are the same plots for condition B (21b).
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The energy spectra for the boundary modes allowed by
these two boundary conditions are derived in Appendix E and
displayed in Fig. 10 for m = 1 and ε = 0.1.

Boundary conditions A yield the naively expected result
from the values of the Chern numbers C± = ±1, namely one
chiral boundary mode that spans the bulk gap and propagates
to the right (positive group velocity). The merging of this
chiral mode into the bulk bands at k0 ≈ ±3 is well captured
by the scattering theory introduced above and applied for the
Dirac case in Appendix E. Figure 10 shows that this winding is
indeed +1 for the top band, with a jump in phase that exactly
occurs at k = k0. It is also checked that no other evanescent
state enters the band at ω ∼ ∞ (n+

∞ = 0), so that the winding
number equals the Chern number and captures the number of
modes gained by the bulk band.

In contrast, the boundary condition B does not allow
boundary mode at finite energy and k. Accordingly, the wind-
ing number is zero meaning that there is no evanescent mode
entering the bulk bands. However, the winding n+

∞ = −1
indicates the entrance of an ghost boundary mode from the
“top” of the band of positive energy, in agreement with the
bulk-boundary correspondence, and the value of the Chern
number.

VII. DISCUSSION

To conclude, the apparent paradox of a mismatch in the
bulk-edge correspondence for a continuous model with a
sharp boundary is solved by the presence of “ghost” edge
modes at infinity, that can be detected through the scattering
formalism. Thus, in continuous media, the bulk-edge corre-
spondence is always satisfied, independently from the bound-
ary condition. This new paradigm can indeed be applied to
any continuous model. Moreover, it has various consequences
and paves the way for new directions of investigation that we
discuss now.

a. Contrary to a common belief, chiral is not topological.
A usual way to define the edge number is to count the alge-
braic crossing number ncross(ω) of the edge modes dispersion
relation with a horizontal line ω = Cte in the gapped region
(analogue to the Fermi energy in condensed matter). For
continuous models, this number is still well defined but not
relevant for the bulk-edge correspondence: it actually depends
on the choice of boundary condition. Furthermore, even for a
fixed boundary condition, this number can jump while varying
continuously a parameter of the Hamiltonian without closing
the gap in the bulk, or while varying ω with all parameters
fixed. See Fig. 11.

This is rooted in the fact that an edge mode in continuous
media is not necessarily connected to bulk bands at both
of its extremities. It may leave a band without connecting
another one and escape in the infinite gapped region. This
is reminiscent to the fact that the edge problem may not be
compactified, even if the bulk problem is. Importantly, the
chirality of these open edge modes, namely the sign of their
group velocity, can be tuned continuously from positive to
negative. Worse, it is ill-defined when the dispersion relation
reaches a constant value asymptotically.

Consequently, ncross(ω) is in general not sufficient to con-
clude about the value of the bulk topological invariant. This

−1 0 1

−1

0

1

(a)kx

ω

−1 0 1

−1

0

1

(b)kx

ω

FIG. 11. Edge modes for f = 1 and large ε = 4, with two dif-
ferent boundary conditions according to (3): (a) DD and (b) DS. The
number ncross, counting the crossing between the edge modes and
the green horizontal line is respectively 2 and 3, but would be 1 and
2 in the case where ε is small [compare with Figs. 2(a) and 2(c)].
Moreover, if we move the green line below some threshold ∝ ε−1

(horizontal dashed line), or if we decrease ε continuously, then ncross

is also lowered by 1.

paper shows that the correct edge number that matches in
the bulk-edge correspondence is ntop/bottom �= ncross(ω). As
discussed in Sec. III A these quantities are the same only if
kx and H are bounded, which is not always true in continuous
models.

However we believe than ncross(ω) could still be of in-
terest because the chiral edge modes detected that way are
still robust against defects on the boundary, as discussed in
Ref. [52]. In principle we expect these modes to be also stable
under a disordered potential so that, although not topological,
ncross(ω) could still be protected but in a weaker sense that has
to be investigated. We postpone the study of it to future work.

