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Dynamic double layer force between charged surfaces
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We develop a theory for the “dynamic double layer force” between charged surfaces in an electrolyte under
a time-dependent voltage. Specifically, the force between two planar surfaces is calculated within the Poisson-
Nernst-Planck framework for dilute electrolytes, accounting for unequal ionic diffusivities. Due to the inherent
nonlinear dependence of the force on the electric potential, a sinusoidal voltage oscillating with frequency ω

gives rise to a nonzero time-averaged force, along with a component oscillating with frequency 2ω. The time-
averaged force is always attractive, as expected for surfaces of opposite polarity. However, the instantaneous
force switches between attractive and repulsive over an oscillation cycle at certain frequencies. Next, the force
is quantified for suddenly applied and pulsed voltages. In the former case, the force approaches its long-time
limit exponentially: on a resistor-capacitor or bulk diffusion time scale for an electrolyte with equal or unequal
ionic diffusivities, respectively. The long-time decay of the force for a pulsed voltage also decays exponentially
on the same timescales. The theory developed here is a dynamic generalization of the equilibrium double layer
force, with potential applications to electrochemical devices, force-based spectroscopy, and colloidal directed
assembly.

DOI: 10.1103/PhysRevResearch.2.013138

I. INTRODUCTION

Charged surfaces in contact with electrolytes are abundant
in electrochemical [1], colloidal [2], and biological [3] sys-
tems. The ions in the electrolyte form a diffuse charge layer
that screens the surface charge. The thickness of this layer
for sufficiently dilute solutions is characterized by the Debye
length, κ−1 =

√
εkBT/(2I0e2), where ε is the permittivity

of the electrolyte, kB is the Boltzmann constant, T is the
temperature, I0 is the ionic strength, and e is the charge on
a proton. The net (counterion) charge density results in an
electrical body force on a fluid element within the layer, which
must be balanced by an osmotic pressure gradient to maintain
mechanical equilibrium. The presence of such diffuse layers
implies that the interaction between charged surfaces in an
electrolyte is fundamentally different to that in a dielectric
medium. Quantifying this interaction is crucial in predicting
the macroscopic stability of dispersions [4,5], designing elec-
trochemically active devices [6–8], and engineering self- and
directed assembly of colloids and macromolecules [9,10].

The seminal Derjaguin-Landau-Verwey-Overbeek
(DLVO) theory [2] describes the long range electrostatic and
short range van der Waals forces between charged surfaces
at thermodynamic equilibrium. State of the art experimental
techniques [4,11] use it to analyze measurements of the
force between charged surfaces. The DLVO theory needs
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modification to account for dynamic interactions that may
arise due to charge regulation [12–14], electrokinetic particle
motion [15–17], and external charging of electrochemical
cells [7,18–20]. Research on charge regulation models
focuses on systems in quasiequilibrium; i.e., the ions in the
electrolyte reach their equilibrium distribution much faster
than a charge regulating reaction on the surface. Studies on
the effect of electrokinetic motion focus on the modified
hydrodynamic force due to the relative motion of the ions in
the diffuse layer and the surface.

Recent surface force apparatus experiments by Perez-
Martinez and Perkin [7] externally apply an oscillating voltage
and simultaneously measure the time-dependent surface force
between two electrodes across an electrolyte solution. Tivony
et al. [20] measure the time-dependent surface force due
to a suddenly applied, or step, voltage in a similar appa-
ratus. Motivated by these recent studies, here we develop
a theoretical model for the “dynamic double layer force”
between two surfaces whose potential difference oscillates
in time. We also consider the response of the system to a
suddenly applied voltage and a single voltage pulse. Our
focus is on quantifying how the ion transport across the
electrolyte, via electromigration and diffusion, determines the
time-dependent force on the surface. A recent study [21]
calculated the double layer force between two planar sur-
faces in a symmetric, binary electrolyte under an ac voltage
with a dc bias. Here, we consider an asymmetric electrolyte
with unequal ionic diffusivities and calculate the force for
a suddenly applied dc voltage and a voltage pulse in ad-
dition to an ac voltage. We do not consider the effect of
surface reactions; thus the time dependence solely arises
from the dynamic formation of double layers in response to
the external voltage. Our theory contributes a dynamic, out-
of-thermodynamic-equilibrium generalization of the classical
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FIG. 1. Schematic of a model electrochemical cell under an
oscillating voltage 2V0 cos(ωt ). A time dependent force of magnitude
FT is exerted on each electrode due to the ion transport under
this potential difference. Regions of net ionic charge are confined
to a distance of the order of the Debye length, κ−1, from each
electrode. Typically, κ−1 is much smaller than the distance between
electrodes, L.

electrostatic double layer force on which DLVO theory is
founded.

We show that the force per unit area on a surface scales as
εV 2/L2, where ε is the permittivity of the electrolyte, V is the
applied voltage, and L is the distance between the electrodes.
Thus taking V = kBT/e ≈ 25 mV at 298 K across L = 1 μm
in an aqueous electrolyte generates a stress of about 1 Pa. This
stress exerts a force of O(10 pN) on a spherical particle of
one micron radius, which is a typical force scale in colloidal
and biological soft matter. Further, the stress is comparable
to the elastic modulus of a nervous membrane [22]. We
suggest, therefore, that the dynamic double layer force is rel-
evant in soft materials, for example, in biocompatible flexible
electronics that aim to mimic the mechanical properties of
biological membranes [23]. Further, our analysis could be
used to develop new experimental techniques, such as a force
based spectroscopy, in analogy to electrochemical impedance
spectroscopy, to probe physicochemical electrolyte properties.
Finally, we show that the dynamic double layer force can vary
by orders of magnitude with frequency. Hence estimation of
the mechanical force on electrochemically active surfaces via
DLVO theory can lead to wildly erroneous results.

The system considered here represents a minimal model
for dynamic forces between charged surfaces exposed to time
varying voltages. Our work serves as a starting point to in-
vestigate more complex systems that have temporally varying
surface charges, where nonideal ion interactions and irregular
particle shapes could play a significant role in determining the
double layer force.

II. PROBLEM FORMULATION

A. Ion dynamics

We consider a model electrochemical cell with a di-
lute, monovalent, binary electrolyte between planar, parallel,
blocking electrodes (Fig. 1). It is assumed that the electrode
dimensions are large compared to the distance (2L) between

them; hence the ion transport is solely in the direction (x) be-
tween the electrodes. We study the response of this system to
an applied alternating voltage 2V (t ) = 2V0 cos(ωt ), where V0

is the amplitude, ω is the angular frequency of the signal, and
t represents time. From the solution to this problem, we also
derive the response of the cell to a suddenly applied voltage
and a pulsed voltage. This effectively allows us to determine
the dynamic double layer force between such surfaces.

