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The variational quantum eigensolver (VQE) and its variants, which is a method for finding eigenstates and
eigenenergies of a given Hamiltonian, are appealing applications of near-term quantum computers. Although the
eigenenergies are certainly important quantities which determine properties of a given system, their derivatives
with respect to parameters of the system, such as positions of nuclei if we target a quantum chemistry
problem, are also crucial to analyze the system. Here, we describe methods to evaluate analytical derivatives
of the eigenenergy of a given Hamiltonian, including the excited state energy as well as the ground-state
energy, with respect to the system parameters in the framework of the VQE. We give explicit, low-depth
quantum circuits which can measure essential quantities to evaluate energy derivatives, incorporating with
proof-of-principle numerical simulations. This work extends the theory of the variational quantum eigensolver,
by enabling it to measure more physical properties of a quantum system than before and to explore chemical
reactions.
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I. INTRODUCTION

The variational quantum eigensolver (VQE) has attracted
much attention as a potential application of near-term quan-
tum computers [1]. The VQE is an iterative algorithm to
construct a quantum circuit that outputs eigenstates and
eigenenergy of a Hamiltonian which describes the system
under consideration. Originally, the method was devised for
finding the ground state of a system [1]. It has subsequently
been extended for excited states by several proposals [2–5].
From the generated eigenstates, one can measure its asso-
ciated physical quantities, such as the particle densities and
transition amplitudes between the different eigenstates.

Though eigenenergy and associated particle density are
certainly important quantities, the wave function of a quan-
tum system has valuable information besides those. Quantum
chemistry calculations, which would be one of the most
promising applications of the VQE, often utilize such in-
formation. Among such, we focus on energy derivatives in
this work. Many time-independent physical/chemical prop-
erties can be defined as derivatives of the energy [6–9].
For example, the first derivatives of the energy with respect
to nuclear coordinates give us the forces acting on atoms,
which can be utilized for the task of locating energy extrema
on the potential energy surface (i.e., geometry optimization)
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[10]. The second-order derivatives give the force-constant
matrix that not only helps to locate and verify transition
states but also allows us to compute vibrational frequen-
cies and partition functions within the harmonic approxima-
tion [10,11]. The energy derivatives with respect to external
fields have to do with various spectroscopy: intensities of
infrared and Raman spectroscopy are proportional to the
cross derivatives with respect to vibrational normal modes
and external electric fields [11]; NMR chemical shifts can be
obtained using the cross derivatives with respect to nuclear
spin and magnetic fields [12,13]. Computing such deriva-
tives is a core part of simulations or analysis of molecular
spectra.

A simple way to compute energy derivatives is to use the
finite difference method and calculate them numerically. This
approach, however, suffers from high computational costs as
well as numerical errors and instabilities [7,9]. Say, the num-
ber of energy points needed to evaluate the forces increases
linearly to the number of atoms. This high computational
cost makes the numerical approach impractical in many cases.
Moreover, with near-term quantum devices, where noise is
inevitable, the numerical difference approach would give us
poor results. The other way—analytical approach—is there-
fore vital. The theory and program codes of analytical energy
derivatives indeed support the high practicality (and popu-
larity) of today’s molecular electronic structure theory [9].
Methods to calculate the derivatives of excited state energy on
classical computers has also been widely developed [14–34],
but still suffers from its high computational cost and relatively
low accuracy. The task of computing such derivatives on
quantum computers has been addressed in the traditional
methods which utilize the quantum phase estimation [35], but
not for the VQE.
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In this work, we derive the analytical formulas and explicit
quantum circuits to address the task of measuring the energy
derivatives. More specifically, we describe the methods to
obtain the derivatives of the energy with respect to the system
parameters up to the third order, from which one can extract
the physical properties. We also present a method to extract
the derivatives of excited state energy based on the technique
presented in Refs. [3,4]. The analysis on the computational
cost shows that the analytical differentiation provided in this
work can be more practical than a finite difference approach,
in a sense that one does not need to consider the best step size
to extract the energy derivative information with an optimal
precision. Proof-of-principle numerical simulations are also
performed to verify the correctness of the derived equation
and circuits. The presented methods extend the applicability
of the VQE by enabling it to evaluate more physical properties
than before.

