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Hybrid photonic-plasmonic nanostructures allow one to engineer coupling of quantum emitters and cavity
modes accounting for the direct coherent and environment-mediated dissipative pathways. Using the generalized
plasmonic Dicke model, we explore the nonequilibrium phase diagram with respect to these interactions. The
analysis shows that their interplay results in the extension of the superradiant and regular lasing states to the
dissipative coupling regime and an emergent lasing phase without population inversion having a boundary
with the superradiant and normal states. Calculated photon emission spectra are demonstrated to carry distinct
signatures of these phases.
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I. INTRODUCTION

In quantum plasmonics, highly polarizable metal nanos-
tructures supporting surface-plasmon modes provide a source
of strong enhancement in the photon local density of states,
an effect similar to a low-Q optical cavity [1]. Technolog-
ical flexibility in the design of plasmonic cavities allows
one to engineer surface-plasmon states and their interac-
tions with quantum emitters (QEs), e.g., fluorescent dyes or
semiconductor nanostructures, leading to potentially desir-
able cooperative properties [1–3]. The strong (ultrastrong)
coupling regimes, when the surface-plasmon–QE interaction
strength exceeds the total cavity losses (becomes comparable
to the QE energy), open new opportunities for nonequilibrium
exciton-plasmon–polariton condensation, nonlinear emission,
and lasing [4,5].

In many cases, the experimental demonstration of the effect
was preceded by theoretical analysis. For instance, theoretical
studies of surface-plasmon-induced superradiant and subradi-
ant Dicke states reveal how their frequency and time-domain
emission features depend on the cavity geometry, composi-
tion, and environment fluctuations [6,7]. Rapid progress in
the development of a nanoscale surface-plasmon laser, often
referred to as the spaser, has been reported [8–12]. Theoretical
analysis of critical phenomena such as Bose-Einstein con-
densation (BEC) of the surface-plasmon–exciton polaritons in
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plasmonic lattices and arrays [13,14] was followed by reports
claiming experimental observation of a thermalized room
temperature and nonequilibrium BEC along with polariton
lasing [4,15].

In this paper we explore the possibility of engineering
quantum critical properties of plasmonic cavities by examin-
ing the nonequilibrium phase diagram and associated photon
emission spectra with respect to the nature and strength of
the surface-plasmon–QE interactions. To do so, we generalize
a driven-dissipative Dicke model describing an ensemble of
identical two-level QEs coupled to a single bosonic surface-
plasmon mode referred to below as the surface-plasmon cavity
mode (SPCM) [Fig. 1(a)]. We incorporate into the model two
distinct SPCM-QE interaction pathways which we illustrate
in Fig. 1(b): a coherent coupling λ, which stems from a direct,
e.g., dipole-dipole, interaction between the SPCM and a QE,
and a dissipative coupling η, which is facilitated by coupling
to a reservoir, which may be either a photon continuum
or a dark surface-plasmon mode [illustrated in Fig. 1(a)]
interacting in the near field with both the SPCM and QEs.
The energy is injected into the cavity incoherently, e.g., via
electrical pumping or optical excitation of the QE high excited
states followed by phonon-assisted relaxation to the “active”
excited state. The SPCM is coupled to the photon continuum
facilitating the cavity emission.

The dissipative coupling via photon reservoir was intro-
duced by Lehmberg as the off-diagonal radiative decay terms
in the Lindblad operator to describe the superradiant emission
from an ensemble of two-level atoms [16]. Subsequently,
this approach has been widely used to study the superradiant
emission in a large variety of systems [6,17,18]. Coupling
via a reservoir has been introduced in cascaded quantum
systems [19,20] and shown to be important for quantum
information applications [21]. The dissipative coupling is also
shown to facilitate quantum entanglement [22–24] and can be
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(a)

(b)

FIG. 1. (a) Example of plasmonic cavity filled with QEs coupled
to the SPCM (red wavy line) and dark plasmon mode (brown wavy
line), both due to an array of metal nanoparticles (MNPs). The SPCM
also interacts with the dark plasmon mode. The QEs are subject to an
incoherent pumping and the SPCM is the source of photons emitted
outside the cavity. (b) Partitioning of the interaction rate between a
QE and the quantized SPCM states into the coherent λ and dissipative
η quantum exchange rates.

employed to steer open quantum system into nontrivial states
[25,26].

The Dicke model provides a fundamental model of cavity
QED and has been studied in a context of superradiant phase
transition in both equilibrium and nonequilibrium regimes
[27]. Its generalized version with imbalanced rotating and
counterrotating terms has revealed a rich phase diagram al-
lowing for the superradiant and various lasing states [27–29].
In this paper we demonstrate that the interplay of the coherent
and dissipative interactions incorporated into the plasmonic
Dicke model results in the extension of the superradiant and
regular lasing phases to the dissipative coupling region of the
phase diagram and shows an emergent lasing state without
population inversion (referred to below as lasing without
inversion) having phase boundaries with the superradiant and
normal steady states. We demonstrate that the associated pho-
ton emission spectra carry distinct spectroscopic signatures of
the various phases.

The paper organized as follows. Generalization of the plas-
monic Dicke model accounting for the dissipative coupling is
presented in Sec. II. In Sec. III the mean field and second-
moment equations of motion are employed to calculate the
nonequilibrium phase diagram and to identify the steady
states. Associated photon emission spectra are analyzed in
Sec. IV. Conclusions are given in Sec. V.

II. GENERALIZED DICKE MODEL

The SPCM cavity mode (Fig. 1) is described by Bose
operators {ψ†, ψ}. Each two-level QE occupying site n =
1,N0 is characterized by a set of spin operators {ŝ±

n = ŝx
n ±

iŝy
n, sz

n}, related to the Pauli SU(2) operators as ŝ j
n = 1

2 σ̂
j

n ,
with j = x, y, z. Assuming that the QEs and the SPCM have
the same resonance energy ω0 and the same coherent quan-
tum exchange rate λ, we describe the system by the Dicke

Hamiltonian given in units of h̄,

ĤD = ω0ψ̂
†ψ̂ + ω0

( N0∑
n=1

ŝz
n + N0

2

)

+ λ(ψ̂ + ψ̂†)
N0∑

n=1

(ŝ−
n + ŝ+

n ). (1)

By taking into account that the plasmonic cavity (Fig. 1) is
an open quantum system, we introduce a density operator ρ̂

projected on the SPCM and QE space whose time evolution is
described by a Liouville equation

∂t ρ̂ = −i[ĤD, ρ̂] + 	spD̂ψ̂ [ρ̂] + γ↑
2

N0∑
n=1

D̂ŝ+
n
[ρ̂]

+ γ↓
2

N0∑
n=1

D̂ŝ−
n
[ρ̂] + γφ

N0∑
n=1

D̂ŝz
n
[ρ̂] + η

N0∑
n=1

D̂ψ̂,ŝ+
n
[ρ̂].