We assume that V0 is small compared to the thermal
voltage scale kBT/e, such that the dimensionless voltage
Ṽ0 = V0e/kBT � 1. Henceforth, the tilde decoration denotes
a dimensionless variable. We define the charge density ρ

and ionic strength I in terms of the ionic concentrations
n± as ρ = e(n+ − n−), and 2I = n+ + n−. The normalized
charge density ρ̃, ionic strength Ĩ , and electric potential φ̃

in the electrolyte are governed by the Poisson-Nernst-Planck
(PNP) equations. For our model system, the dimensionless,
linearized PNP equations are

κL

(
∂ρ̃

∂ t̃
+ DA

DF

∂ Ĩ

∂ t̃

)
= ∂2ρ̃

∂ x̃2
− κ2L2ρ̃,

κL

(
DA

DF

∂ρ̃

∂ t̃
+ ∂ Ĩ

∂ t̃

)
= ∂2 Ĩ

∂ x̃2
, (1)

∂2φ̃

∂ x̃2
= − κ2L2ρ̃.

The first two equations arise from linear combinations of the
cationic and anionic species balances [24,25], and the third is
Poisson’s equation describing the variation in the local electric
field due to the ionic space charge density. A derivation of (1)
is presented in Appendix A. Here, DA = 2D+D−/(D+ + D−)
is the ambipolar diffusivity, DF = 2D+D−/(D− − D+), and
D+ and D− are the (distinct) diffusivities of the cations
and anions, respectively. Note, we do not assume ambipolar
diffusion. The ambipolar diffusion coefficient DA naturally
arises when expressing the PNP equations (1) in terms of the
charge density and ionic strength, rather than the individual
ion concentrations n±. The charge density is normalized by
2I0e, and the ionic strength by I0, where I0 is the equilibrium
ionic strength when there is no applied voltage, the potential
by kBT/e, the distance by L, the length of the half cell,
and the time by the resistor-capacitor (RC) charging time
τRC = κ−1L/DA [18,26]. The system is subject to boundary
conditions at the blocking electrodes, x̃ = ±1; namely,(

∂ρ̃

∂ x̃
+ ∂φ̃

∂ x̃

)
±1

= 0,

(
∂ Ĩ

∂ x̃

)
±1

= 0, φ̃±1 = ±Ṽ (t̃ ), (2)

corresponding to zero flux of charge and neutral salt, and an
applied voltage of ±Ṽ (t̃ ) at opposite electrodes, and hence
a net potential difference of 2Ṽ (t̃ ). We consider three forms
of Ṽ (t̃ ): an oscillating voltage, Ṽ = Ṽ0 cos (ω̃t̃ ), a suddenly
applied voltage, Ṽ = Ṽ0H(t̃ ) where H(t̃ ) is the Heaviside step
function, and a voltage pulse, Ṽ = Ṽ0δ(t̃ ), where δ(t̃ ) is the
Dirac delta function.

B. Double layer force

The force on an electrode is calculated as the integral of the
traction on its surface originating from osmotic pressure and
electrical (Maxwell) stress. For the one-dimensional system
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considered here, the force per unit area, normalized as shown
below, is given by

FT

(
κ2L2

I0kBT

)
≡ F̃T = [ p̃(x̃) − p̃0] − 1

2

(
∂φ̃

∂ x̃

)2

. (3)

In the right side of (3), the first term represents the difference
in the local osmotic pressure p̃ due to an external voltage and a
bulk reservoir value p̃0 under no voltage. This pressure is due
to an increase in ionic strength between the electrodes relative
to the value I0 that defines the (dimensional) reservoir pressure
p0 = I0kBT . The second term in the right side of (3) is due
to electric stresses. Note that although the pressure p̃ and the
potential φ̃ vary with location x̃, their combination in (3) is
a spatial constant. The scale of the force can be understood
as a product of the reservoir osmotic pressure I0kBT and the
square of the normalized Debye length 1/(κ2L2). Since the
Debye length is inversely proportional to the square root of
the ionic strength I0, the force scale is independent of I0.
The permittivity of the electrolyte ε enters the force scale
through the Debye length. We assume that the permittivity of
the electrolyte is the same as that of the solvent, neglecting
the influence of the ions, which can alter the permittivity
[27–29]. It would be an interesting future direction to consider
the influence of a frequency or ion-concentration dependent
permittivity on the dynamic double layer force. To calculate
p̃ we assert that the system is in mechanical equilibrium;
thus the pressure gradient is balanced by the divergence of
the electric stress. As shown in Appendix B, this leads to an

osmotic pressure gradient, ∂ p̃
∂ x̃ = 1

2
∂
∂ x̃ ( ∂φ̃

∂ x̃ )
2
. Importantly, we do

not assume that the ions follow a Boltzmann distribution (as is
standard in DLVO theory) since the force we calculate is not
at thermodynamic equilibrium.

III. RESULTS AND DISCUSSION

A. Force spectroscopy

For an applied oscillating voltage, 2Ṽ (t̃ ) = 2 Re(Ṽ0eιωt̃ ),
with frequency ω̃ normalized by 1/τRC, we expect the solu-
tions of the linearized PNP equations to be of the form g̃ =
2 Re(g̃1eιω̃t̃ ), where g̃1 is a complex valued function of x̃ and
ω̃, ι = √−1, Re is for the real part, and g̃ represents ρ̃, Ĩ , or
φ̃. This is equivalent to performing a Fourier transform of the
PNP equations and yields the long-time oscillatory response
of the electrolyte, i.e., after the initial transients have died out.
Details of the solution process are provided in Appendix A.
The force on the electrode depends on the electric potential
gradient,

∂φ̃

∂ x̃
= 2 Re

(
∂φ̃1

∂ x̃
eιω̃t̃

)
, (4)

where the potential gradient in Fourier space is

∂φ̃1

∂ x̃
= Ṽ0

Q

[
−κ2L2

(
cosh (λ1x̃)

λ1 cosh (λ1)
− λ1

λ2

v2

v1

cosh (λ2x̃)

λ2 cosh (λ2)

)

+
(

λ1 − κ2L2

λ1

)
− λ1

λ2

v2

v1

(
λ2 − κ2L2

λ2

)]
. (5)

Here,

Q =
[(

λ1 − κ2L2

λ1

)
− λ1

λ2

v2

v1

(
λ2 − κ2L2

λ2

)

+ κ2L2

λ2
1

tanh λ1 − λ1

λ2

v2

v1

κ2L2

λ2
2

tanh λ2

]
, (6)

and λ1 and λ2 are the eigenvalues of the system of ODEs
governing charge density and ionic strength (1); [v1, 1] and
[v2, 1] are the corresponding eigenvectors. These are