b. Coastal Kelvin are topologically protected in a weaker
sense than equatorial Kelvin waves. Coastal Kelvin waves
are unidirectional edge states trapped along a boundary with
impermeability condition (v = 0 along the coast y = 0), and
with a trapping length scale given by then Rossby radius of
deformation Ld = c/ f [73], with c the phase speed of such
waves. In Fig. 2 of the shallow-water model, they correspond
to the edge mode with linear dispersion relation ω = ckx

with c = 1 and |kx| < k0. We notice that this mode is always
present in the spectrum, while the other edge modes depend
on the boundary condition. We conjecture this to be true
whenever the boundary condition includes the impermeability
constraint. Moreover all additional edge modes have a trap-
ping length scale that tends to zero as ε → 0, contrary to the
coastal Kelvin wave that coincides in that limit with its analog
in absence of odd-viscosity (k0 → ∞). Finally it is robust to
the continuous parameter deformation discussed above, and it
is actually the only mode that is properly counted by spectral
crossing ncross(ω). The coastal Kelvin wave seems therefore
more robust than other edge modes in presence of a sharp
boundary.

However, in the case without odd-viscosity, coastal Kelvin
waves can be removed from the spectrum just by relaxing
the impermeability constraint [55], and we suspect the same
to occur here, so that this mode is not topological in the
strongest sense. This contrasts with unidirectional waves that
are trapped along the equator of rotating atmospheres and
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oceans, and called equatorial Kelvin (and Yanai) waves by
analogy. There the equator is an interface where f changes
sign. In contrast to a boundary, there is a canonical gluing
condition for the interface, for which equatorial Kelvin wave
is topological [43,53]. This is due to the bulk-interface cor-
respondence that does not suffer from any anomaly. This
correspondence is a manifestation of Atiyah-Singer index
theorem, that was noted in other physical problems and then
generalized to a wider class of models [35,64,65,74,75]. In the
presence of a sharp boundary, as in this paper, the existence of
an index theorem remains an open question.

c. Towards a detection of ghost edge modes? Finally, the
number of ghost edge modes at infinite frequency n∞

+ is not an
abstract mathematical quantity. It has physical consequences,
for example on the spectrum of a channel geometry or on the
local density of states, as we have seen in Sec. V. Such effects
could in principle be detected at finite frequency. Notice that
there is a longstanding literature relating the scattering matrix
with the density of states [72,76–78]. However, it mainly
concerns problems with impurities instead of a hard wall that
we consider here. There seems to be a connection between
the two approaches, but the interpretation of a boundary
condition in terms of a defect potential is not straightforward.
Nevertheless, we expect that physical manifestations, such as
Friedel oscillations, known to occur in the presence of defects
will also be found in the presence of a wall, and will naturally
be influenced by ghost modes through the scattering matrix
S . This is a promising but intricate issue that we postpone for
future works.

Furthermore, in the shallow-water model for equatorial
waves, odd viscosity was considered only as a rather small
regularizing parameter. But odd-viscous terms must actually
be taken into account to properly describe active matter
fluids systems where microscopic time reversibility is bro-
ken [52,68]. Furthermore, the optical analog of the odd-
viscosity is provided by a nonlocal gyroelectric effect that
couples the two in-plane electric field components of the
transverse magnetic modes [54]. These two examples could
constitute versatile platforms for possible future spectral mea-
sures leading to the detection of ghost edge modes.
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APPENDIX A: ALLOWED BOUNDARY CONDITIONS

The allowed boundary conditions are constrained by look-
ing at the self-adjointness of the problem. Rewriting (1)
as i∂tψ = Hψ with ψ = (η, u, v) we impose the condition
〈φ, Hψ〉 = 〈Hφ,ψ〉, for any φ,ψ ∈ L2(R × R+). After a
few integration by parts we end up with

i
∫
R

dx(v∗
1 (η2 + ε∂yu2) + (η∗

1 + ε∂yu∗
1 )v2

−ε((∂yv
∗
1 )u2 + u∗

1∂yv2))|y=0 = 0, (A1)

which restricts the possible boundary conditions at y = 0. We
deduce that in general, only two constraints are required on

(η, u, v). In particular, (3a)–(3c) are solution to (A1), but there
exists many other possibilities for the shallow-water model.

Similarly, the Hermitian boundary conditions at y = 0 for
the regularized Dirac model (18) have to satisfy∫

R
dx(−φ∗

1χ2 + φ∗
2χ1 − ε(φ∗

1∂yχ1 − χ1∂yφ
∗
1

−φ∗
2∂yχ2 + χ2∂yφ

∗
2 ))|y=0 = 0 . (A2)

This is the case for the two boundary conditions (21a)
and (21b) discussed in the main text.