(2)

Here the Lindblad superoperator D̂Ô[ρ̂] = (2Ôρ̂Ô† −
Ô†Ôρ̂ − ρ̂Ô†Ô), with Ô = {ψ̂, ŝ−

n , s+
n , ŝz

n}, acts either
within the SPCM or QE subspaces. It describes the SPCM
population decay with the rate 2	sp, QE population decay
with the rate γ↓, population gain due to an incoherent pump
with the rate γ↑, and pure dephasing with the rate γφ . All
introduced population decay rates include both the radiative
and nonradiative contributions. The last term in Eq. (2)
partitions the dissipative SPCM and QE interaction with the
rate η using the Lindblad operator1

D̂ψ̂,ŝ+
n
[ρ̂] = 2ψ̂ρ̂ ŝ+

n − ŝ+
n ψ̂ρ̂ − ρ̂ ŝ+

n ψ̂

+ 2ŝ−
n ρ̂ψ̂† − ψ̂†ŝ−

n ρ̂ − ρ̂ψ̂†ŝ−
n . (3)

Equations (1)–(3) constitute our generalization of a driven-
dissipative plasmonic Dicke model.

Microscopic derivation of this model with the SPCM-QE
interactions facilitated by the photon continuum is provided
in Appendix A. Associated expressions for the coherent and
incoherent coupling rates are given by Eqs. (A42) and (A43)
complemented by Eqs. (A27) and (A28), respectively. These
equations naturally account for the photon retardation effects
allowing one to treat plasmonic cavities with linear size of the
order of an optical wavelength, the regime when conventional
near-field dipole-dipole approximation breaks down. In the
near-field limit, the dissipative interaction (A28) becomes
weak, i.e., scales with the distance r between the dipole as
r−1. Therefore, dropping the dissipative term in the near-field
limit, we recover a plasmonic cavity model used in Ref. [14]
to study equilibrium exciton-plasmon polariton condensation.
As demonstrated in Appendix B, an alternative way to achieve
dissipative interaction, including the near-field limit, is to
facilitate the SPCM-QE interactions via a broad dark plasmon
mode.

1In general, a Lindblad superoperator γ
∑

n D̂αψ̂+β ŝ−n [ρ̂] for the
interacting SPCM and QE contains three independent coupling
parameters α, β, and γ . Here we use transformed independent
parameters 	sp ∼ α2γ , γ↓ ∼ β2γ , and η = αβγ .
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III. NONEQUILIBRIUM PHASE DIAGRAM

A. Mean-field analysis

The mean-field equations of motion directly follow from
Eqs. (1)–(3),

∂τψ = −(i + 	̄sp)ψ − 2iN0λ̄ Re[s−] − N0λ̄η̄s−, (4)

∂τ s− = −(i + 	̄0)s− + 4iλ̄szRe[ψ] + 2λ̄η̄szψ, (5)

∂τ sz = −γ̄0

(
sz − d0

2

)
− 4λ̄ Im[s−]Re[ψ]

− 2λ̄η̄ Re[ψ∗s−], (6)

where the scalar variables are ψ = 〈ψ̂〉, s− = 〈ŝ−〉, and
sz = 〈ŝz〉, with the normalized per site spin operators ŝ±,z =∑

n(ŝ±,z
n )/N0 and the terms in angle brackets defined as

〈Ô〉 = tr(Ôρ̂ ). In addition, τ = ω0t is a dimensionless time

variable and λ̄ = λ/ω0 (η̄ = η/λ) is the normalized coherent
(dissipative) coupling rate. The normalized SPCM dephasing
rate is 	̄sp = 	sp/ω0 and the QE dephasing [total popula-
tion decay] rate is 	̄0 = (γ↓/2 + γ↑/2 + γφ )/ω0 [γ̄0 = (γ↓ +
γ↑)/ω0]. Finally, d0 = (γ↑ − γ↓)/(γ↑ + γ↓) is the population
inversion parameter.

The normal state is the trivial steady state of Eqs. (4)–(6)
characterized by the QE population inversion sNS

z = d0/2 and
the absence of the SPCM and QE coherences sNS

− = ψNS =
0. The fluctuations of the normal state coherences δψ = ψ −
ψNS and δs− = s− − sNS

− satisfy the linearized equations (4)
and (5) represented in the matrix form

∂τv = Mv, (7)

with the vector v = [δψ, δψ∗, δs−, δs∗
−]T and the stability

matrix2

M =

⎡
⎢⎢⎣

−i − 	̄sp 0 −N0λ̄(i + η̄) −iN0λ̄

0 i − 	̄sp iN0λ̄ N0λ̄(i − η̄)
2szλ̄(i + η̄) 2iszλ̄ −i − 	̄0 0

−2iszλ̄ −2szλ̄(i − η̄) 0 i − 	̄0

⎤
⎥⎥⎦. (8)

To identify a phase diagram of our model as the function of
dimensionless coherent N0λ̄

2 and dissipative η̄ coupling pa-
rameters, we look for the normal state instabilities of Eq. (7).
Specifically, we calculate the eigenvalues of the matrix M
with sz = sNS

z and check if at least one of them acquires a
positive real part.

Figure 2 presents a phase diagram of the calculated steady
states at no pumping d0 = −1 [Fig. 2(a)] and below the pop-
ulation inversion with d0 = −0.4 [Fig. 2(b)] with pumping
where three distinct instability regions are identified. The
cyan region denotes a phase associated with a single positive
eigenvalue of the stability matrix that passes through zero at
the boundary with the normal state. This is a signature of the
pitchfork bifurcation characterizing a superradiant phase tran-
sition [27] breaking Z2 symmetry, ψ → −ψ and s− → −s−,
of Eqs. (4)–(6). Accordingly, the critical coherent coupling for
this transition can be evaluated as the root of det[M] = 0,
resulting in

N0λ̄
2
s (η) = P(η̄)

η̄4d0

⎡
⎣

√
1 − η̄4

(
1 + 	̄2

sp

)(
1 + 	̄2

0

)
P2(η̄)

− 1

⎤
⎦, (9)

with P(η̄) = 2 + 2η̄(	̄0 + 	̄sp) + η̄2(	̄0	̄sp − 1). For vanish-
ing dissipative coupling η̄ → 0, Eq. (9) recovers a critical
coupling N0λ̄

2
c = (1 + 	̄2

sp)(1 + 	̄2
0 )/(−8sNS

z ) for the super-
radiant phase transition in the open Dicke model [27]. The
red curves in Figs. 2(a) and 2(b) due to Eq. (9) mark well

2The linearized equation (6) for the QE inversion fluctuations δsz =
sz − sNS

z is uncoupled from Eqs. (7) and (8) and has no effect on the
normal state stability.

the boundary between the normal state and the identified
superradiant region.

