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Tuning of friction noise by accessing the rolling-sliding option
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Variable power transmission in mechanical systems is often achieved by devices, e.g., clutches and brakes,
that use dry friction. In these systems, the variability in power transmission is brought about by engaging and
disengaging the friction plates. Though commonly used, this method of making the coupling noisy is not as
versatile as their electrical analog. An alternative method would be to intermittently vary the frictional force. In
this paper, we demonstrate a self-organized way to tune the noise in the frictional coupling between two surfaces
which are in relative motion with each other. This is achieved by exploiting the complexity that arises from
the frictional interaction of the balls which are placed in a circular groove between the surfaces. The extent of
floppiness in the coupling is related to the rate at which the balls make transitions between their rolling and sliding
states. If the moving surface is soft and the static surface is hard we show that with increasing filling fraction of
the balls the transitions between rolling and sliding against the static surface give way to the transitions between
rolling and sliding against the moving surface. As a consequence, the noise in the coupling is large for both small
and large filling fraction with a dip in the middle. In contrast, the sliding with the static surface is suppressed if the
moving pate is hard and the noise in the coupling decreases monotonically with the filling fraction of the balls.
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Dry friction is commonly used as a coupling mechanism
to transmit power in mechanical systems. Examples of this
can be seen in automotive vehicles where the friction plates
are used for clutching and braking purposes [1,2]. If a sudden
brake is to be applied, it is preferable that the coupling
between the brake pads and the inner rim of the wheel is
strong. Similarly, for maximum force transmission, the clutch
should strongly couple the gearbox to the engine. However,
when caught up in traffic while driving uphill, one often
uses a technique called feathering the clutch or slipping the
clutch [3] where a driver gets better control over the vehicle
by alternately pressing and releasing the brake or clutch
which makes the frictional coupling time-varying (noisy). In
essence, there are situations that may demand a mechanical
system to exhibit strong frictional coupling in one instance
of time and weak frictional coupling in another instance.
This is commonly achieved by making the coupling noisy
where the system is constantly made to toggle between states
which have strong (e.g., brakes on) and weak (e.g., brakes off)
frictional coupling. In mechanical systems, the presence of
inertial forces makes this general principle of controlling the
power transmission by varying the duty cycle more difficult
to implement as compared to the pulse width modulation
technique (PWM) employed in their electrical analogs [4,5].
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In addition, it causes fretting and associated mechanical fail-
ure, e.g., continuous driving with a feather clutch technique
will quickly destroy the clutch. In what follows we will call
the coupling noisy if the frictional force toggles constantly
between strong and weak coupling states. In the experiments
reported here, we show ways in which the complexity that
arises from the third body frictional interactions of balls
sandwiched between two surfaces can be harnessed in order
to tune the noise in the frictional coupling.

In our experiments we place millimeter-sized balls on a
circular groove between a static and a moving plate. These
balls, which are constrained to move in single file, mediate the
frictional drag exerted by one plate on the other. The coupling
between the top and the bottom plate which strongly depends
on the dynamics of the balls is measured in terms of the
spread in the coefficient of friction. At a small filling fraction
each ball exhibits periodic rolling and sliding against the hard
plate. The toggling between rolling and sliding generates a
spread in the coefficient of friction. With increasing filling
fraction, the sliding mode gets progressively suppressed. This
suppresses the noise in the coupling between the plates. For
a soft moving plate, this decrease in noise is non-monotonic.
At higher filling fraction, the collective dynamics of forming
and breaking of clusters set in due to the sliding against the
soft plate. This restores the noise in friction coefficient. Such
non-monotonic variation in noise is absent if the moving plate
is hard and the static plate is soft.

The experimental setup is shown in Fig. 1(a). A circular
plate of transparent Polymethyl methacrylate (PMMA) of
60 mm radius and 6 mm thickness is used as the bottom plate
into which an annular groove of inner radius R = 47 mm and
width 1.9 mm is carved. The groove has a depth of 0.6 mm
and it acts as a circular track for the balls to move. N stainless
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FIG. 1. (a) Schematic of the experimental setup in soft-top and
hard-bottom plate geometry. A parallel plate toolbar of the rheometer
is attached to the top PMMA disk and the soft PVDC circularly cut
sheet is attached to it. The radius of the track is R = 47 mm. Initially,
the balls are uniformly distributed on the track and the top plate is
made to exert a normal force FN = 30 N on them. The balls are set
in motion by rotating the top plate at a uniform angular velocity
ω = 180 deg /s. The camera is placed below the bottom PMMA
plate while the illumination is from the top. The image in (b) captured
by the camera shows the initial configuration of the balls on the
groove. The central darker portion in the region of attachment of the
measuring toolbar with the PMMA disk. (c) Time trace of torque τ

for some representative values of N . Normal force FN is color-coded.
(d) and (e) show the zoomed-in part of the time series of FN and τ .