λ2
i = κ2L2

2
+ ιω̃κL ± κ2L2

2

√(
1 − 4ω̃2

κ2L2

D2
A

D2
F

)
(7)

and

v2

v1
=

1 −
√(

1 − 4ω̃2

κ2L2
D2

A

D2
F

)

1 +
√(

1 − 4ω̃2

κ2L2
D2

A

D2
F

) . (8)

Our Eqs. (5)–(8) are in agreement with Barbero and Lelidis
[30] who derive equivalent expressions in their study on
ambipolar diffusion in impedance spectroscopy. To proceed,
we first obtain the pressure distribution p̃(x̃) by invoking
mechanical equilibrium. Then, the force per unit area F̃T on
the electrode at x̃ = 1 is calculated using (3). As detailed
in Appendix B, this yields a force with a steady, time-
independent component and a component that oscillates with
twice the applied frequency, which we partition as

F̃T = F̃S + Re
(
F̃Oe2ιω̃t̃

)
. (9)

Here, the steady, time-averaged force is

F̃S = −
∣∣∣∣Ṽ0

Q

[(
λ1 − κ2L2

λ1

)
− λ1

λ2

v2

v1

(
λ2 − κ2L2

λ2

)]∣∣∣∣
2

, (10)

where |z| represents the modulus of the complex number z.
The oscillating component of the force has amplitude

F̃O = −Ṽ 2
0

Q2

{
κ4L4 sech2 λ1

2λ2
1

+ λ1

λ2

v2

v1
κ4L4 sech2 λ2

2λ2
2

+
[(

λ1 − κ2L2

λ1

)
− λ1

λ2

v2

v1

(
λ2 − κ2L2

λ2

)]2}
. (11)

Thus there is a nonzero time averaged force over an oscillation
cycle even though the applied voltage averages out to zero.
This is due to the inherently nonlinear (quadratic) dependence
of force on the applied potential. Note that because we con-
sider a purely oscillating field with no dc bias, our expression
for force has no component that oscillates with a frequency
ω̃, which is different from a recent calculation [21], where
a dc bias is considered. The total force F̃T as a function of
time is plotted in Fig. 2(a) for small, intermediate, and large
frequencies ω̃. The dependence of the maximum value of the
force during an oscillation cycle on the normalized inverse
Debye length κL and on the applied frequency ω̃ is plotted
in Figs. 2(b) and 2(c). The dependence of the time averaged
force on κL and ω̃ is shown in Fig. 3.

At small frequencies, ω̃ → 0, with κL fixed, the amplitude
of oscillations |F̃O| → Ṽ 2

0 κ2L2 cosech2(κL), which precisely
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FIG. 2. (a) Total force on the electrode as a function of time
over one oscillation cycle, for small, intermediate, and large voltage
frequencies ω̃. The dashed gray curve represents the applied voltage.
Here, κL = 1. (b) The maximum value of force (including steady and
oscillating components) over an oscillation cycle as a function of κL
for small, intermediate, and large driving frequencies. The symbols
represent the quasisteady limit of equilibrium double layer force, and
the κL independent force at high frequencies indicates the dielectric
limit. (c) The maximum value of force over an oscillation cycle as a
function of the driving frequency for three values of κL. In all three
plots, D+ = D− and Ṽ0 = 1.

FIG. 3. Steady, time-averaged component of force (a) as a func-
tion of κL for low, intermediate, and high driving frequencies. Force
is independent of κL at high frequencies, indicating the dielectric
limit, and (b) as a function of frequency for three values of κL.
In (a) the open circles represent the quasisteady limit of the time
averaged force. In both plots, D+ = D− and Ṽ0 = 1.

recovers the equilibrium double layer force between surfaces
held at constant potentials of equal magnitude and opposite
polarity [2]. This is demonstrated in Fig. 2(b) by the open
circles (representing magnitude of equilibrium force) over-
lapping with the blue curve for sufficiently large κL (our dy-
namic force for ω̃ → 0). Also in this limit, the time-averaged
component F̃S → −ω̃2/[tanh2(κL) + ω̃2]. This is shown in
Fig. 3(a) by the open circles (asymptotic expression) over-
lapping with the blue curve (full expression of steady force).
Physically, here the frequency is small compared to the inverse
of the double layer charging time. As such, double layers
adjacent to each electrode form and relax quasisteadily over
an oscillation cycle. Further, for the practically important limit
of thin double layers, κL � 1, the double layers near either
surface do not overlap, and the surface potential is almost
completely screened. The amplitude of the oscillating force
|F̃O| → Ṽ 2

0 κ2L2 exp (−2κL) is exponentially small, and the
time-averaged force F̃S → 0, as κL → ∞, ω̃ → 0. Thus, in
the quasisteady double layer limit, for the practically relevant
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values of κL, the force switches sign within a cycle, indicat-
ing a switch between an attraction (F̃T < 0) and repulsion
(F̃T > 0). This is shown in Fig. 2(a) by the blue curve for
ω̃ = 0.01.

In the opposite limit of high frequencies, ω̃ → ∞, the
steady force F̃S → −Ṽ 2

0 and the amplitude of oscillations
|F̃O| → Ṽ 2

0 , which is the force expected from a dielectric
capacitor. This is observed in Figs. 2(c) and 3(b) for all
values of κL as ω̃ → ∞. The total force therefore ranges
from −2Ṽ 2

0 to 0, and is always attractive [red curve for
ω̃ = 100 in Fig. 2(a)]. Physically, the large frequency does
not allow for the formation of double layers; thus the force
is independent of κL, as is suggested by the red curves for
ω̃ = 100 in Figs. 2(b) and 3(a). Additionally, as κL → 0,
the force approaches the dielectric limit irrespective of the
frequency.

For intermediate frequencies and thin Debye layers
(κL � 1) the bounds of the force are in between the two
limiting cases, as shown by the curves for ω̃ = 0.5, 1, and 2
in Figs. 2(b) and 3(a). However, for thicker Debye layers
[κL ∼ O(1)], the maximum and average forces could be
greater than their dielectric limits. The instantaneous force
switches signs between attractive and repulsive for a small
range of frequencies, following which it is always attractive
[Fig. 2(a)]. For some frequencies and κL, the amplitude of
oscillations of the force vanishes; thus the maximum force is
just the time-averaged value. This approach to zero appears
nonsmooth in Figs. 2(b) and 2(c) as we plot the absolute
value of the force. Finally, for intermediate frequencies, the
total force undergoes a phase shift [black curve in Fig. 2(a)],
relative to either extreme limit of frequency. Indeed it is
interesting that the extremes of dielectric and quasisteady
response are in phase with one another, despite the entirely
different physics.