II. VARIATIONAL QUANTUM EIGENSOLVER

Here, we briefly review the algorithm of the VQE. In the
VQE, we construct a parameterized quantum circuit U (θ ) and
the corresponding ansatz state |ψ (θ )〉 = U (θ )|0〉⊗n, where
|0〉⊗n is an initialized n-qubit state and θ = (θ1, . . . , θNθ

) ∈
RNθ is a vector of parameters implemented on the cir-
cuit with Nθ being the number of them. A set of param-
eters θ are variationally optimized so that the expectation
value E (θ ) = 〈ψ (θ )|H |ψ (θ )〉 of a given Hamiltonian H
is minimized. At the optimal point θ = θ∗, one naturally
expects

∂E (θ∗)

∂θa
= 0, (1)

for all a. Let

|∂aψ (θ )〉 = ∂

∂θa
|ψ (θ )〉. (2)

The condition of Eq. (1) reduces to

Re〈ψ (θ∗)|H |∂aψ (θ∗)〉 = 0. (3)

Higher derivatives of the wave function will be denoted by

|∂a∂b · · · ∂cψ (θ )〉 = ∂

∂θa

∂

∂θb
· · · ∂

∂θc
|ψ (θ )〉, (4)

to shorten the notation.
As stated in the introduction, many physical properties of

a quantum system are calculated from the derivative of the
energy with respect to the system parameter in a given Hamil-
tonian. The parameter can be, for example, the coordinates of
atoms or the electric field applied to the system. We denote
such parameters by an Nx-dimensional vector x ∈ RNx . In this
case, both of the Hamiltonian H and the optimal parameter
θ∗ of the wave function at the specific value of x is also
a function of x, which will be denoted by H (x) and θ∗(x),
respectively. Corresponding to the change of this problem
setting, we redefine the energy as,

E (θ, x) = 〈ψ (θ )|H (x)|ψ (θ )〉. (5)

Let the optimal ground-state energy be E∗(x), that is,
E∗(x) = E (θ∗(x), x). In the following sections, we show the

analytical forms of the derivatives such as ∂E∗
∂xi

and ∂2E∗
∂xi∂x j

,
which are the essential quantities for extracting physical prop-
erties of the target system.

III. ANALYTICAL EXPRESSION OF DERIVATIVES

The derivation of the formulas presented in this section
is in Appendix for completeness, or you can also refer to
Ref. [36]. In the following, we use the following notation,

∂

∂θa

∂E (θ∗(x), x)

∂x j
:= ∂

∂θa

∂E (θ, x)

∂x j

∣∣∣∣
θ=θ∗(x)

, (6)

and likewise for terms similar to this. In this manuscript,
the partial derivative symbols are meant to act only on the
term immediately on its right, rather than on all the symbols
appearing to its right.

A. Derivatives of ground-state energy

The analytical expressions for the derivatives of ground-
state energy are the following:

∂E∗(x)

∂xi
= 〈ψ (θ∗(x))|∂H (x)

∂xi
|ψ (θ∗(x))〉, (7)

∂

∂xi

∂E∗(x)

∂x j
=
∑

a

∂θ∗
a (x)

∂xi

∂

∂θa

∂E (θ∗(x), x)

∂x j
+ 〈ψ (θ∗(x))| ∂

∂xi

∂H (x)

∂x j
|ψ (θ∗(x))〉, (8)

∂

∂xi

∂

∂x j

∂E∗(x)

∂xk
=
∑
a,b,c

∂θ∗
a (x)

∂xi

∂θ∗
b (x)

∂x j

∂θ∗
c (x)

∂xk

∂

∂θa

∂

∂θb

∂E (θ∗(x), x)

∂θc
+
∑
a,b

[
∂θ∗

a (x)

∂xi

∂θ∗
b (x)

∂x j

∂

∂θb

∂

∂θa

∂E (θ∗(x), x)

∂xk

+ ∂θ∗
a (x)