The green regions in Figs. 2(a) and 2(b) mark the insta-
bilities characterized by the simultaneous appearance of the
real positive parts for two complex eigenvalues of M. This
is a signature of a critical Hopf bifurcation. In the Tavis-
Cummings model, i.e., the rotating-wave limit of the Dicke
model, such an instability points to the lasing phase transi-
tion, which breaks U(1) gauge symmetry ψ → eiω̄l τψ and
s− → eiω̄l τ s−, where ω̄l = ωl/ω0 is a dimensionless lasing
frequency [27]. By applying the rotating-wave approximation
to Eqs. (4)–(6), we recover a generalized Tavis-Cummings
model (see Appendix C) with the critical parameter

N0λ̄
2
l (η) = (η̄2 − 1)(	̄0 + 	̄sp)2

8η̄2d0

×
[

1 ±
√

1 + 16η̄2	̄sp	̄0

(η̄2 − 1)2(	̄0 + 	̄sp)2

]
. (10)

Such a critical parameter exists below the population inver-
sion −1 � d0 < 0 and the nonvanishing dissipative coupling
if the plus (minus) sign is set in front of the square root for
0 < η̄2 < 1 (η̄2 > 1). The orange curves in Figs. 2(a) and 2(b)
due to Eq. (10) mark well the boundaries between the normal
state and the green regions. Accordingly, we identify the latter
as lasing states without population inversion facilitated by
the dissipative SPCM-QE interaction. The crossover region
[gray in Figs. 2(a) and 2(b)] exhibits an interplay of both
superradiant and lasing instabilities resulting in properties to
be clarified below.

Above the population inversion 0 < d0 � 1, our general-
ized Dicke model recovers the regular lasing state as marked
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(a) (c)(b)

(d) (f)(e)

(g) (i)(h)

FIG. 2. (a)–(c) Mean-field phase diagrams marking the normal (NS), superradiant (SR), lasing without inversion (LWI), and regular lasing
(RL) states. (d)–(f) Steady-state projection on the QE population inversion sz and (g)–(i) reduced SPCM population Nsp/N0 calculated for
N0 = 200 using Eqs. (11)–(17). In the left, middle, and right columns d0 = −1, −0.4, 1, respectively. Red [orange] curves designate N0λ̄

2
s (η)

[N0λ̄
2
l (η)] boundaries. In all calculations 	̄sp = 0.3, γ↓/ω0 = 0.002, and γφ/ω0 = 0.02.

in Fig. 2(c) in green. Variation of the critical boundary
there is in good agreement with the predictions (orange
line) of Eq. (10) where the plus (minus) sign is adopted for
η̄2 > 1 (η̄2 < 1). In this case, a limit of η̄ → 0 exists, resulting
in a well-known form of the QE-cavity coupling N0λ̄

2
l =

	̄0	̄sp/d0 at the lasing threshold [30].

B. Second-moment analysis

To go beyond the mean-field analysis of the instability
regions shown in Figs. 2(a)–2(c), we employ a set of equations
of motion truncated at the level of all independent operator
pairs. These averages represent a complete set of second
moments of the density operator in the space of interacting
QE-SPCM states. In the literature such an approximation
is also known as the maximum-entropy two-particle factor-
ization scheme [31] or the second-cumulant approximation
[27,28].

Starting with Eqs. (1)–(3), we derive the following equa-
tions of motion for the SPCM population Nsp = 〈ψ̂†ψ̂〉 and

double coherence Csp = 〈ψ̂ψ̂〉:
∂τ Nsp = −2	̄spNsp − 2N0λ̄ Im[c−sp + c+sp]

− 2N0λ̄η̄ Re[c+sp], (11)

∂τCsp = −2(i + 	̄sp)Csp − 2iN0λ̄[c−sp + c+sp]

− 2N0λ̄η̄c−sp. (12)

To close the set, equations of motion for the SPCM-QE
coherences c±sp = ∑

n〈ŝ±ψ̂〉/N0,

∂τ c−sp = −(2i + 	̄sp + 	̄0)c−sp − iλ̄[(N0 − 1)(c+− + c−−)

− 2sz(Csp + Nsp) + 1/2 − sz]

− λ̄η̄[(N0 − 1)c−− − 2szCsp], (13)

∂τ c+sp = −(	̄sp + 	̄0)c+sp

− iλ̄[(N0 − 1)(c+− + c∗
−−)

+ 2sz(Csp + Nsp) + 1/2 + sz]

− λ̄η̄[(N0 − 1)c+− − 2szNsp + 1/2 + sz], (14)
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average QE population sz, QE double coherence c−− =∑
n 	=n′ 〈ŝ−

n ŝ−
n′ 〉/N0(N0 − 1), and intersite coherence c+− =∑

n 	=n′ 〈ŝ+
n ŝ−

n′ 〉n 	=n′/N0(N0 − 1),

∂τ sz = −γ̄0(sz − d0/2) − 2λ̄ Im[c−,sp − c+,sp]

− 2λ̄η̄ Re[c+sp], (15)

∂τ c−− = −2(i + 	̄0)c−− + 4iλ̄sz[c−sp + c∗
+sp]

+ 4λ̄η̄szc−sp, (16)

∂τ c+− = −2	̄0c+− − 4λ̄szIm[c+sp − c−sp]

+ 4λ̄η̄szRe[c+sp], (17)

are introduced, respectively. The Csp, c±sp, and c−− are
complex quantities and the associated equations should be
complemented by their complex conjugates.3

In the absence of the incoherent pumping d0 = −1,
Eqs. (11)–(17) describe the relaxation dynamics of the ele-
mentary excitations (introduced as initial conditions) towards
the ground state whose projection on the QE population in-
version sz and the SPCM population Nsp = 〈ψ̂†ψ̂〉 are shown
in Figs. 2(d) and 2(g), respectively. In agreement with the
mean-field calculations, the normal state is characterized by
the QE ground state sNS

z = −1/2 and empty plasmonic cavity
Nsp = 0. However, Figs. 2(d) and 2(g) show that the presence
of the counterrotating term Ĥcr = λ

∑
n(ψ̂ ŝ−

n + ψ̂†ŝ+
n ) in the

Hamiltonian (1) results in QE and SPCM excitations as the
coupling parameters cross the critical boundaries. We also
observed that above the critical boundaries, the coherences
appearing in Eqs. (11)–(17) become nonzero (not shown in
the plot). This is an indication that the ground state associated
with the symmetry breaking is a correlated state of the QEs
and SPCM. Since the basis of the bare QE and SPCM states
is no longer the eigenbasis, projections of the ground-state
density matrix on the QE and SPCE populations show a
number of virtual excitations present in the ground state.
Accordingly, Eqs. (11)–(17) describe relaxation of the ele-
mentary excitations to such a correlated ground state avoiding
a problem of unphysical plasmon generation in the ground
state discussed in Ref. [5].