B. Force chronometry

We now consider the model cell subject to a suddenly
applied voltage. This scenario is relevant in the charging
of energy storage devices like supercapacitors. Further, a
chronoamperometry experiment [32] measures the current as
a function of time, which is analyzed using models relating
the current decay to the physicochemical properties of the
electrolyte. Below, we suggest that, in addition to the current,
one could monitor the force on an electrode to extract the
charging time scales and hence the ionic diffusivities and
charge carrier concentration.

The dynamics of the force between two charged surfaces
under a suddenly applied voltage is governed by the same
PNP formulation (1), albeit with a different potential bound-
ary condition, namely, φ̃x̃=±1 = ±Ṽ0H(t̃ ). We calculate the
electric potential in Laplace space which is a function of the
normalized Laplace frequency s̃ (scaled by 1/τRC). This is
obtained from the potential in Fourier space by replacing ιω̃

with s̃. The Laplace space potential boundary condition at
x̃ = ±1 is �̃ = ±Ṽ0s̃−1, where �̃ is the normalized potential
in Laplace space.

Since the force is quadratic in the potential gradient, the
solution for the potential in Laplace space is transformed
back to the time domain before calculating the force. The

exact expression for the Laplace space potential gradient is
given in Appendix B. The inverse Laplace transform is not
possible to perform analytically for all times. However, we
obtain the asymptotic behavior of the force at long times from
the Laplace inverse of the potential gradient in the limit of
s̃ → 0. The long time asymptotic expression for the force is
given by (13). To obtain this, we first calculate the pressure
distribution from the electric potential by invoking mechanical
equilibrium. Similar to the frequency response, the force is
independent of position x̃ for the model system considered
here. Thus a numerical inverse Laplace transform (using the
algorithm from De Hoog et al. [33]) of the x-independent part
of the potential gradient is used to calculate the dynamics of
the force at all times, and is plotted in Fig. 4.

The total (normalized) force on an electrode initially jumps
to the dielectric value, −Ṽ 2

0 /2 [insets in Figs. 4(a) and 4(c)].
This is expected as the ions are yet to form double layers. This
is analogous to the high frequency limit in the spectroscopy
analysis. The force decays exponentially at long times, and
finally reaches the equilibrium value, − 1

4Ṽ 2
0 κ2L2 cosech2(κL)

[inset in Fig. 4(a)], corresponding to fully formed double
layers, which is simply the quasisteady limit of our dynamic
force spectroscopy. Note that, while all the curves approach
the equilibrium value, it is only large enough to distinguish
numerically for the smallest κL. For this κL = 10, the total
force drops by six orders of magnitude from the initial appli-
cation of voltage. When unequal diffusivities are considered,
we have a dynamic force composed of two distinct decays.
Thus, after the initial jump to the dielectric value, we see a
second plateau in the force before it approaches its equilib-
rium value [inset in Fig. 4(c)].

An asymptotic analysis of the Laplace space potential gra-
dient for s̃ → 0, corresponding to t̃ → ∞, reveals that the po-
tential, and hence the force, approaches its equilibrium value
exponentially. Specifically, the evolution of force is composed
of two exponential decays: an initial one with a shorter
resistor-capacitor (RC) charging time, τ̃RC, corresponding to
double layer charging, and a second exponential decay with a
longer bulk diffusion time, τ̃D, due to the difference in ionic
diffusivities. The equilibrium force is

F̃eq = −Ṽ 2
0

4
κ2L2 cosech2 κL, (12)

and the asymptotic approach to equilibrium,

F̃tot − F̃eq ≡ F̃dyn ∼ − 1
2

(
f̃RCe−t̃/τ̃RC − f̃De−t̃/τ̃D

)2
. (13)

Here the time scales, normalized by the RC charging time, are

τ̃RC = DA

κ−1L
τRC ≈ coth κL (14)

and

τ̃D = DA

κ−1L
τD ≈ κL

3
+ coth κL, (15)

and the coefficients f̃RC and f̃D are

f̃RC = Ṽ0, f̃D = Ṽ0
3

κL

(
DA

DF

)2

coth κL. (16)

The RC time is smaller than the bulk diffusion time by a
factor of κL. However, the coefficient of the diffusive decay

013138-5



BHAVYA BALU AND ADITYA S. KHAIR PHYSICAL REVIEW RESEARCH 2, 013138 (2020)

FIG. 4. Deviation from the long-time, equilibrium value of force
on the electrode as a function of time for three values of κL for
(a) D+ = D−, where the force exponentially approaches its long time
limit on an RC time, κ−1L/DA. The inset (t̃ scaled logarithmically
for clarity) shows the total force going from the dielectric value
(dashed lines) to the equilibrium double layer value. Here the force
is rescaled by 1/κ2L2 to separate the three lines which otherwise
overlap. (b) D+ 
= D−, where the initial decay (inset) is on the RC
time, followed by a second decay on a bulk diffusion time. (c) D+ 
=
D−, with time rescaled by the diffusive time scale, L2/DA. The
parallel slopes at longer times indicate a diffusive decay. The inset
(t̃ scaled logarithmically) shows the total force undergoing a two-step
decay from the dielectric to the equilibrium double layer values. In
(b) and (c), DA/DF = 0.18, corresponding to measurements of ionic
diffusivities of sodium and chloride ions in sea water [31].

is smaller than that of the RC decay by a factor of κL. Thus,
at initial times, one only observes the RC decay, but at longer
times, the RC decay becomes subdominant and thus one
observes only the diffusive decay. A detailed calculation of
the long time behavior of the force from the potential gradient
in Laplace space is provided in Appendix B.

In a log-linear plot of F̃dyn [Figs. 4(b) and 4(c)] the two
exponential decays are represented by straight lines with neg-
ative slopes. The initial slope is proportional to the reciprocal
of the RC time scale (τRC ∼ κ−1L/DA for κL � 1), as shown
in Fig. 4(b). Hence a measurement of the time dependent
force at short times allows one to infer the RC time scale of
the system. At long times it depends on the reciprocal of the
diffusive time scale (τD ∼ L2/DA for κL � 1), as shown by
Fig. 4(c), where the time is scaled by the bulk diffusion time
scale. The measurements of the force-time curve at long times
can thus be used to infer the ambipolar diffusivity of the salt.
The ratio of the RC time and diffusive time scales depends
on the Debye length [τRC/τD ∼ 1/(κL)]. Thus, from a single
force-time curve, one could infer both the ambipolar diffusion
coefficient and the Debye length, and therefore the number of
charge carriers in the electrolyte.

In the special case of equal ionic diffusivities the long
time diffusive time scale disappears and the force reaches its
equilibrium value in the order of the RC time [Fig. 4(a)]. This
is in agreement with the asymptotic expression where fD = 0
when DA/DF = 0 for D+ = D−. Thus the force evolves solely
on the RC time. Considering that all electrolytes have unequal
ionic diffusivities on some degree, the bulk diffusion time
scale should be expected in general.