∂xk

∂θ∗
b (x)

∂xi

∂

∂θb

∂

∂θa

∂E (θ∗(x), x)

∂x j
+ ∂θ∗

a (x)

∂x j

∂θ∗
b (x)

∂xk

∂

∂θb

∂

∂θa

∂E (θ∗(x), x)

∂xi

]
+
∑

a

[
∂θ∗

a (x)

∂xi

∂

∂θa

∂

∂x j

∂E (θ∗(x), x)

∂xk
+ ∂θ∗

a (x)

∂xk

∂

∂θa

∂

∂xi

∂E (θ∗(x), x)

∂x j
+ ∂θ∗

a (x)

∂x j

∂

∂θa

∂

∂xk

∂E (θ∗(x), x)

∂xi

]
+〈ψ (θ∗(x))| ∂

∂xi

∂

∂x j

∂H (x)

∂xk
|ψ (θ∗(x))〉, (9)
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where we assumed ∂E (θ∗(x),x)
∂θ

= 0. Note that, in general, the
formulas for the dth derivative of E∗(x) contains θ derivatives
up to the dth in the form of ∂q

∂θq
∂d−qE
∂xd−q for q = 1, . . . , d . Also,

Wigner’s (2n + 1) rule [36] ensures that x derivatives of the
optimal parameter, θ∗(x), up to the nth are sufficient for
calculating (2n + 1)th derivative of E∗(x). In other words, for
dth derivative of E∗(x), we only need �d/2�th derivative of
θ∗(x), where �y� is the floor function denoting the greatest
integer less than or equal to y. The term ∂θ∗

a (x)
∂xi

in the above
equation can be calculated by solving the response equation,
which we write down in the next section.

B. Derivatives of optimal parameters

The first and second derivatives of the optimal parameter,
θ∗(x), can be obtained from the following response equation:∑

b

∂

∂θa

∂E (θ∗(x), x)

∂θb

∂θ∗
b (x)

∂xi
= − ∂

∂θa

∂E (θ∗(x), x)

∂xi
, (10)

∑
b

∂

∂θa

∂E (θ∗(x), x)

∂θb

∂

∂xi

∂θ∗
b (x)

∂x j
= −γ (i j)

a (θ∗(x), x), (11)

where

γ (i j)
c =

∑
a,b

∂

∂θc

∂

∂θa

∂E

∂θb

∂θ∗
a

∂xi

∂θ∗
b

∂x j

+ 2
∑

a

∂

∂θc

∂

∂θa

∂E

∂x j

∂θ∗
a

∂xi
+ ∂

∂θc

∂

∂xi

∂E

∂x j
. (12)

Equations (10) and (11) is obtained by taking the x derivative
of Eq. (1), and then exchanging the order of the partial deriva-
tives. By Wigner’s (2n + 1) rule [36], the above equations are
enough to obtain derivatives of the energy up to the fifth order.

IV. MEASUREMENT AND CALCULATION
OF DERIVATIVES OF GROUND STATE

In this section, we describe the methodology for calculat-
ing the derivatives of the ground-state energy, whose analyti-
cal expressions are shown in the previous section, when given
an optimal circuit parameter θ∗(x) at some x that gives the
local minimum of E (θ, x).

A. Notations and assumptions

In the VQE, we target a Hamiltonian which acts on an n-
qubit system and is decomposed into a sum of Pauli strings,
P = {I, X,Y, Z}⊗n, as follows

H (x) =
∑
P∈P

hP(x)P, (13)

where hP(x) ∈ R. hP(x) is assumed to be nonzero only for
poly(n) terms. We also assume that hP(x) is differentiable
to any order. For a quantum chemistry problem, the original
Hamiltonian has the following form:

H (x) =
∑
i, j

hi j (x)c†
i c j +

∑
i, j,k,l

hi jkl (x)c†
i c†

j ckcl , (14)

where c†
i and ci are the fermion creation and annihilation

operators acting on the ith orbital, respectively. Equation (14)

is converted to the form of Eq. (13) by, for example, Jordan-
Wigner or Braviy-Kitaev transformation [37,38]. Note that be-
cause we always work in the second quantization formalism,
the effect of the change of the molecular orbital corresponding
to the change of molecular geometry is totally absorbed in
the coefficients h(x). Therefore, the change of the molecular
orbital does not explicitly appear in the following discussion.