When the energy is incoherently supplied to the QEs,
Figs. 2(e) and 2(f) and Figs. 2(h) and 2(i) show that, still in
agreement with the mean-field theory, the normal state regions
are characterized by sNS

z = d0/2 and Nsp = 0, respectively.
Observed variation of sz and a buildup of Nsp within associated
instability regions [Figs. 2(b) and 2(c)] indicate the nonequi-
librium phase transitions to the correlated QE-SPCE states.
Interestingly, the crossover region [gray in Figs. 2(a) and 2(b)]
shows a clear phase boundary with the superradiant state in
the associated QE and SPCM population plots. However, no
signature of the phase boundary with the lasing state without
inversion is seen suggesting that lasing features might be
expected in this region.

3In the limit of vanishing dissipative coupling η̄ = 0, Eqs. (11)–
(17) recover the results of Ref. [28].

IV. PHOTON EMISSION PROPERTIES

Having established the phase diagram, we further examine
photon emission spectra of the identified steady states. Keep-
ing in mind that the SPCM emission rate exceeds the same
quantity for QEs by orders of magnitude, in Appendix D we
use the input-output formalism to connect the photon energy
emission spectrum S(δω̄), measured by a photodetector with
the Fourier transformed SPCM operator autocorrelation func-
tion, specifically,

S(δω̄) = (1 + δω̄)4
∫ ∞

−∞

dτ

2π
〈ψ̂†(τ )ψ̂ (0)〉eiδω̄τ , (18)

with the dimensionless frequency detuning δω̄ = (ω −
ω0)/ω0 and the prefactor (1 + δω̄)4 reflecting scaling of the
photon density of states and the emitted photon energy. It
is noteworthy that the spectral distribution of the number of
emitted photons can be obtained by normalizing S(δω̄) per
photon energy which changes the frequency prefactor to (1 +
δω̄)3. The cubic scaling of the prefactor reflects the scaling of
the spontaneous decay rate determined by the vacuum photon
density of states.

Applying the quantum regression theorem [30], the
correlation function in Eq. (18) is calculated perturbatively
via numerical solution of Eqs. (7) and (8) with v(τ ) =
[〈ψ̂ (τ )ψ̂ (0)〉, 〈ψ̂†(τ )ψ̂ (0)〉, 〈ŝ−(τ )ψ̂ (0)〉, 〈ŝ+(τ )ψ̂ (0)〉]T.
The second-moment steady states are used as the initial
conditions for v(0) and the steady state sz is used to
parametrize M. According to the adopted formalism,
the photon emission occurs as a result of relaxation of
the SPCM-QM correlated elementary excitations to the
steady/ground state accounting for virtual SPCM and QE
excitations above the critical boundaries. This allows us to
eliminate unphysical photon emission by such virtual states
discussed in Ref. [5].

Figure 3(a) compares the emission spectra in transition
from the normal to the superradiant steady state at no dissi-
pative coupling, i.e., the η̄ = 0 slice of the phase diagram in
Fig. 2(b). Each curve has two features, one characterized by a
positive detuning and the other by a negative one. The energy
splitting between the features is in quantitative agreement with
the spectrum of the elementary excitations [32], namely, the
surface-plasmon–exciton polaritons, shown in the inset.

As the coherent coupling passes through the superradiant
critical value [green dashed line in the inset in Fig. 3(a)], the
lower polariton branch passes through a gap at zero photon
energy (δω̄ = −1) [33]. Emission within this spectral branch
is highly suppressed due to the decrease in the photon energy
and the density of states [the prefactor in Eq. (18)]. Therefore,
a subtle lower polariton behavior near the critical point is
not resolved in the spectra. As a result, the emission at the
superradiant phase transition occurs from the upper polariton
branch.

Small nonvanishing values of the incoherent coupling η̄

below the threshold for the lasing without inversion result
in the emission spectrum modifications shown in Figs. 3(b)
and 3(c). Specifically, negative values of η̄ [Fig. 3(b)] result
in the emission line narrowing and strong suppression of
the lower polariton peak. In contrast, positive values of η̄
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(a)

(b)

(c)

FIG. 3. Photon energy emission spectra below population inver-
sion d0 = −0.4. The coherent coupling changes from the normal
N0λ̄

2 < 0.6 to the superradiant N0λ̄
2 � 0.6 region and the incoher-

ent coupling is set to (a) η̄ = 0, (b) η̄ = −0.2, and (c) η̄ = 0.2. The
inset shows the mean-field polariton spectrum for η̄ = 0.

[Fig. 3(c)] increase the line broadening and enhance the lower
polariton features.

Figure 4(a) compares emission spectra for η̄ = ±0.5 val-
ues of the dissipative coupling below (dashed line) and within
(solid line) the lasing without the inversion phase shown
in Fig. 2(b). Sharp characteristic features appear above the
lasing critical coupling. To identify these features, we have
calculated a normalized lasing frequency shift δω̄l = (ωl −
ω0)/ω0 using the generalized Tavis-Cummings model (see
Appendix C)

δω̄l (η) = −d0
2η̄N0λ̄

2
l (η)

	̄0 + 	̄sp
, (19)

with N0λ̄
2
l (η) given by Eq. (10). According to this expres-

sion, the peak shift is determined by the dissipative coupling
parameter η̄.

The lasing peak shift evaluated according to Eq. (19)
is plotted in the inset in Fig. 4(a). Comparison shows that
the spectral positions of the sharp emission peaks are in

FIG. 4. Photon emission spectra. (a) and (b) Solid (dashed) lines
mark lasing state without inversion (normal state) emission with the
coupling threshold N0λ̄l = 0.2. The inset in (a) shows the mean-field
calculated lasing frequency shift. (c) Same as (a) and (b) but for the
regular lasing characterized by the coupling threshold N0λ̄l = 0.04.

quantitative agreement with the predictions of the Tavis-
Cummings model, allowing us to identify them as the las-
ing peaks. Spectra calculated within the crossover region
[Fig. 4(b)] demonstrate the same trends as the spectra in
Fig. 4(a). This confirms our assumption that the crossover
region could demonstrate the lasing features. Finally, Fig. 4(c)
compares the emission spectra for the regular lasing regime
identified in Fig. 2(c). Compared to the broad spectral dis-
tribution of the photons (dashed lines) emitted below the
lasing critical coupling, the spectra associated with the lasing
phase show sharp monochromatic emission features. The
spectral positions of the latter features are in quantitative
agreement with the predictions of Eq. (19) plotted in the
inset.

Comparing the insets in Figs. 4(a) and 4(c), we notice
that, given the same sign of the dissipative coupling strength,
the lasing frequency shifts for the lasing without inversion
and regular lasing regimes show opposite signs. This trend
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resembles the behavior predicted for the counterrotating (also
known as inverted) and regular lasing regimes using a gen-
eralization of the Dicke model reported in Refs. [27–29,34].
Furthermore, the counterrotating lasing occurs below the pop-
ulation inversion d0 < 0 and has a phase boundary with the
superradiant state.