C. Force pulse

An impulse response measurement under a voltage Ṽ =
Ṽ0δ(t̃ ) could also allow one to infer the ambipolar diffusion
coefficient and the number of charge carriers. Such a measure-
ment has the advantage of not requiring a sustained applied
voltage. We calculate the electric potential gradient in Laplace
space and its long time limit from the solution in Fourier space
by replacing ιω̃ with s̃. The corresponding (Laplace space)
potential boundary condition at x = ±1 becomes �̃ = Ṽ0. The
long time asymptotic behavior of an impulse voltage is given

by F̃imp ∼ − 1
2 ( f̃RCe−t̃/τ̃RC − f̃De−t̃/τ̃D )

2
. This is the same as the

dynamic force obtained for a suddenly applied voltage, with
the values of τ̃RC, τ̃D, f̃RC, and f̃D given by (14), (15), and (16),
respectively. Thus the impulse response is also composed of
two exponential decays, an initial RC decay followed by a
bulk diffusive decay. It differs from the response of the force
to a step voltage in two ways: (i) the initial force is infinite as
opposed to a finite jump discontinuity and (ii) the force decays
to zero at long times, instead of the equilibrium double layer
value obtained for a step voltage.

D. Comparison to experiments

We now make qualitative comparisons to two recent ex-
perimental measurements of the dynamic double layer force.
Note that neither of these experiments admit all the simpli-
fying assumptions, namely dilute electrolyte, weak applied
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voltage, and a large separation between electrodes, made by
our theory. Hence we cannot make quantitative comparisons.

Surface force measurements performed by Perez-Martinez
and Perkin [7] measure the instantaneous time-dependent
force between two charged surfaces where the applied voltage
oscillates in time. The applied potentials are large (≈7 V)
compared to the thermal voltage (≈25 mV), and the surfaces
are separated by an ionic liquid. They report a nonzero steady
state force at long times. While the existence of a steady time
averaged force is captured by our theory, the magnitude of
the predicted force is significantly different from what they
measure. We attribute this to the assumptions of a dilute elec-
trolyte and weak applied voltage, making their experiments
very much outside the realm of our calculations.

Measurement of the surface force in response to a suddenly
applied voltage has been performed by Tivony et al. [20] in a
similar surface force balance. They investigate the charging
dynamics of a dilute electrolyte in the case of very narrow
electrode separation, mimicking charging in nanopores. The
dynamics of force follows a long time exponential decay,
which is in agreement with our theory for force chronometry.
However, the time scale measured by their experiments is
significantly larger than the ones predicted by our theory for
the same electrode dimensions and spacing. They attribute
the increased time scale to ion migration from the reservoir
outside the thin gap between the two charged surfaces in their
apparatus. This transport process, therefore, involves ionic
fluxes that are not solely normal to the electrode surfaces
and is represented as a transmission line model in [20]. We
consider a closed, one-dimensional system, where there is
no transport of ions beyond the gap between the electrodes.
Hence we do not capture this larger time scale.

IV. CONCLUSION

We developed a theory for the dynamic force between
charged surfaces in an electrolyte under a time-dependent
voltage. Our work represents a nonequilibrium generaliza-
tion of the double layer force used in DLVO theory. We
envision applications to electrochemical, colloidal, and bi-
ological problems in which interactions between bodies or
particles with time-dependent surface charges or potentials
are encountered. For example, in the directed assembly of
colloidal particles under an ac field [34–37], a time-dependent
double layer polarization alters the force and, hence, the
interaction between the particles. Further, our work can serve
as a theoretical foundation for new force-based spectroscopy
techniques to analyze electrochemically active surfaces, e.g.,
during charging or discharging of batteries or supercapacitors.
The model problem we have solved could be furthered in a
number of interesting directions. Specifically, one could go
beyond our analysis using ideal, dilute solution theory in pla-
nar geometries under a weak voltage. For instance, steric and
electrostatic correlations between ions in concentrated solu-
tions have been extensively studied in the context of charging
and discharging dynamics [38–40]; it would be interesting to
quantify their impact on dynamic double layer forces. Another
useful direction would be to explore the effect of curvature of
the electrodes [41], since the surface force apparatus in [7]
uses a crossed cylinder geometry. For nonplanar electrodes,

one also has to account for the fluid flow and a hydrodynamic
pressure along with the osmotic pressure considered here.
Recent work regarding rectified electric fields in asymmetric
electrolytes under an oscillatory voltage [42] suggests higher
order contributions to the force beyond the limit of weak
voltages considered here. That is, beyond the weak-voltage
limit the frequency response will contain a host of higher
harmonics in addition to the zeroth and second mode we
consider.
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APPENDIX A: DERIVATION AND SOLUTION OF PNP
EQUATIONS UNDER OSCILLATING VOLTAGE

Here, we derive (1) in the main text. Consider a dilute
binary monovalent electrolyte with unequal ionic diffusivities.
The ionic fluxes are thus given by

j± = −D±

(
∇n± ± n±e

kBT
∇φ

)
, (A1)

where n± is the number concentration of the positive or
negative ions, φ is the electric potential, kB is the Boltzmann
constant, T is the temperature, and e is the charge on a proton.
The species balances are

∂n±
∂t

= −∇ · j±. (A2)

For the planar parallel electrodes considered here, the gra-
dients are present only along the direction perpendicular to
the electrodes (say x). The ionic species balance equations are
thus

∂n+
∂t

= D+

[
∂2n+
∂x2

+ ∂

∂x

(
n+e

kBT

∂φ

∂x

)]
(A3)

and

∂n−
∂t

= D−

[
∂2n−
∂x2

− ∂

∂x

(
n−e

kBT

∂φ

∂x

)]
. (A4)

Note that this is the classical PNP model used in previous
works [24,25]. These equations are linearized in the limit of
small applied voltages, V0/(kBT/e) = ε � 1, where kBT/e
is the thermal voltage, V0 is the applied voltage, and ε is a
perturbation parameter. Thus the ion concentrations are ap-
proximated as a small deviation from their equilibrium value,
n± = neq + εη± + O(ε2). The linearized O(ε) equations are,
from (A3) and (A4),

∂η+
∂t

= D+

(
∂2η+
∂x2

+ neqe

kBT

∂2φ

∂x2

)
(A5)

and

∂η−
∂t

= D−

(
∂2η−
∂x2

− neqe

kBT

∂2φ

∂x2

)
. (A6)