steel balls of diameter 2 mm are placed on the groove. They
are set in motion by rotating the top plate which is coupled to
a rheometer (Physica MCR-301) via a shaft. The experiment
is performed in two geometries. In the first geometry, the
top plate is constructed by attaching a circular transparent
Polyvinylidene chloride (PVDC) polymer sheet (see SI [6])
of thickness 1 mm and radius 55 mm to the bottom surface of
a similar-sized circular plate made from PMMA (soft-top and
hard-bottom plate geometry). In the second geometry, the top
plate is made from PMMA while the bottom plate is made
by covering the grooved PMMA plate with a PVDC sheet
(hard-top and soft-bottom plate geometry). When the plates
are pressed against the balls, the soft PVDC sheet deforms
around each ball. The tensile stress developed in the polymer
sheet pushes the balls away from each other [7] (see SI [6])
which reduces the inter-ball friction and allows us to run the
experiments over a long period of time.

We first describe the experiment in soft-top and hard-
bottom plate configuration. Initially, the balls are uniformly
distributed on the track and the top plate is made to exert
a normal force FN = 30 N on them. Then the top plate is
set to rotate at a uniform angular velocity ω = 180 deg /s
while maintaining a constant average gap with the bottom
plate. A rheometer is used to monitor both the normal force
(resolution 2 mN) and the torque τ (resolution 1 nNm) acting
on the top plate to maintain its set angular velocity at every

FIG. 2. The scatter plots correspond to μ as a function of ρN . The
extent of spread in μ is particularly low between ρN = 0.1 (N = 15)
to ρN = 0.266 (N = 40). Black dots show μ̄ decreases with ρN . Top
right inset shows σμ as a function of ρN for different track sizes (R) at
different initially applied normal forces in soft-top and hard-bottom
plate geometry. The bottom left inset shows the same plot in the case
of hard-top and soft-bottom plate geometry.

100 ms. Additionally, configurations of the balls on the track
are continuously imaged at a rate of 3 frames per second.
We perform the experiments by varying the filling fraction of
balls, ρN = N

NT
, where NT = 150 is the total number of balls

that can be fit on the groove.
The balls can access two motional states: (i) rolling and (ii)

sliding [8–10]. They will be referred to as ‘rollers’ and ‘slid-
ers’, respectively. For the ‘rollers’, the top plate moves with
a relative velocity Rω

2 with respect to the balls. The ‘sliders’
themselves can be of two types: (i) ‘B-sliders’—which slide
with a velocity Rω with respect to the bottom plate and are at
rest with respect to the top plate, and (ii) ‘T-sliders’—which
slide with respect to the top plate and are at rest with respect
to the bottom plate. The various spatio-temporal configuration
of these ‘rollers’ and ‘sliders’ constitute the internal frictional
states of the system and transitions between them generate
noise in the friction coefficient. Each of these states is char-
acterized by different frictional forces. We will identify these
states from the analysis of the spatio-temporal configurations
of the balls later. The force of friction associated with the
‘rollers’ is lower than that associated with the ‘sliders’. In the
context of soft-top and hard-bottom plate geometry, the force
of friction associated with ‘T-sliders’ is significantly larger
than that associated with ‘B-sliders’ (see SI [6]).

The normal force between the top plate and the balls
depends on the extent of deformation made by the balls into
the top plate. Due to unintended machining errors and lack of
parallelism between the top and bottom plates, the gap height
between them has an angular profile (see SI [6]). Crests and
troughs in the gap profile are not always occupied. As the balls
move into/away from these regions, normal force exhibits
variation in time which then triggers toggling between the
internal frictional states and produces a change in torque
[Fig. 1(d) and 1(e)]. Figure 2 shows the variation of the
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FIG. 3. The circular groove is mapped onto a straight line.
Pure rolling component of motion is subtracted from the images
and they are stacked on top of each other. Different states of the
balls are shown in the inset. The left y axis of the dual plot in
(b) shows the monotonic decrease of fsb with ρN (shown in black).
Points beyond ρN � 0.666 are not shown as sliding is stopped. α =∑

t |ZρN (t ) − ZρN (t + δt )| is a measure of the incoherent dynamics
which is shown in blue [right y axis in (b)]. Here, δt = 1/3 = 0.33 s.
(c) Shows the largest slippage events dmax averaged over a time
interval of 0.33 s. Inset shows the variation of the average velocity
ωavg with the filling fraction ρN in the ‘R-frame’ of reference.

coefficient of friction, μ = Ff

FN
= τ

R.FN
as a function of ρN ,

where Ff is the friction force acting on the top plate. Clearly,
the extent of spread in μ changes non-monotonically with ρN .
The spread in μ is a measure of the noisiness in the coupling
between the plates. Larger the spread, noisier is the coupling.
This is particularly evident for small and large ρN . However,
for an intermediate-range, 0.1 � ρN � 0.266, the extent of
variation in μ is strongly suppressed.