APPENDIX B: SOLVING THE EDGE PROBLEM

In this Appendix, we solve the system of ODE (4) and (5)
in u and v (we dropped the hat to simplify the notations). In
the gapped region of the (kx, ω)-parameter plane, we look
for solutions that vanish as y → ∞. First we compute all
such modes that could exist in general, and then specify
each boundary condition and see the compatible solutions
that persist. Moreover, in the following, we assume f > 0,
ε > 0 and f ε < 1/4. For the general problem, we proceed by
disjunction. First note that u ≡ 0 leads to v ≡ 0, so this case
is trivial.

a. Case 1: v ≡ 0. From (4), we infer ω2 = k2
x that has two

branches, ω = ±kx. Since v ≡ 0 the solution to (5) is of the
form

u(y) = Aeq+y + Beq−y, (B1)

where

q± = − 1

2ε

(
kx

ω
±
√

1 + 4ε
(
εk2

x − f
))

, (B2)

that is always well defined as long as f ε � 1/4. Notice that
q±, A and B depend on kx and ω. For u to vanish at y → ∞
we have either q± < 0 or A/B = 0.

Case 1.a: ω = kx. One has q+ < 0 for all kx and q− < 0
only for |kx| < k0 := √

f /ε, so that

u(y) =
{

Aeq+y + Beq−y, |kx| < k0,

Aeq+y, |kx| � k0.
(B3)

Case 1.b: ω = −kx. One has q− > 0 for all kx and q+ < 0
only for |kx| > k0, so that

u(y) =
{

0 |kx| � k0,

Aeq+y, |kx| > k0.
(B4)

b. Case 2: v �= 0 and ω2 = k2
x . We first solve (4) that is

homogeneous for v. The solution is of the form

v(y) = Aer+y + Ber−y (B5)

with

r± = 1

2ε

(
kx

ω
±
√

1 + 4ε
(
εk2

x − f
))

. (B6)

The solution of (5) is a superposition of a homogeneous part,
already given in the previous section, and a particular solution
depending on the solution for v. Namely,

u(y) = Ceq+y + Deq−y + α+Aer+y + α−Ber−y (B7)
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with q± given in (B2) and

α± = − i

ω
(r2

± + ω2)

(
εr2

± + kx

ω
r± + f − εk2

x

)−1

. (B8)

Case 2.a: ω = kx. One has r+ � 0 for all kx and r− � 0 for
|kx| � k0 so that

v(y) =
{

0 |kx| � k0,

Ber−y, |kx| > k0.
(B9)

Note that for |kx| � k0 we are back to Case 1, so we have to
omit this region here to avoid double counting. Consequently,

u(y) = Ceq+y + α−Ber−y, |kx| > k0. (B10)

Case 2.b: ω = −kx. One has r− < 0 for all kx and r+ < 0
for |kx| < k0, so that

v(y) =
{

Aer+y + Ber−y |kx| � k0,

Ber−y, |kx| > k0,
(B11)

and

u(y) =
{
α+Aer+y + α−Ber−y |kx| � k0,

Ceq+y + α−Ber−y, |kx| > k0.
(B12)

c. Case 3: v �= 0 and ω2 �= k2
x . In that case, u is entirely

fixed by v through equation (4), and one can moreover com-
bine (4) and (5) to get a fourth order homogeneous equation
for v: (

ε2∂ (4)
y + (2ε

(
f − εk2

x

)− 1
)
∂ (2)

y + ( f − εk2
x

)2
− (ω2 − k2

x

))
v = 0. (B13)

The corresponding algebraic equation always admits real so-
lutions as long as f ε � 1/4, given by s2 = S± with

S± = 1

2ε2

(
1 + 2ε

(
εk2

x − f
)±
√

1 + 4ε(εω2 − f )
)
. (B14)

In the gapped region, one has

k2
x − ω2 + ( f − εk2

x

)2
> 0 (B15)

leading to four real solutions to (B13)

s1 = √S+, s2 = √S−, s3 = −√S+, s4 = −√S−.