However, the physical mechanisms leading to the lasing
without inversion reported here and the counterrotating lasing
are different. In the former case, a gain occurs as the result
of the reservoir-facilitated energy flow from the SPCM to
the QEs. This results in the energy supply to the QEs that
overrides their losses. In the case of the counterrotating lasing,
a cavity coherent emission is facilitated by the counterrotating
term Ĥcr = λ

∑
n(ψ̂ ŝ−

n + ψ̂†ŝ+
n ). To reach the counterrotating

lasing, an imbalance between the rotating and the counterro-
tating terms is required. As demonstrated for atoms in a high-
finesse optical cavity, such an imbalance can be engineered
using coherent Raman processes due to external laser fields
[34,35]. In contrast, the lasing without inversion predicted
in this paper does not originate from the imbalanced coun-
terrotating terms but rather emerges due to the SPCM-QM
interaction facilitated by a reservoir.

V. CONCLUSION

Using the mean-field and second-moment analysis we
identified the superradiant, lasing without inversion, and reg-
ular lasing states appearing in the phase diagram of driven-
dissipative plasmonic Dicke model as a result of the interplay
between the coherent and dissipative SPCM-QE interaction
pathways. In the limit of no dissipative coupling, we re-
cover the results for the open Dicke and Tavis-Cummings
models reported in the literature. Inclusion of the dissipa-
tive coupling extends the superradiant and regular lasing
states into the dissipative coupling region and results in the
emergent lasing without an inversion state. The latter stems
from the incoherent energy transfer between the SPCM and
the QEs. The calculated emission spectra show quantitative
agreement with the predictions of the mean-field theory. The
trends for the peak variations and the line-shape behavior
with respect to the strengths of the dissipative coupling can
be used for a spectroscopic identification of the predicted
states.
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APPENDIX A: COHERENT AND DISSIPATIVE
COUPLINGS FACILITATED BY THE PHOTON

CONTINUUM

Let us consider an array of QEs and metal nanoparticles
shown in Fig. 1(a). Each metal nanoparticle is assigned a
local surface plasmon (LSP) mode giving rise to the collective
SPCM. The contribution of the dark plasmon mode is ne-
glected in this Appendix. Further adopting the dipolar gauge
[36], we treat interactions between the array components via
a quantized transverse electric field, i.e., transverse photons.
The Hamiltonian of such a system is

Ĥ = Ĥph + ĤSP + ĤQE, (A1)

where the first term stands for the noninteracting photon
modes

Ĥph =
∑

q,λ=1,2

ωqâ†
qλâqλ, (A2)

with â†
qλ being a creation operator for a mode with the wave

vector q and state of polarization λ. The photon frequency
is ωq = c|q|, with c the speed of light. The second and third
terms in the Hamiltonian (A1),

ĤSP =
∑

m̄

h̄ωm̄ψ̂
†
m̄ψ̂m̄ −

∑
m̄

p̂m̄ · Ê
⊥
m̄, (A3)

ĤQE =
∑

n

h̄ωn
(
ŝz

n + 1
2

) −
∑

n

μ̂n · Ê
⊥
n , (A4)

stand for the LSPs localized at sites m̄ having energy h̄ωm̄ and
described by the Bose operators {ψ̂m̄, ψ̂

†
m̄} and the QEs with

energies h̄ωn described by the site spin operators ŝα
n , α = z,±,

respectively. The LSPs and QEs are coupled via transition
dipole operators

p̂m̄ = pm̄(ψ̂†
m̄ + ψ̂m̄), (A5)

μ̂n = μn(ŝ+
n + ŝ−

n ) (A6)

to the electric fields Ê
⊥
m̄ ≡ Ê

⊥
(rm̄) and Ê

⊥
n ≡ Ê

⊥
(rn), with

pm̄ and μn the LSP and QE transition dipole matrix elements,
respectively. The transverse electric field operator is

Ê
⊥

(r) = i
∑

q,λ=1,2

Eqλ(âqλeiq·r − â†
qλe−iq·r), (A7)

where the amplitude

Eqλ =
(

h̄ωq

2ε0V

)1/2

eqλ (A8)

depends on the mode polarization vector eqλ, quantization
volume V , and vacuum permittivity ε0.

The Heisenberg equations of motion for the LSP and QE
operators due to the Hamiltonian (A1)–(A4) are

∂t ψ̂m̄ = −iωm̄ψ̂m̄ + i

h̄
pm̄ · Ê

⊥
m̄, (A9)

∂t ŝ
−
n = −iωnŝ−

n − 2i

h̄
:μn · Ê

⊥
n ŝz

n:, (A10)

∂t ŝ
z
n = − i

h̄
:μn · Ê

⊥
n (ŝ−

n − ŝ+
n ):, (A11)
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where :ÂB̂: denotes normal ordering of the operators Â and B̂.
By integrating the photon field operator equation of motion

∂t âqλ = −iωqâqλ + 1

h̄

∑
m̄

p̂m̄ · Eqλe−iq·rm̄

+ 1

h̄

∑
n

μ̂n · Eqλe−iq·rn (A12)

and substituting the result into Eq. (A7), one partitions the
electric field operator at site α = {m̄, n} into three components
[37]

Ê
⊥
α (t ) = Ê

⊥
in,α + Ê

⊥
s,α + Ê

⊥
rr,α. (A13)

The first term

Ê
⊥
in,α (t ) = i

∑
q,λ=1,2

Eqλ[âqλ(t0)e−iωq (t−t0 )+iq·rα

−â†
qλ(t0)eiωq (t−t0 )−iq·rα ] (A14)

is the input field due to the photon field initial condition at
time t0 propagated to time t by the interaction free photon
Hamiltonian (A2). We identify this field as the vacuum fluc-
tuations.

The second term in Eq. (A13) describes the field produced
by dipoles at their own positions

Ê
⊥
rr,m̄ = lim

rm̄→0

↔
G(rm̄) · p̂m̄(t − rm̄/c), (A15)

Ê
⊥
rr,n = lim

rn→0

↔
G(rn) · μ̂n(t − rn/c), (A16)

known as the radiation reaction field. The third term in
Eq. (A13) describes the scattered field

Ê
⊥
s,m̄ =

∑
m̄′ 	=m̄

↔
Gm̄m̄′ · p̂m̄′ (t − rm̄m̄′/c)

+
∑

n

↔
Gm̄n · μ̂n(t − rm̄n/c), (A17)

Ê
⊥
s,n =

∑
m̄

↔
Gnm̄ · p̂m̄(t − rnm̄/c) (A18)

due to the polarization of the QE and LSP dipoles surrounding
either the m̄th LSP or the nth QE. Here rαβ = |rα − rβ | and
α, β = {m̄, n}. Notice that Eq. (A18) neglects the contribution
of the QEs and as a result the QE-QE interactions, justified
by pm̄ � μn. Finally, the photon time-domain dyadic Green’s

function
↔
Gαβ =

↔
G(rαβ ) appearing in Eqs. (A15)–(A18) is

↔
G(r) = 1

4πε0

{
(n ⊗ n −

↔
I )