To calculate the energy derivatives of such Hamiltonian,
first of all, we assume that the derivatives of Hamiltonian,
∂H
∂xi

, ∂
∂xi

∂H
∂x j

, and so on, can be calculated by the classical
computer, e.g., using the conventional quantum chemistry. In
other words, we are able to calculate the quantities such as
∂hP (x)

∂xi
and ∂

∂xi

∂hP (x)
∂x j

. For quantum chemisry problems given
in terms of Hartree-Fock orbitals, these calculations corre-
spond to solving the coupled perturbed Hartree-Fock equation
[30,36].

Notice that under this assumption, we only need to con-
sider how to evaluate quantities which involve the differenti-
ation with respect to θ such as ∂

∂θa

∂
∂θb

∂E
∂xi

, because the expec-

tation values such as ∂
∂xi

∂
∂x j

∂E
∂xk

= 〈ψ (θ )| ∂
∂xi

∂
∂x j

∂H (x)
∂xk

|ψ (θ )〉 at
θ = θ∗(x), can be evaluated with the exactly same procedure
as the usual VQE, i.e., we can measure the expectation value
of each Pauli term which appears in ∂

∂xi

∂
∂x j

∂H (x)
∂xk

. After the
measurement of all quantities which appear in Eqs. (7)–(9),
one can compute the energy derivative using a classical com-
puter by summing up the terms.

The parameterized quantum state, |ψ (θ )〉, is constructed
by applying a parameterized unitary matrix, that is, a parame-
terized quantum circuit, U (θ ) to an initialized state; |ψ (θ )〉 =
U (θ )|0〉⊗n. Following [39], we assume U (θ ) to be a product
of unitary matrices each with one parameter,

U (θ ) = UNθ

(
θNθ

) · · ·U2(θ2)U1(θ1). (15)

We define each unitary Ua(θa) to be generated by a generator
Ga as Ua = eiθaGa , which can be decomposed into a sum of
Pauli strings;

Ga =
∑

μ

ga,μPa,μ, (16)

where ga,μ ∈ R and Pa,μ ∈ P . We often use this form of
parametrized quantum circuits, for example see Refs. [40–43].

B. Overview of the algorithm

The presented algorithm in this work for evaluating the dth
derivative is the following: (1) perform the VQE and obtain
the optimal parameter θ∗(x); (2) compute derivatives of the
Hamiltonian, ∂qH (x)

∂xq , for q = 1, . . . , d on a classical computer;
(3) evaluate x derivatives of E , ∂qE

∂xq , for q = 1, . . . , d at
θ = θ∗(x) by the method described above (Sec. IV A); (4)
evaluate terms involving differentiations with respect to θ ,
∂q

∂θq
∂d−qE
∂xd−q and ∂qE

∂θq , for q = 1, . . . , d at θ = θ∗(x) on a quantum
device by the method described in the following sections
(Secs. IV C–IV E); (5) solve the response equations to obtain
∂qθ∗
∂xq for q = 1, . . . , �d/2� (for d � 3, solving Eq. (10) suf-

fices); and (6) substitute all terms into Eqs. (7)–(9) to obtain
the energy derivatives.

Let us recall NH and Nθ be the number of terms in the target
Hamiltonian and the number of the VQE parameters. The cost
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(a)

(b)

FIG. 1. Quantum circuit to evaluate ∂

∂θa

∂

∂θb
E (θ∗(x), x). Ua:b = Ua · · ·Ub+1Ub. (a) Ancilla-based approach. This circuit is a variant of the one

presented in Ref. [39]. In the figure, Zanc is the Pauli Z operator acting only on the ancilla qubit, and s ∈ {0, 1}. The expectation value of the
observable Zanc ⊗ Q := ZancQ is obtained by sampling it repeatedly. See Eq. (22) for detailed procedure to obtain the derivative. (b) Low-depth
version of (a), derived with the strategy presented in Ref. [45]. In the figure, R±

a,μ = exp(±iπPa,μ/4). See Eq. (23) for detailed procedure.

to evaluate dth derivatives by the above algorithm is roughly
O(NH Nd

θ ) when we ignore the cost of the task performed on a
classical computer. This is because the most time-consuming
part of the algorithm is steps 3 and 4 on a quantum computer,
which take O(NH Nd

θ ) as shall be clear in Secs. IV C–IV E
and V.