(B16)

Notice that by construction s1/2 > 0 and s3/4 < 0 regardless
of kx, ω, or f . Consequently,

v(y) = V3es3y + V4es4y (B17)

and by (4)

u(y) = λ3V3es3y + λ4V4es4y, (B18)

where

λi = ω

i
(
ω2 − k2

x

)(εs2
i − kx

ω
si + f − εk2

x

)
. (B19)

1. Edge modes

Now we specify a boundary condition from (3) and look
at the modes from the previous section that are compatible
with it.

a. Dirichlet/Dirichlet (DD). Here we impose (3a), namely,
u = v = 0 at y = 0. In case 1, we infer immediately

u(y) =
{

A(eq+y − eq−y), |kx| < k0, and ω = kx

0 otherwise.
(B20)

and v ≡ 0. One has one mode (i.e., one free parameter A)
living in a compact region [see Fig. 2(a)]. In case 2, the
solutions are trivial for ω = kx, and ω = −kx for |kx| > k0.
The last possibility is

v(y) = A(er+y − er−y), |kx| � k0, (B21)

but only if u(y) = A(α+er+y − α−er−y) vanishes at y =
0, which implies that α+(kx,−kx ) − α−(kx,−kx ) = 0. This
generically occurs only for a finite number of kx points, that
are actually part of the edge modes from case 3. Apart from
that there is no mode in that case. In case 3, the region of
compatibility with the boundary conditions is given by

0 = det

(
1 1

λ3(kx, ω) λ4(kx, ω)

)
= λ4(kx, ω) − λ3(kx, ω)

(B22)

for (kx, ω) in the gapped region but away from the branches
k2

x = ω2 that are forbidden by assumption. The latter con-
straint leads to

ε(s3(kx, ω) + s4(kx, ω)) − kx

ω
= 0 (B23)

that is plotted in Fig. 2(a). We have one mode in each gap that
stops in a bulk band at kx = k1 with

k1 := ±k0

√√√√1 − 3

4 f ε

(
1 −

√
1 − 16

9
f ε

)
(B24)

on one side and saturates at ± 1
2ε

as kx → ±∞. Along this
curve, the kernel of the matrix appearing in (B22) is generated
by (1,−1), so that (B17) is a solution for V4 = −V3, namely,

v(y) = V3(es3y − es4y), u(y) = λ3V3(es3y − es4y). (B25)

Thus we have one edge mode in that case.
b. Dirichlet/membrane (DM). Here we impose (3b),

namely v = 0 and ∂xu + ∂yv = 0 at y = 0. For the normal
modes the latter condition can be rewritten −ikxu + ∂yv =
0. In Case 1 where v ≡ 0 it is equivalent to u = 0 at the
boundary, so this is similar to the Dirichlet/Dirichlet problem
from the previous section. Hence we have one mode given by

u(y) =
{

A(eq+y − eq−y), |kx| < k0, and ω = kx

0 otherwise.
(B26)

For case 2.a, the solutions are trivial due to v(0) = 0. For case
2.b, where ω = −kx this condition implies

v(y) =
{

A(er+y − er−y) |kx| � k0,

0 |kx| > k0,
(B27)

and

u(y) =
{

A(α+er+y − α−er−y) |kx| � k0,

Ceq+y, |kx| > k0.
(B28)
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For |kx| > k0, the boundary condition implies C = 0 and for
|kx| � k0 there exists a nontrivial solution only if

−ikx(α+(kx,−kx ) − α−(kx,−kx ))

+r+(kx,−kx ) − r−(kx,−kx ) = 0. (B29)

One can check (e.g., numerically) that this equation is never
satisfied for kx ∈ R. Finally, for case 3, v(0) = 0 implies V4 =
−V3 and the membrane condition leads to

−ikx(λ3 − λ4) + (s3 − s4) = 0 (B30)

that simplifies to

εkx(s3(kx, ω) + s4(kx, ω)) − ω

ω2 − k2
x

= 0. (B31)

One can check numerically that no edge mode appears in that
case. In conclusion we only have one edge mode, as illustrated
in Fig. 2(b).

c. Dirichlet/stress-free (DS). Here we impose (3c), namely
v = 0 and ∂xu − ∂yv = at y = 0. Up to a change of sign we
can solve this problem based on the derivation for condi-
tion DM from the previous section. The result is plotted in
Fig. 2(c). Case 1 is unchanged since v ≡ 0 and we have the
usual Kelvin wave. Case 2 has nontrivial solution for ω = −kx

only if

−ikx(α+(kx,−kx ) − α−(kx,−kx )) − r+(kx,−kx )

+ r−(kx,−kx ) = 0 (B32)

that vanishes for two values of kx, which are actually part of
the solution of case 3. Case 3 reduces to

εkxω(s3(kx, ω) + s4(kx, ω)) + ω2 − 2k2
x

ω2 − k2
x

= 0. (B33)