∂2
t

c2r

+ (3n ⊗ n −
↔
I )

(
∂t

cr2
+ 1

r3

)}
, (A19)

where
↔
I is the unit 3 × 3 matrix and n = r/r is a directional

unit vector.
Next we use Eqs. (A9) and (A10) to eliminate the

time derivatives on the right-hand side of Eqs. (A15)–
(A18) followed by the short-time operator expansions

ψ̂m̄′ (t − rαm̄′/c) ≈ ψ̂m̄′ (t )eiωm̄′ rαm̄′ /c and ŝ−
n′ (t − rαn′/c) ≈

ŝ−
n′ (t )eiωn′ rαn′ /c. This results in the radiation reaction terms

describing the spontaneous radiative decay of the LSPs and
QEs

i

h̄
pm̄ · Ê

⊥
rr,m̄ = −κm̄

2
(ψ̂m̄ − ψ̂

†
m̄), (A20)

i

h̄
μn · Ê

⊥
rr,n = −κn

2
:(1 + �̂n)(ŝ−

n − ŝ+
n ):, (A21)

with associated rates

κm̄ = p2
m̄ω3

m̄

3πε0 h̄c3
, (A22)

κn = μ2
nω

3
n

3πε0 h̄c3
, (A23)

respectively. According to Eq. (A21), the energy transfer
from QEs to LSP enhances the QE dephasing/decay rate as
indicated by the polarization operator

�̂n =
∑

m̄

(
2λnm̄

ωn

)2

(2ψ̂
†
m̄ψ̂m̄ + 1). (A24)

Evaluation of the scattered field for the LSPs and QEs
gives, respectively,

i

h̄
pm̄ · Ê

⊥
s,m̄ = −i

∑
m̄′ 	=m̄

λm̄m̄′ (ψ̂m̄′ + ψ̂
†
m̄′ )

−
∑
m̄′ 	=m̄

ηm̄m̄′ (ψ̂m̄′ − ψ̂
†
m̄′ ) − i

∑
n

λm̄n(ŝ−
n + ŝ+

n )

−
∑

n

ηm̄n(ŝ−
n − ŝ+

n ), (A25)

i

h̄
μn · Ê

⊥
s,n = −i

∑
m̄

λnm̄(ψ̂m̄ + ψ̂
†
m̄) −

∑
m̄

ηnm̄(ψ̂m̄ − ψ̂
†
m̄).

(A26)

Here the coherent λαβ and dissipative ηαβ coupling parame-
ters naturally appear after elimination of the photon degrees
of freedom and have the representation

λαβ = 3dα

4dβ

κβ

[
−ξαβ

cos(qβrαβ )

qβrαβ

+ ζαβ

(
sin(qβrαβ )

(qβrαβ )2
+ cos(qβrαβ )

(qβrαβ )3

)]
, (A27)

ηαβ = 3dα

4dβ

κβ

[
ξαβ

sin(qβrαβ )

qβrαβ

+ ζαβ

(
cos(qβrαβ )

(qβrαβ )2
− sin(qβrαβ )

(qβrαβ )3

)]
, (A28)

where

ξαβ = nα · nβ − (nαβ · nα )(nαβ · nβ ), (A29)

ζαβ = nα · nβ − 3(nαβ · nα )(nαβ · nβ ), (A30)

with nα = dα/dα , nβ = dβ/dβ , nαβ = rαβ/rαβ , qβ = ωβ/c,
and rαβ = |rα − rβ |, where α, β = {m̄, n}, dm̄ = pm̄, and dn =
μn. The spontaneous decay rates κβ , β = {m̄, n}, are given in
Eqs. (A22) and (A23).
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The substitution of Eq. (A13) along with Eqs. (A20), (A21), (A25), and (A26) into Eqs. (A9)–(A11) results in a set of quantum
Langevin equations for coupled LSP and QE operators

∂t ψ̂m̄ = −iωm̄ψ̂m̄ − κm̄

2
(ψ̂m̄ − ψ̂

†
m̄) − i

∑
m̄′ 	=m̄

λm̄m̄′ (ψ̂m̄′ + ψ̂
†
m̄′ ) −

∑
m̄′ 	=m̄

ηm̄m̄′ (ψ̂m̄′ − ψ̂
†
m̄′ ) − i

∑
n

λm̄n(ŝ−
n + ŝ+

n )

−
∑

n

ηm̄n(ŝ−
n − ŝ+

n ) + i

h̄
pm̄ · Ê

⊥
in,m̄, (A31)

∂t ŝ
−
n = −iωnŝ−

n − κn

2
:(1 + �̂n)(ŝ−

n − ŝ+
n ): + 2i

∑
m̄

λnm̄:ŝz
n(ψ̂m̄ + ψ̂

†
m̄): + 2

∑
m̄

ηnm̄:ŝz
n(ψ̂m̄ − ψ̂

†
m̄): − 2i

h̄
:μn · Ê

⊥
in,nŝz

n:, (A32)

∂t ŝ
z
n = −κn(1 + �̂n)

(
ŝz

n + 1

2

)
+ i

∑
m̄

λnm̄:(ŝ−
n − ŝ+

n )(ψ̂m̄ + ψ̂
†
m̄): +

∑
m̄

ηnm̄:(ŝ−
n − ŝ+

n )(ψ̂m̄ − ψ̂
†
m̄): − i

h̄
:μn · Ê

⊥
in,n(ŝ−

n − ŝ+
n ):.

(A33)

According to Eqs. (A31)–(A33), the photon continuum fluctuations, i.e., Ê
⊥
in, result in cooperative dissipation processes such as

spontaneous radiative decay of LSPs including the superradiant emission due to the LSP-LSP coupling with the rate ηm̄m̄′ , the
QE radiative decay, and the LSP-QE dissipative coupling with the rate ηnm̄.