We define the O(ε) charge density, ρ = e(η+ − η−), and the
O(ε) ionic strength, 2I = η+ + η−. To reformulate (A5) and
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(A6) in terms of these newly defined quantities, we consider
the linear combination D− (A5) ± D+ (A6) to obtain

D−
∂η+
∂t

+ D+
∂η−
∂t

= 2D+D−

(
∂2I

∂x2

)
(A7)

and

D−
∂η+
∂t

− D+
∂η−
∂t

= D+D−

(
1

e

∂2ρ

∂x2
+ 2

neqe

kBT

∂2φ

∂x2

)
. (A8)

Using η+ = I + ρ/(2e) and η− = I − ρ/(2e) in the above
equations, and dividing through by 2D+D− we get

(D− + D+)

2D+D−

∂I

∂t
+ (D− − D+)

2D+D−

1

2e

∂ρ

∂t
= ∂2I

∂x2
(A9)

and

(D− − D+)

2D+D−

∂I

∂t
+ (D− + D+)

2D+D−

1

2e

∂ρ

∂t
= 1

2e

∂2ρ

∂x2
+ neqe

kBT

∂2φ

∂x2
.

(A10)

Defining DA = 2D+D−/(D+ + D−) and DF = 2D+D−/

(D− − D+), we have

1

DA

∂I

∂t
+ 1

DF

1

2e

∂ρ

∂t
= ∂2I

∂x2
(A11)

and

1

DF

∂I

∂t
+ 1

DA

1

2e

∂ρ

∂t
= 1

2e

∂2ρ

∂x2
+ neqe

kBT

∂2φ

∂x2
. (A12)

We normalize I with neq, ρ with 2eneq, φ with kBT/e, x with
L, and t with τRC = κ−1L/DA. The normalized equations are

κL
∂ Ĩ

∂ t̃
+ κL

DA

DF

∂ρ̃

∂ t̃
= ∂2 Ĩ

∂ x̃2
(A13)

and

κL
DA

DF

∂ Ĩ

∂ t̃
+ κL

∂ρ̃

∂ t̃
= ∂2ρ̃

∂ x̃2
+ ∂2φ̃

∂ x̃2
. (A14)

Finally, φ̃ is governed by the Poisson equation for electrostat-
ics, whose dimensionless form is given by

∂2φ̃

∂ x̃2
= −κ2L2ρ̃. (A15)

Substituting (A15) into the species balances (A13) and (A14),
we have

κL
∂ Ĩ

∂ t̃
+ κL

DA

DF

∂ρ̃

∂ t̃
= ∂2 Ĩ

∂ x̃2
(A16)

and

κL
DA

DF

∂ Ĩ

∂ t̃
+ κL

∂ρ̃

∂ t̃
= ∂2ρ̃

∂ x̃2
− κ2L2ρ̃, (A17)

which correspond to (1) in the main text. These are solved
with the boundary conditions given by (2).

We first consider an oscillating applied voltage Ṽ =
Ṽ0 cos(ω̃t̃ ), where ω̃ is the angular frequency of oscillations.
To solve (A16) and (A17), we recognize that these are coupled
linear, second order partial differential equations. The Fourier
transform of (A16) and (A17), defined for this case of a
single oscillating frequency as g̃ = 2 Re(g̃1eιω̃t̃ ), where g̃1 is

a complex valued function of x̃ and ω̃, ι = √−1, Re is for the
real part, and g̃ represents ρ̃, Ĩ , or φ̃, yields a set of ordinary
differential equations independent of time given by

∂2ρ̃1

∂ x̃2
= ιω̃κLρ̃1 + κ2L2ρ̃1 + ιω̃κL

DA

DF
Ĩ1,

∂2 Ĩ1

∂ x̃2
= ιω̃κLĨ1 + ιω̃κL

DA

DF
ρ̃1. (A18)

The corresponding potential and flux boundary conditions in
Fourier space are

φ̃1|±1 = ±Ṽ0 (A19)

and (
∂ρ̃

∂ x̃
+ ∂φ̃

∂ x̃

)
±1

= 0,

(
∂ Ĩ

∂ x̃

)
±1

= 0. (A20)

The linearized ordinary differential equations can be writ-
ten as

d2

dx̃2

(
ρ̃1

Ĩ1

)
=

(
κ2L2 + ιω̃κL ιω̃κL DA

DF

ιω̃κL DA
DF

ιω̃κL

)(
ρ̃1

Ĩ1

)
. (A21)

This is of the form u′′ = Au. To decouple the two equations,
we perform an eigenvalue decomposition of the matrix A.
That is, A = PDP−1, where the eigenvalues of A form the
elements of the diagonal matrix D, and the corresponding
eigenvectors form the columns of P and P−1 is the inverse
of P. Thus we have u′′ = PDP−1u. Defining a transformed
variable vector, y = P−1u, we get y′′ = Dy. Since D is a
diagonal matrix, this represents a decoupled set of equations
that are readily solved. The solution in terms of the original
variables is then obtained using the inverse transformation,
Py = u. The eigenvalues and eigenvectors of A are obtained
using

λ2
i = Tr(A) ±

√
[Tr(A)]2 − 4[Det(A)]

2
(A22)

and the corresponding eigenvectors, vi, are

vi =
(

A11−A22±
√

[Tr(A)]2−4[Det(A)]
2A12

1

)
. (A23)

The eigenvalues and eigenvectors are [as given in (7) and (8)
of the main text]

λ2
i = κ2L2

2
+ ιω̃κL ± κ2L2

2

√(
1 − 4ω̃2

κ2L2

D2
A

D2
F

)
(A24)

and

v2

v1
=

1 −
√(

1 − 4ω̃2

κ2L2
D2

A

D2
F

)

1 +
√(

1 − 4ω̃2

κ2L2
D2

A

D2
F

) . (A25)

The solution in terms of the transformed variables y is

y1 = a1 sinh(λ1x̃),

y2 = a2 sinh(λ2x̃). (A26)
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Here, we have invoked antisymmetry due to the applied
voltage being an odd function about the center of the cell.
Transforming back to the original variables gives

u1 = ρ̃1 = v1a1 sinh(λ1x̃) + v2a2 sinh(λ2x̃),

u2 = Ĩ1 = a1 sinh(λ1x̃) + a2 sinh(λ2x̃). (A27)

The potential and potential gradient are calculated from the
above solution using (A15) as

∂φ̃1

∂ x̃
= −κ2L2

(
v1a1

λ1
cosh(λ1x̃) + v2a2

λ2
cosh(λ2x̃)

)
+ c1

(A28)

and

φ̃1 = −κ2L2

(
v1a1

λ2
1

sinh(λ1x̃) + v2a2

λ2
2

sinh(λ2x̃)

)
+ c1x̃ + c2.

(A29)

The values of a1, a2, c1, and c2 are found using the boundary
conditions (A19) and (A20).