It has a nontrivial solution with three branches: two similar to
the Dirichlet/Dirichlet (no-slip) boundary condition, but that
saturates at ω = ∓ 1

ε
when kx → ±∞. These branches stop

in the bulk bands at kx = ±k2 and the apparent discontinuity
in Fig. 2(c) is only an artifact, cured by the two points from
case 2 [see inset of Fig. 2(c)]. Finally the third branch looks
like ω = 2kx near kx = 0 and stops at kx = ±k3 when entering
the bulk bands. There are no simple explicit expressions for k2

and k3 [in contrast to (B24)], but they can be anyway estimated
numerically with arbitrary precision.

APPENDIX C: SCATTERING DATA

The scattering matrix is obtained by requiring a boundary
condition on the scattering state (13) that is a superposition
the bulk normal mode ψ̂0 (or ψ̂∞) for different values of κ .

1. Bottom of the band

For the bottom of the band ω+, we use ψ̂0 := (η0, u0, v0)
(we drop the hat to simplify the notation). In the follow-
ing, we denote u0

in := u0(kx,−κ ), u0
out := u0(kx, κ ) and ũ0 =

u0(kx, κ̃−(kx, κ )), where κ̃−(kx, κ ) = −i
√

K− [see (9) and
above], and similarly for v0. The explicit expressions for u0

and v0 are given in (8) up to a phase multiplication by λ0.

a. Dirichlet/Dirichlet (DD). Here we impose (3a), namely
u = v = 0 at y = 0. From (13), we infer

αu0
in + βu0

out + γ ũ0 = 0,

αv0
in + βv0

out + γ ṽ0 = 0, (C1)

so that

S(kx, κ ) = v0
inũ0 − u0

inṽ
0

u0
outṽ

0 − v0
outũ0

. (C2)

The argument of S is plotted in Fig. 6(a) with respect to kx and
for several small values of κ .

b. Dirichlet/membrane (DM). Here we impose (3b),
namely, v = 0 and ∂xu + ∂yv = 0 at y = 0. From (13), we
infer

α
(
kxu0

in − κv0
in

)+ β
(
kxu0

out + κv0
out

)+ γ (kxũ0 + κ̃−ṽ0) = 0,

αv0
in + βv0

out + γ ṽ0 = 0, (C3)

so that

S(kx, κ ) = −
(
kxu0

in − κv0
in

)
ṽ0 − v0

in(kxũ0 + κ̃−ṽ0)(
kxu0

out + κv0
out

)
ṽ0 − v0

out (kxũ0 + κ̃−ṽ0)
. (C4)

The argument of S is plotted in Figure 6(b) with respect to kx

and for several small values of κ .
c. Dirichlet/stress-free (DS). Here we impose (3c), namely,

v = 0 and ∂xu − ∂yv = at y = 0. From (13), we infer

α
(
kxu0

in + κv0
in

)+ β
(
kxu0

out − κv0
out

)+ γ (kxũ0 − κ̃−ṽ0) = 0,

αv0
in + βv0

out + γ ṽ0 = 0, (C5)

so that

S(kx, κ ) = −
(
kxu0

in + κv0
in

)
ṽ0 − v0

in(kxũ0 − κ̃−ṽ0)(
kxu0

out − κv0
out

)
ṽ0 − v0

out (kxũ0 − κ̃−ṽ0)
. (C6)

The argument of S is plotted in Fig. 6(c) with respect to kx and
for several small values of κ .

2. Scattering at infinity

To explore the infinite upper limit of the band ω+, the
scattering state (13) is computed using ψ̂∞ instead of ψ̂0

but the derivation of S is formally the same than in the
previous section. Thus the expression of S in that case is given
by (C2), (C4), or (C6) (respectively for DD, DM, and DS)
where we replace u0

in, u0
out and ũ0 by u∞

in , u∞
out and ũ∞, and

similarly for v. The explicit expressions of theses quantities
come from (8) up to a phase multiplication by λ∞. The
argument of S is plotted for each boundary condition in Fig. 7
with respect to kx and for several large values of κ .