The Dicke model assumes identical LSPs (QEs), frequencies ωm̄ = ωsp (ωn = ω0), and transition dipoles pm̄ = p (μn = μ)
corresponding to identical spontaneous radiative decay rates κm̄ = κsp (κn = κ0). Furthermore, we introduce collective LSP
modes characterized by momentum k,

ψ̂k = 1√
N̄

N̄∑
m̄=1

ψ̂m̄e−ikm̄, (A34)

where N̄ is the number of metal nanoparticles in the array. Identifying the SPCM as the k = 0 collective mode, ψ̂ ≡ ψ̂k=0, we
simplify Eqs. (A31)–(A33) to the form

∂t ψ̂ = −i(ωsp + λsp)ψ̂ − 1

2
(κsp + ηsp)(ψ̂ − ψ̂†) − iλ

∑
n

(ŝ−
n + ŝ+

n ) − η
∑

n

(ŝ−
n − ŝ+

n ) + i

h̄
p · Ê

⊥
in,sp, (A35)

∂t ŝ
−
n = −iω0ŝ−

n − 1

2
[κ0 + γspψ̂

†ψ̂](ŝ−
n − ŝ+

n ) + 2iλ:ŝz
n(ψ̂ + ψ̂†): + 2η:ŝz

n(ψ̂ − ψ̂†): − 2i

h̄
:μ · Ê

⊥
in,nŝz

n:, (A36)

∂t ŝ
z
n = −[κ0 + γspψ̂

†ψ̂]

(
ŝz

n + 1

2

)
+ iλ:(ŝ−

n − ŝ+
n )(ψ̂ + ψ̂†): + η:(ŝ−

n − ŝ+
n )(ψ̂ − ψ̂†): − i

h̄
:μ · Ê

⊥
in,n(ŝ−

n − ŝ+
n ):, (A37)

where

Ê
⊥
in,sp = 1√

N̄

N̄∑
m̄=1

Ê
⊥
in,m̄. (A38)

In Eqs. (A35)–(A37), the SPCM band edge renormalization,
superradiant decay, and the QE plasmon-assisted spontaneous
decay rates are

λsp = 1

N̄

N̄−1∑
m̄=1

λm̄N̄ , (A39)

ηsp = 2

N̄

N̄−1∑
m̄=1

ηm̄N̄ , (A40)

γsp = 2N̄κsp

(
λ

ω0

)2

, (A41)

respectively. The SPCM-QE coherent λ and dissipative η

coupling rates are, respectively,

λ = 1√
N̄

N̄∑
m̄=1

λnm̄, (A42)

η = 1√
N̄

N̄∑
m̄=1

ηnm̄. (A43)

Above, we also assumed that the QEs are arranged so that each
has coherent and dissipative coupling rates identical to those
of the SPCM.

The model represented by Eqs. (A35)–(A43) recovers the
generalized Dicke model introduced in Sec. II, provided the
counterrotating dissipative terms and the plasmon-assisted QE
decay operator, i.e., γspψ̂

†ψ̂ , are dropped and the SPCM and
QE nonradiative decay and dephasing rates are added.

APPENDIX B: TWO-MODE SURFACE-PLASMON MODEL
ALLOWING FOR DISSIPATIVE COUPLING

The Dicke Hamiltonian accounting for two surface-
plasmon modes coupled to the QEs and with each other reads

Ĥ = �φ̂†φ̂ + ω0ψ̂
†ψ̂ + ω0

(∑
n

ŝz
n + N0

2

)

+ ζ Q̂q̂ + 2(ξ Q̂ + λq̂)
∑

n

ŝx
n. (B1)

Here and below, the quadrature representation Q̂ = φ̂ + φ̂†,
q̂ = ψ̂ + ψ̂†, ŝx

n = (s+
n + ŝ−

n )/2, and ŝy
n = i(s−

n − ŝ+
n )/2 is

used for the sake of brevity. The coupling parameters ζ , ξ ,
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and λ can be obtained microscopically in the dipole-dipole
approximation using an approach developed in Ref. [14].

A set of the Heisenberg equations of motion due to the
Hamiltonian (B1) reads

∂t φ̂ = −(i� + �)φ̂ − iζ q̂ − 2iξ
∑

n

ŝx
n, (B2)

∂t ψ̂ = −(iω0 + 	sp)ψ̂ − iζ Q̂ − 2iλ
∑

n

ŝx
n, (B3)

∂t ŝ
−
n = −(iω0 + 	0)ŝ−

n + 2iŝz
n(ξ Q̂ + λq̂), (B4)

∂t ŝ
z
n = −γ0

(
ŝz

n − d0/2
) + 2ŝy

n(ξ Q̂ + λq̂), (B5)

where the SPCM dephasing rate 	sp, the QE dephasing 	0 =
(γ↓/2 + γ↑/2 + γφ ) and population decay γ0 = γ↓ + γ↑

rates, and the inversion parameter d0 = (γ↑ − γ↓)/(γ↑ + γ↓)
are added as discussed in Sec. II.

Integrating Eq. (B2) in the Markovian approximation
and neglecting the counterrotating terms containing ei(ω0+�)t ′

gives

φ̂(t ) = φ̂(0)e−(i�+�)t

− � + i�

�2 + �2

[
ζ ψ̂ (t ) + ξ

∑
n

ŝ−
n (t )

]
, (B6)

with the detuning � = � − ω0. Taking into account that the
dark plasmon mode is broad � � �, we can safely set � = 0
in Eq. (B6) and neglect the contribution of the initial condition
φ̂(0) which should decay at time t .

By substituting Eq. (B6) with � = 0 and φ̂(0) = 0 into
Eqs. (B3)–(B5), we obtain our final set of operator equations
where the dark plasmon mode is integrated out:

∂t ψ̂ = −(iω0 + γsp)ψ̂ − ηsp(ψ̂ − ψ̂†) − iλ
∑

n

(ŝ−
n + ŝ+

n ) − iη
∑

n

(ŝ−
n − ŝ+

n ), (B7)

∂t ŝ
−
n = −(iω0 + γ0)ŝ−

n − ηQE(ŝ−
n − ŝ+

n ) + 2ηQE:sz
n

∑
m 	=n

(ŝ−
m − ŝ+

m ): + iλ:ŝz
n(ψ̂ + ψ̂†): − η:ŝz

n(ψ̂ − ψ̂†):, (B8)

∂t ŝ
z
n = −γt

(
ŝz

n − d0

2

)
− 2ηQE

(
ŝz

n + 1

2

)
+ ηQE:(ŝ−

n − ŝ+
n )

∑
m 	=n

(ŝ−
m − ŝ+

m ): + iλ:(ŝ−
m − ŝ+

m )(ψ̂ + ψ†): + :(ŝ−
n − ŝ+

n )(ψ̂ + ψ†):.

(B9)

Here :ÂB̂: denotes normal ordering of the operators Â and
B̂. Due to the dark plasmon mode Eqs. (B7)–(B9) acquire
the dissipative rates ηsp = ζ 2/�, ηQE = ξ 2/�, and η = ξζ/�

describing the SPCM decay, QEs cooperative decay, and
SPCM-QE dissipative coupling, respectively.

The generalized Dicke model in Sec. II can be re-
covered from Eqs. (B7)–(B9) by neglecting the terms
2ηQE:sz

n

∑
m 	=n(ŝ−

m − ŝ+
m ): and ηQE:(ŝ−

n − ŝ+
n )

∑
m 	=n(ŝ−

m − ŝ+
m ):

and dropping the counterrotating dissipative terms.