APPENDIX B: CALCULATION OF THE DYNAMIC
DOUBLE LAYER PRESSURE

The pressure p̃ is calculated from the solution for the
electric field by invoking mechanical equilibrium

∇ p̃ + ∇ · σ̃E = 0, (B1)

where σE is the electric stress tensor, defined by σE =
ε(∇φ∇φ − 1

2 (∇φ) · (∇φ)I), where I is the identity matrix.
For the one dimensional system considered here, the mechan-
ical equilibrium reduces to

∂ p̃

∂ x̃
= ∂

∂ x̃

[
1

2

(
∂φ̃

∂ x̃

)2]
. (B2)

From the solution of the PNP equations, we have the
potential gradient in Fourier space [as (5) in main text]

∂φ̃1

∂ x̃
= Ṽ0

Q

[
−κ2L2

(
cosh (λ1x̃)

λ1 cosh (λ1)
− λ1

λ2

v2

v1

cosh (λ2x̃)

λ2 cosh (λ2)

)

+
(

λ1 − κ2L2

λ1

)
− λ1

λ2

v2

v1

(
λ2 − κ2L2

λ2

)]
. (B3)

Here,

Q =
[(

λ1 − κ2L2

λ1

)
− λ1

λ2

v2

v1

(
λ2 − κ2L2

λ2

)

+ κ2L2

λ2
1

tanh (λ1) − λ1

λ2

v2

v1

κ2L2

λ2
2

tanh (λ2)

]
. (B4)

The potential gradient can be expressed as

∂φ̃1

∂ x̃
= α1 cosh (λ1x̃) + α2 cosh (λ2x̃) + β, (B5)

where

α1 = −κ2L2Ṽ0

λ1 cosh (λ1)Q
, (B6)

α2 = λ1v2

λ2v1

κ2L2Ṽ0

λ2 cosh (λ2)Q
, (B7)

and

β = Ṽ0

Q

[(
λ1 − κ2L2

λ1

)
− λ1

λ2

v2

v1

(
λ2 − κ2L2

λ2

)]
. (B8)

Since the pressure calculation involves the square of the
potential gradient, we have to convert from Fourier space to
the time domain. For a single frequency response we have

∂φ̃

∂ x̃
= 2 Re

(
∂φ̃1

∂ x̃
eιωt̃

)
=

(
∂φ̃1

∂ x̃
eιω̃t̃ + ∂φ̃∗

1

∂ x̃
e−ιω̃t̃

)
, (B9)

where φ̃∗
1 is the complex conjugate of φ̃1. The square of the

potential gradient is then

(
∂φ̃

∂ x̃

)2

=
(

∂φ̃1

∂ x̃
eιω̃t̃ + ∂φ̃∗

1

∂ x̃
e−ιω̃t̃

)2

= {
[α1 cosh (λ1x̃) + α2 cosh (λ2x̃) + β]eιω̃t̃ + [α∗

1 cosh (λ∗
1x̃) + α∗

2 cosh (λ∗
2x̃) + β∗]e−ιω̃t̃

}2

= [α1 cosh (λ1x̃) + α2 cosh (λ2x̃) + β]2e2ιω̃t̃ + [α∗
1 cosh (λ∗

1x̃) + α∗
2 cosh (λ∗

2x̃) + β∗]2e−2ιω̃t̃

+ 2{[α1 cosh (λ1x̃) + α2 cosh (λ2x̃) + β][α∗
1 cosh (λ∗

1x̃) + α∗
2 cosh (λ∗

2x̃) + β∗]}

= 2 Re

([
α2

1

2
+ α2

2

2
+ β2 + α2

1 cosh (2λ1x̃)

2
+ α2

2 cosh (2λ2x̃)

2
+ 2α1α2 cosh (λ1x̃) cosh (λ2x̃)

+2α1β cosh (λ1x̃) + 2α2β cosh (λ2x̃)

]
e2ιω̃t̃

)
+ 2[α1α

∗
1 cosh (λ1x̃) cosh (λ∗

1x̃) + α2α
∗
2 cosh (λ2x̃) cosh (λ∗

2x̃)

+ α1α
∗
2 cosh (λ1x̃) cosh (λ∗

2x̃) + α2α
∗
1 cosh (λ2x̃) cosh (λ∗

1x̃) + α∗
1 cosh (λ∗

1x̃)β + α1 cosh (λ1x̃)β∗

+ α2 cosh (λ2x̃)β + α∗
2 cosh (λ∗

2x̃)β + ββ∗]. (B10)

This can be written, for brevity, as

(
∂φ̃

∂ x̃

)2

= 2 Re

[(
α2

1

2
+ α2

2

2
+ β2 + γ (x̃)

)
e2ιω̃t̃

]
+ 2[ββ∗ + ν(x̃)], (B11)
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where

γ (x̃) = α2
1 cosh (2λ1x̃)

2
+ α2

2 cosh (2λ2x̃)

2

+ 2α1α2 cosh (λ1x̃) cosh (λ2x̃) + 2α1β cosh (λ1x̃)

+ 2α2β cosh (λ2x̃) (B12)

and

ν(x̃) = [α1α
∗
1 cosh (λ1x̃) cosh (λ∗

1x̃)

+ α2α
∗
2 cosh (λ2x̃) cosh (λ∗

2x̃)

+ α1α
∗
2 cosh (λ1x̃) cosh (λ∗

2x̃)

+ α2α
∗
1 cosh (λ2x̃) cosh (λ∗

1x̃)

+ α∗
1 cosh (λ∗

1x̃)β + α1 cosh (λ1x̃)β∗

+ α2 cosh (λ2x̃)β + α∗
2 cosh (λ∗

2x̃)β]. (B13)

We choose to express the square of the potential gradient in
this way, separating the x-dependent and x-independent parts
to clarify the integration and differentiation in the next steps.
The mechanical equilibrium (B2) gives

p̃ =
∫

x̃

(
∂

∂ x̃

{
Re

[(
α2

1

2
+ α2

2

2
+ β2 + γ (x̃)

)
e2ιω̃t̃

]

+ [ββ∗ + ν(x̃)]

})
dx̃

=
∫

x̃

(
Re

[
dγ

x̃
e2ιω̃t̃

]
+ dν

dx̃

)
dx̃ = Re[γ (x̃)e2ιω̃t̃ ] + ν(x̃) + c.