APPENDIX D: LOCAL DENSITY OF STATES

Following Ref. [78], we define the local density of states
by

ρ(y, ω) =
∫

dkxdκ|ψscat (kx, κ, y)|2δ(ω − ω+(kx, κ )) (D1)

with ψscat (ω, x, y) = ψin + Sψout + T ψev, namely, (10) with
S = β/α and T = γ /α. The integration in (D1) is done for
kx ∈ R and κ > 0, but some restriction appears due to the
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δ function. Indeed, ω = ω+(kx, κ ) for κ = κout, see (9) and
above, and such solution exists only if kx ∈ [−kmax, kmax] with

kmax = 1

ε
√

2

√
−1 + 2ε f +

√
1 − 4ε f + 4ε2ω2 . (D2)

Hence the change of variable in the δ-function leads to

ρ(y, ω) = g(ω)
∫ −kmax

−kmax

dkx
|ψscat (kx, κ, y)|2

κout (kx, ω)
(D3)

with g(ω) = ω(1 − 4ε f + 4ε2ω2)−1/2. Moreover,

|ψscat|2 = |ψin|2 + |Sψout|2 + |T ψev|2 + 2Re〈ψin, Sψout〉
+ 2Re〈ψin, T ψev〉 + 2Re〈Sψout, T ψev〉 (D4)

with ψin = ψ̂ine−iκiny and ψ̂in = ψ̂ (kx, κin ), and similarly for
ψout and ψev. Since |ψin|2 + |Sψout|2 = 2, we define the free
part

ρ0(ω) = g(ω)
∫ −kmax

−kmax

dkx
|ψin|2 + |Sψout|2

κout (kx, ω)
, (D5)

independent of y. It is exactly calculable and reads after
integration ρ0 = 2πg(ω). Notice that ρ0 ∼ π

ε
as ω → ∞ like

free fermions in dimension two with dispersion relation ω ∼
εk2. Furthermore, ρ0 coincides with the computation of local
density of state in absence of boundary. In that case, one has
ψscat = ψin and the integration domain is kx, κ ∈ R2, leading
to ρ = ρ0.

Finally, the excess of density of states ρ1 = ρ − ρ0 reads
as in (14) with

R(y, kx, ω) = g(ω)

κout
(2Re(〈ψin, Sψout〉 + 〈ψin, T ψev〉

+ 〈Sψout, T ψev〉) + |T ψev|2). (D6)

One can check that each term on the right hand side is gauge
invariant, namely independent of the choice of section ψ̂ , as
long as the same is taken for in, out, and ev. Thus, even though
S is gauge-dependent, S = 〈ψ̂in, Sψ̂out〉 is gauge invariant.
Moreover, Eq. (15) follows from the fact that the winding of
S is the same as the one for S since ψin and ψout are regular
along the curve kx ∈ [−kmax, kmax] and ω = Cte for ω large
enough (away from the edge mode branches merging with
the bulk band). Such curve can be continuously deformed to
the one used in Fig. 7, ending up with winding number n+

∞.
The relation (15) was also checked numerically.

APPENDIX E: REGULARIZED DIRAC HAMILTONIAN

1. Edge modes

We aim at calculating the edge modes for a semi-
infinite plane (x, y) ∈ R × [0,∞] geometry with two dif-
ferent boundary conditions A and B defined in Eqs. (21a)
and (21b). Following the same lines as for the shallow-water
model, boundary modes are obtained as the linear combina-
tion

� =
(

A−
B−

)
e−K−y +

(
A+
B+

)
e−K+y (E1)

where the evanescent modes(
A±
B±

)
e−K±y (E2)

are solutions of Hhalf-plane� = E� with

Hhalf-plane =
(

m − εk2
x + ε∂2

y kx + ∂y

kx − ∂y −m + εk2
x − ε∂2

y

)
. (E3)

A direct calculation leads to

K± = 1√
2ε

√
2ε
(
m − εk2

x

)+ 1 ±
√

1 − 4ε(m − εE2). (E4)

Notice that, for simplicity, we have only considered the case
where

√
1 − 4ε(m − εE2) is real in the decomposition (E1),

that is satisfied when 4|εm| < 1. Then, defining λ± as B± =
λ±A±, one gets

λ±(E , kx ) = kx + K±
m − εk2

x + εK2± + E
. (E5)

Finally, inserting (E1) with (E5) into the boundary condi-
tions A and B respectively yields

A: λ+(E , kx ) − λ−(E , kx ) = 0, (E6a)

B: λ+(E , kx )(K+ − kx ) − λ−(E , kx )(K− − kx ) = 0. (E6b)

These two implicit equations over E and kx give the disper-
sion relation of the evanescent modes compatible with the
corresponding boundary conditions A and B. These dispersion
relations are plotted in Fig. 10.