APPENDIX C: GENERALIZED
TAVIS-CUMMINGS MODEL

We generalize a driven-dissipative Tavis-Cummings model
by including the dissipative coupling between the SPCM and
QEs. Associated equations of motion

∂τψ = −(i + 	̄sp)ψ − λ̄(i + η̄)N0s−, (C1)

∂τ s− = −(i + 	̄0)s− + 2λ̄(i + η̄)szψ, (C2)

∂τ sz = −γ̄0(sz − d0/2) + 2λ̄ Re[(i − η̄)ψ∗s−] (C3)

result from Eqs. (4)–(6) after applying the rotating-wave
approximation.

We further break the U(1) gauge symmetry of Eqs. (C1)–
(C3) by setting the phase ψ → eiω̄l τψ and s− → eiω̄l τ s−
with ω̄l = ωl/ω0 to be identified as the normalized lasing
frequency. As a result, the equations of motion for the coher-
ences become

∂τψ = −(iδω̄l + 	̄sp)ψ − λ̄(i + η̄)N0s−, (C4)

∂τ s− = −(iδω̄l + 	̄0)s− + 2λ̄(i + η̄)szψ, (C5)

where δω̄l = 1 − ω̄l defines a normalized frequency detuning.
Equation (C3) does not change under such a transformation.
Using the steady-state solution of Eq. (C5),

s− = 2λ̄(i + η̄)

iδω̄l + 	̄0
szψ, (C6)

we eliminate s− in Eq. (C4) and in the steady-state solution of
Eq. (C3) to obtain

∂τψ = −
[

(iδω̄l + 	̄sp) + 2λ̄2N0
(i + η̄)2

iδω̄l + 	̄0
sz

]
ψ, (C7)

sz = d0

2

[
1 + 4λ̄2 	̄0

γ̄0

1 + η̄2

δω̄2
l + 	̄2

0

|ψ |2
]−1

. (C8)

The lasing threshold can be found by equating to zero both
the real and imaginary parts of the expression in the square
brackets of Eq. (C7). The roots of these two equation with
respect to δω̄l and sz stand for the lasing frequency detuning
δω̄l (η̄) [Eq. (19)] and the expression for the steady-state
population inversion

sz = d0

2

λ̄2
l (η̄)

N0λ̄2
. (C9)

Here the critical coupling λ̄2
l (η̄) is defined by Eq. (10) and

the expression is valid for λ̄2
l (η̄) � λ̄2. Finally, making the

substitution of Eq. (C9) into Eq. (C8), we find the order
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parameter

|ψ |2 = γ̄0
[
δω̄2

l (η̄) + 	̄2
0

]
4	̄0λ̄

2
l (η̄)(1 + η̄2)

(
1 − λ̄2

l (η̄)

N0λ̄2

)
, (C10)

representing the SPCM spontaneous coherence for λ̄2 �
λ̄2

l (η̄). The expression for the QE spontaneous coherence

|s−|2 = γ̄0λ̄
2
l (η̄)

	̄0N0λ̄2

(
1 − λ̄2

l (η̄)

N0λ̄2

)
(C11)

follows from Eqs. (C6) and (C10).

APPENDIX D: RELATIONSHIP BETWEEN OUTPUT
ELECTRIC FIELD AND PHOTON EMISSION

ENERGY SPECTRUM

Taking into account that the surface-plasmon transition
dipole exceeds the QE ones, i.e., psp � μn, the cavity emis-
sion is mostly contributed by the SPCM, which indeed can be
strongly coupled to the QEs. To find an output electric field
produced by the cavity in the far-field photodetector zone,
we employ the Heisenberg equation of motion (A12) for the
photon mode operator in which the right-hand side QE term
is dropped by setting μn = 0.

Following the input output formalism [30,38], we integrate
Eq. (A12) both forward (t > t0) and backward (t f > t) in
time. This provides us with the expression for the cavity
output field

Ê
⊥
out(r, t ) = Ê

⊥
in(r, t ) +

∑
m̄

↔
G(r − rm̄) · p̂m̄(t − |r − rm̄|/c)

(D1)

in terms of the input field (A14) and the LSP transition dipole
operator p̂m̄ (A5) propagated by the dyadic photon Green’s
function (A19) to the detector at coordinate r.

Since the cavity-detector separation significantly exceeds
the cavity linear size and t � |r − rm̄|/c, we can replace the
LSP mode with the collective SPCM (A34) and retain only
the far-field term in the photon Green’s function. Finally,
partitioning the output field into the negative and positive

frequency components Ê
⊥
out = Ê

−
out + Ê

+
out [39], we obtain

Ê
−
out(r, t ) = Ê

−
in(r, t ) − psp − n(n · psp)

4πε0c2r
∂2

t ψ̂†(t ), (D2)

Ê
+
out(r, t ) = Ê

+
in(r, t ) − psp − n(n · psp)

4πε0c2r
∂2

t ψ̂ (t ), (D3)

where r denotes the radius vector from the cavity and a
detector, n = r/r with r = |r|, and Ê

−
in = (Ê

+
in )† is due to the

first term on the right-hand side of Eq. (A14).
The power emitted by the cavity is

dE

dt
= 2ε0cr2

∫
4π2

d�〈Ê−
out(r, t ) · Ê

+
out(r, t )〉, (D4)

where the integration is perform over the whole solid angle
surrounding the cavity. The substitution of Eqs. (D2) and (D3)
into Eq. (D4) and subsequent integration over the solid angle
results in"

dE (t )

dt
= p2

sp

3πε0c3

〈
∂2

t ψ̂†(t )∂2
t ψ̂ (t )

〉
. (D5)

The correlation functions containing the input field fluctua-
tions vanish after averaging.

Following the Wiener-Khintchine theorem [40], we define
the photon power spectrum in terms of the SPCM operator
autocorrelation function as

S(ω)δ(ω − ω′) =
∫ ∞

−∞

dt

2π

∫ ∞

−∞

dt ′

2π

× 〈
∂2

t ψ̂†(t )∂2
t ψ̂ (t ′)

〉
eiωt−iω′t , (D6)

which simplifies to the form

S(ω)δ(ω − ω′) = ω2ω′2
∫ ∞

−∞

dt

2π

∫ ∞

−∞

dt ′

2π

×〈ψ̂†(t )ψ̂ (t ′)〉eiωt−iω′t ′
. (D7)

For the stationary process, one integral on the right-hand
side of Eq. (D7) can be evaluated, resulting in δ(ω̄ − ω̄′), to
recover the form of Eq. (18) for S(ω). According to Eqs. (D5)–
(D7), the photon energy emitted by the cavity per frequency
range dω is related to the spectral function S(ω) as

dE (ω)

dω
= p2

sp

3πε0c3
S(ω). (D8)

Note that an expression for the (power) spectrum of the
photons emitted within an infinitesimally small solid angle
d� can be obtained by simply multiplying [Eq. (D5)] Eq. (D8)
with the prefactor 3 sin2 θ/8π where the angle θ is measured
between psp and the radius vector pointing to the detector.
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