The black dots in Fig. 2 correspond to the measure of the
mean value of the friction coefficient μ̄ which decreases with
increasing ρN . This drop is related to the concomitant decrease
in the fraction of ‘B-sliders’, a feature of the experiment that
we will discuss next. We have performed the experiments for
different sizes (radius R) of the track at different initially ap-
plied normal forces and all of these show a dip in the standard
deviation in the coefficient of friction, σμ as a function of ρN

(top right inset of Fig. 2).
To establish the correlation between the configurations of

the balls on the groove and the measurements of friction
coefficients, the circular groove is mapped onto a straight line.
To figure out the mode of motion of the balls, the pure rolling
component of motion is subtracted from the images. These
transformed images are referred to be in the ‘R-frame’ of
reference. These images are then stacked on top of each other
to create a montage [Fig. 3(a)]. If φ is the angle of a trajectory
with the vertical, then the average velocity can be obtained as
ωavg = 〈tan φ〉. In the ‘R-frame’, ‘rollers’ move parallel to the
vertical. For ‘B-sliders’, the trajectory is at an angle tan−1 ( ω

2 )
with respect to the vertical towards right since the velocity is
twice that of pure rolling. While ‘T-sliders’ are at an angle
− tan−1 ( ω

2 ) with respect to the vertical. Therefore, ωavg =
fsb( ω

2 ) + fr0 − fst ( ω
2 ), where fsb, fr , and fst are the fractions

of time the balls spend as ‘B-sliders’, ‘rollers’, and ‘T-sliders’,
respectively, and fsb + fr + fst = 1. It can be observed from
Fig. 3(a) that for small ρN , fraction of ‘B-sliders’ is more.
This happens due to large normal force per ball and large
frictional grip of the soft top plate on the balls. As ρN is
increased, normal force per ball decreases and balls become
more of ‘rollers’. However, with decreasing normal force per
ball the extent of deformation in the soft plate reduces which
in turn weakens the repulsive interaction between the balls.
Thus occasionally balls can touch each other and get jammed
momentarily. Hence top plate slip past them and generate
‘T-sliders’. For large ρN (N � 100 or ρN � 0.666) the system
has an overall small sliding component with respect to the top
plate (| tan φ| � 0.1 deg /s). We have neglected fst while con-
sidering the motion of the balls for ρN < 0.666. Hence fsb =
ωavg/( ω

2 ) and fr = 1 − fsb. Left y axis in Fig. 3(b) shows the
monotonic decrease of fsb with increasing ρN . Assuming the
amplitude of the individual torque signals due to ‘B-sliders’
and ‘rollers’ as τsb and τr , respectively, the rms value of the
net torque signal arising from the periodic toggling between
‘B-sliders’ and ‘rollers’ is τrms =

√
τ 2

sbD + τ 2
r (1 − D), where

D = fsb/ fr ≈ fsb/(1 − fsb) is the duty cycle. Since τrms is
a monotonically increasing function of fsb, the noise in the
coupling reduces with decrease in fsb for ρN < 0.666.

In the ‘R-frame’ of reference, ‘B-sliders’ contribute to the
particle current which decreases with decrease in fsb [grey
symbols in inset of Fig. 3(c)]. The average velocity of the
balls in this frame can be calculated analytically by mod-
eling the particle transport in terms of a totally asymmetric
simple exclusion process (TASEP) with periodic boundary
conditions [11,12]. This is a reasonably good model if we do
not consider the occasional ‘T-sliders’ which are very small
even in case of higher ρN . Here, we have assumed that for
a given ρN , all balls have the same hop rate p which is
determined by fsb. The average velocity is then given using
random sequential update rule as ωavg = ( ω

2 ) J
ρN

= ( ω
2 )p(1 −

ρN ) [13–15], where J is the average current in the system,
p = fsb, and ω

2 is the normalization constant. Inset of Fig. 3(c)
shows that measured and analytical average velocities are in
good agreement with each other.