2. Chern number

When the mass m is fixed, the regularization ε �= 0, allows
a well defined (integer-valued) first Chern number

C± = i

2π

∫
R2

dkxdky
(〈
∂kx ψ±

∣∣∂kyψ±
〉− 〈∂kyψ±

∣∣∂kx ψ±
〉)
(E7)

for each bulk eigenstate ψ±(kx, ky) of energy E±(kx, ky) =
±
√

k2 + (m − εk2)2, solutions of (20) There are several ways
to compute the Chern number. One of them consists in
noticing that it coincides with the degree of the map from
S2 (the compactified R2 plane) to S2 (the projective space
for normalized spinors) [29]. An alternative way, that is also
convenient to compute the scattering states in the follow-
ing, consists in looking for the phase singularities of the
normalized eigenstates ψ±(kx, ky). Indeed, ψ±(kx, ky) may
have a phase singularity at k ∼ 0 and/or at k ∼ ∞ that can
be cured locally by a gauge choice of the phase, but not
necessarily removed for any point of the plane (kx, ky). This
is a topological property of the model that is captured by the
first Chern number.

In particular, the behavior of the eigenstate of positive
energy

ψ̂+ = 1
√

2
√

E2+ − E+(m − εk2)

(
kx − iky

E+ − m + εk2

)
(E8)
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depends on the sign of the mass term as

ψ̂+ ∼
0

⎧⎪⎨
⎪⎩
(0

1

)
for m < 0,(e−iφ

0

)
for m > 0.

(E9)

It is regular at k ∼ 0 when m < 0, but has a phase singular-
ity when m > 0. This phase singularity can be removed by
the gauge transformation ψ0 = λψ̂+ with λ = eiφ = k−1(kx +
iky). Similarly

ψ̂+ ∼∞

⎧⎪⎨
⎪⎩
(e−iφ

0

)
for ε < 0,(0

1

)
for ε > 0,

(E10)

so that ψ̂+ is regular at k ∼ ∞ when ε < 0 but has the same
phase singularity as at k ∼ 0 for ε > 0. This singularity is thus
removed from k ∼ ∞ with the same gauge transformation.
The Chern number captures the impossibility to remove the
phase singularity at both k ∼ 0 and k ∼ ∞ by the a global
choice of phase. Thus it follows from (E9) and (E10) that
the Chern number of the positive energy band vanishes when
sgn(m) = −sgn(ε). Finally, a direct calculation leads to

C± = ± sign(m) + sign(ε)

2
(E11)

that only takes integer values. In particular, one recovers the
so-called “half-Chern number” for the usual (unregularized)
massive two-dimensional Dirac equation when ε = 0.

3. Scattering matrices

For each boundary conditions (21a) and (21b), the scatter-
ing matrix (11) is obtained at κ ∼ 0/∞ from the scattering
state (10), by taking a local regular section, i.e., by choosing a
local gauge such that the bulk eigenstate is singled-valued at
k ∼ 0/∞. Focusing on ψ+, (E9) and (E10) indicate that (E8)
can be used to construct the scattering state around k ∼ 0
when m < 0 and at k ∼ ∞ when ε > 0, while one must use
λψ̂± otherwise.

Denoting ψ i
+ = (φi

1, φ
i
2)T , a smooth section of ψ+ at k ∼

i = {0,∞}, the scattering matrices Si(kx, κ ) at k ∼ i for the
band of positive energy are found to be

A: Si(kx, κ ) = φi
1,inφ

i
2,b − φi

2,inφ
i
1,b

φi
2,outφ

i
1,b − φi

1,outφ
i
2,b

, (E12a)

B: Si(kx, κ ) = − (kx − |κ̃−|)φi
2,bφ

i
1in

− (iκ + kx )φi
1,bφ

i
2in

(kx − |κ̃−|)φi
2,bφ

i
1out

− (−iκ + kx )φi
1,bφ

i
2out

(E12b)

for the boundary conditions A and B, and where

κ̃−(kx, κ ) = −i

√
κ2 + 1 − 2ε

(
m − εk2

x

)
ε2

. (E13)

Their argument is ploted as a function of kx for different
values of κ in Fig. 10. Its winding gives, in unit of 2π , the
number of boundary states that enter the positive energy band
by below (at finite k) or from the top (at k ∼ ∞), so that the
bulk-boundary correspondence is satisfied.
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