(B14)

Here c is an integration constant, which we identify as a
“reservoir” pressure, p̃0. This is equivalently the osmotic
pressure in the electrolyte when the surface is uncharged. In
this limit, γ (x̃) = 0 and ν(x̃) = 0. Thus

p̃ − p̃0 = Re[γ (x̃)e2ιω̃t̃ ] + ν(x̃). (B15)

The total force per unit area on the electrode is given by

F̃T = p̃ − p̃0 − 1

2

(
∂φ̃

∂ x̃

)2

. (B16)

Using (B11) and (B15) yields

F̃T = −Re

[(
α2

1

2
+ α2

2

2
+ β2

)
e2ιω̃t̃

]
− [ββ∗], (B17)

where the first term represents the oscillating part of the force
and the second term is the steady, time-averaged value. In
terms of the notations used in the main text, these are

F̃O = −α2
1

2
− α2

2

2
− β2, F̃S = −ββ∗ = −|β|2. (B18)

Substituting for α1, α2, and β, we have the expressions for the
force as given in the main text; namely (10) and (11).

To obtain the step response of the force, the potential
gradient in Laplace space (∂�̃/∂ x̃) is obtained from that in
the Fourier space (∂φ̃1/∂ x̃) by substituting the frequency ιω̃

with the Laplace variable s̃. Thus

∂�̃

∂ x̃
= Ṽ0

Qs

[
−κ2L2

(
cosh

(
λs

1x̃
)

λs
1 cosh

(
λs

1

) − λs
1

λs
2

vs
2

vs
1

cosh
(
λs

2x̃
)

λs
2 cosh

(
λs

2

)
)

+
(

λs
1 − κ2L2

λs
1

)
− λs

1

λs
2

vs
2

vs
1

(
λs

2 − κ2L2

λs
2

)]
. (B19)

Here,

Q =
[(

λs
1 − κ2L2

λs
1

)
− λs

1

λs
2

vs
2

vs
1

(
λs

2 − κ2L2

λs
2

)

+ κ2L2(
λ2

1

)s tanh λs
1 − λs

1

λs
2

vs
2

vs
1

κ2L2(
λs

2

)2 tanh λs
2

]
, (B20)

λs
1 and λs

2 are the eigenvalues of the system of ODEs govern-
ing charge density and ionic strength in Laplace space, and
[vs

1, 1] and [vs
2, 1] are the corresponding eigenvectors. Thus

(
λs

i

)2 = κ2L2

2
+ s̃κL ± κ2L2

2

√(
1 + 4s̃2

κ2L2

D2
A

D2
F

)
(B21)

and

vs
2

vs
1

=
1 −

√(
1 + 4s̃2

κ2L2
D2

A

D2
F

)

1 +
√(

1 + 4s̃2

κ2L2
D2

A

D2
F

) , (B22)

where s̃ = sDAκ/L is the normalized Laplace variable. The
electric potential gradient in Laplace space can be expressed
as

∂�̃

∂ x̃
= αs

1 cosh
(
λs

1x̃
) + αs

2 cosh
(
λs

2x̃
) + βs, (B23)

where

αs
1 = −κ2L2Ṽ0

λs
1 cosh

(
λs

1

)
Qs

, (B24)

αs
2 = λs

1v
s
2

λs
2v

s
1

κ2L2Ṽ0

λs
2 cosh

(
λs

2

)
Qs

, (B25)

and

β = Ṽ0

Qs

[(
λs

1 − κ2L2

λs
1

)
− λs

1

λs
2

vs
2

vs
1

(
λs

2 − κ2L2

λs
2

)]
. (B26)

To obtain the force, we first invert this back to the time
domain. This is not possible to do in closed form; however,
we obtain an asymptotic behavior at long times by taking the
limit of the potential gradient in Laplace space as the Laplace
variable s̃ → 0, and then inverting it to the time domain. This
gives

lim
s̃→0

∂�̃

∂ x̃
= fx cosh (κLx̃)

s̃
− fx cosh (κLx̃)

s̃ + 1/τ̃x

+ fRC

s̃ + 1/τ̃RC
+ fD

s̃ + 1/τ̃D
, (B27)

where

fx = Ṽ0κL cosech (κL), (B28)

fRC = Ṽ0, (B29)
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and

fD = −Ṽ0
3

κL

(
DA

DF

)2

coth (κL). (B30)

Here, fx, fRC, and fD are independent of x. The time scales (normalized by the RC time DA
κ−1L ) are

τ̃x = coth (κL) + tanh(κL)

2
− tanh(κLx̃)

2
+ O

(
1

κL

)
, (B31)

τ̃RC = coth (κL) + O

(
1

κL

)
, (B32)

and

τ̃D = κL

3
+ coth (κL) + O

(
1

κL

)
. (B33)

The inverse Laplace transform of (B27) thus gives the long-time behavior

∂φ̃

∂ x̃
∼ cosh (κLx)

(
fx − fxe−t̃/τ̃x

) + fRCe−t̃/τ̃RC + fDe−t̃/τ̃D . (B34)

The long-time pressure gradient is again calculated using mechanical equilibrium (B2)

∂ p̃

∂ x̃
∼

∫
x̃

1

2

∂

∂ x̃

[
cosh (κLx)

(
fx − fxe−t̃/τ̃x

) + fRCe−t̃/τ̃RC + fDe−t̃/τ̃D
]2

dx̃. (B35)

Thus

∂ p̃

∂ x̃
=

∫
x̃

1

2

∂

∂ x̃

[
1 + cosh 2κL

2

(
fx − fxe−t̃/τ̃x

)2 + (
fRCe−t̃/τ̃RC + fDe−t̃/τ̃D

)2

+ 2
{

cosh (κLx)
(

fx − fxe−t̃/τ̃x
)(

fRCe−t̃/τ̃RC + fDe−t̃/τ̃D
)}]

dx̃. (B36)

We integrate to obtain the long-time pressure. The integration constant is determined similar to the frequency dependent case:

p̃ − p̃0 = cosh(2κL)

2

(
fx − fxe−t̃/τ̃x

)2 + 1

2

(
f 2
x e−2t̃/τ̃x − 2 f 2

x e−t̃/τ̃x
) + 2

[
cosh (κLx)

(
fx − fxe−t̃/τ̃x

)(
fRCe−t̃/τ̃RC + fDe−t̃/τ̃D

)]
.

(B37)

Thus we have the total force,

F̃tot = p̃ − p̃0 − 1

2

(
∂φ̃

∂ x̃

)2

= − f 2
x

4
− 1

2

(
fRCe−t̃/τ̃RC + fDe−t̃/τ̃D

)2
. (B38)

Here the steady equilibrium value of the force is given by

F̃eq = − f 2
x

4
= −Ṽ 2

0

4
κ2L2 cosech2(κL), (B39)

and the dynamic part of the force is

F̃dyn ≡ F̃tot − F̃eq ∼ − 1
2

(
fRCe−t̃/τ̃RC + fDe−t̃/τ̃D

)2
. (B40)

This corresponds to (13) in the main text.
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