In addition to the monotonic decrease in fsb and ωavg

with ρN , the system also shows a transition from a coherent
to an incoherent dynamics as a function of ρN . The fluc-
tuation in the size of the clusters is one measure of such
dynamics which is calculated in terms of the quantity α =∑

t |ZρN (t ) − ZρN (t + δt )|, where ZρN (t ) is the total number
of clusters in the system at time t and δt = 1/3 s. The data are
shown in blue in the right y axis in Fig. 3(b). For small ρN (�
0.2), the system exhibits coherent dynamics where the clusters
do not evolve and all of them keep moving with a nearly
constant average velocity [e.g., Fig. 4(a)]. Whereas for larger
ρN , the clusters constantly exchange particles. This results in
a considerable variation in average velocity, an example of
which is shown in Fig. 4(b). Note that the trajectories have a
negative slope [left panel of Fig. 4(b)], which corresponds to
the top plate slipping with respect to the balls. This happens
when there is a transient jam which results in a sudden drop in
the mobility of the balls. The slippage events assist the break-
ing of the clusters by generating elastic disturbances in the
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FIG. 4. Trajectories and averaged transport data for (a) N = 25 and (b) N = 100 balls. The averages are calculated over a time interval of
0.33 s.

top plate. The largest slippage event in a given time interval
(dmax) is strongly correlated with the incoherent dynamics of
the cluster coalescence and fragmentation [Fig. 3(b) and 3(c)]
and the averaged torque (τ avg) in that time interval [third and
fourth panel in Fig. 4(b)]. It should be noted from Fig. 4(b)
that the normal force remains mostly silent, i.e., the slowly
varying changes in the friction coefficient comes mainly from
variations in the torque.

The two above-mentioned contributions, i.e., decrease in
the sliding of the balls with respect to the bottom plate
and increase in the incoherent dynamics of the clusters at
large ρN [Figs. 3(b) and 4(b)] compete with each other to
make the noise in μ to have a non-monotonic dependence
on ρN .

In the case of hard-top and soft-bottom plate geometry,
the bottom plate exerts a larger frictional grip on the balls
and hence ‘B-sliders’ are always absent. In this scenario,
the noise in the coupling arises due to the toggling between
‘T-sliders’ and ‘rollers’. With increasing ρN , fst and, hence,
σμ decreases monotonically with ρN (bottom left inset of
Fig. 2). This is due to the following observation. When ρN

is small, the balls are mainly ‘T-sliders’ as they are held in
their place by the large deformation generated in the soft
bottom plate. With increase in ρN , the deformations reduce
and the balls begin to roll more (Fig. 5). In the absence
of ‘B-sliders’ which slip with respect to the soft plate to
generate the elastic disturbances that cause fragmentation of
the clusters, the dynamics become coherent for all ρN . The
fractions fst and fr can be determined as fst = ωavg/( ω

2 ) and
fr = 1 − fst . In this case, fst decreases monotonically with
ρN [Fig. 5(c) left y-axis]. Toggling between ‘T-sliders’ and
‘rollers’ contributes to the noise in the coupling. The noisiness
in the coupling reduces with decrease in fst . Whereas α which
is the measure of the incoherent dynamics does not change
at all [Fig. 5(c) right y-axis] and all the clusters move with a

constant velocity. Hence there is no contribution coming from
the exchange dynamics of the clusters to compete against the
reduction of noise in μ due to decrease in fst with ρN .

In addition, we utilize the recently introduced idea of
using lossless data compression [16] to verify the structural
correlation in this system. The detailed analysis and results
are provided in the supplementary section [6].

Frictionally coupled objects when driven tend to get
jammed [17,18]. To unjam the system, it is necessary to peri-
odically inject energy into it. This makes the resulting motion
intermittent. In this paper, we demonstrated a route to tune the
extent of this intermittency in the third-body friction [19–22]
and via it gain control over the noise in the frictional coupling

FIG. 5. (a) Montage of images in the case of hard-top and soft-
bottom plate geometry. (b) Spread in μ decreases monotonically in
this case. The left y-axis of the dual plot in (c) shows the fraction of
sliding with respect to the top plate as a function of ρN (shown in
black). α is shown in blue in the right y-axis. Inset in (c) compares
the measured and analytical average velocities.
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between two surfaces. In the experiments reported here, steel
balls which form the third-body that is sandwiched between
a static bottom plate and a rotating top plate, are made to
move in single file on a circular track. The noise in the
coupling between the plates is measured in terms of the spread
in the friction coefficient of the system. Our experimental
system is inspired by the mechanical arrangement of a ball
bearing. In a conventional ball bearing, balls made from hard
materials are sandwiched between the bearing’s inner and
outer races. Each ball is held in its place by means of a cage.
This ensures that during motion the balls do not collide with
each other and get frictionally jammed. Though the collective
dynamics of the balls are suppressed in a ball bearing, it can

still exhibit noisy dynamics because of the presence of play
in its mechanical couplings [23,24]. In contrast, we do not
hold the balls in cages and the noise observed in running our
experimental system is related to the collective dynamics of
these balls. As a closing remark, we would like to point out
that the conventional wisdom that the coefficient of friction is
approximately constant for a pair of surfaces [9] can easily be
circumvented by harnessing the complexity of the third-body
interaction forces.
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