C. Measurement of ∂
∂θa

∂E
∂θb

The key quantities for evaluating ∂
∂xi

∂E∗
∂x j

and higher-order

derivatives are ∂
∂θa

∂
∂θb

· · · ∂E
∂θc

and ∂
∂θa

∂
∂θb

· · · ∂
∂θc

∂E
∂xi

. Note that

the first-order derivative, ∂E
∂θa

can be evaluated by the method

presented in Ref. [44]. First, we show how to measure ∂
∂θa

∂E
∂θb

.

A detailed expression of ∂
∂θa

∂E
∂θb

is

∂

∂θa

∂E (θ∗(x), x)

∂θb
= 2Re[〈∂a∂bψ (θ∗(x))|H (x)|ψ (θ∗(x))〉 + 〈∂aψ (θ∗(x))|H (x)|∂bψ (θ∗(x))〉]. (17)

|∂aψ (θ )〉 can be expressed as

|∂aψ (θ )〉 = i
∑

μ

ga,μUN (θN ) · · · Pa,μUa(θa) · · ·U2(θ2)U1(θ1)|0〉⊗n, (18)

and |∂a∂bψ (θ )〉 is

|∂a∂bψ (θ )〉 = −
∑
μ,ν

ga,μgb,νUN (θN ) · · · Pa,μUa(θa) · · · Pb,νUb(θb) · · ·U2(θ2)U1(θ1)|0〉⊗n. (19)

For convenience, we define

|φ(a,μ),(b,ν),···(c,ρ)(θ )〉 := UN (θN ) · · · (iPa,μ)Ua(θa) · · · (iPb,ν )Ub(θb) · · · (iPc,ρ )Uc(θc) · · ·U1(θ1)|0〉⊗n. (20)

Then,

∂

∂θa

∂E (θ∗(x), x)

∂θb
= 2

∑
μ,ν

∑
Q∈P

hQ(x)ga,μgb,νRe[〈φ(a,μ),(b,ν)(θ
∗(x))|Q|ψ (θ∗(x))〉 + 〈φ(a,μ)(θ

∗(x))|Q|φ(b,ν)(θ
∗(x))〉]. (21)

In Fig. 1(a), we show quantum circuits for evaluation of each of the terms in the above equation, which is a variant of the
circuit presented in Ref. [39]. By sampling the observable Zanc ⊗ Q of the circuit in Fig. 1(a) and evaluating the expectation
value 〈Zanc ⊗ Q〉, each term of Eq. (21) can be calculated by

Re[〈φ(a,μ),(b,ν)(θ
∗(x))|Q|ψ (θ∗(x))〉] = 〈ZancQ〉0,(a,μ),(b,ν),

Re[〈φ(a,μ)(θ
∗(x))|Q|φ(b,ν)(θ

∗(x))〉] = 〈ZancQ〉1,(a,μ),(b,ν). (22)

The strategy proposed in Ref. [45] gives low-depth versions of the circuits to measure the same quantities. We show the
low-depth quantum circuit in Fig. 1(b). From the measurement of 〈Q〉(a,μ,±),(b,ν,±) with the circuit in Fig. 1(b), we can evaluate
each term of Eq. (21) by the following formula:

2Re[〈φ(a,μ),(b,ν)(θ
∗(x))|Q|ψ (θ∗(x))〉 + 〈φ(a,μ)(θ

∗(x))|Q|φ(b,ν)(θ
∗(x))〉]

= 〈Q〉(a,μ,+),(b,ν,+) + 〈Q〉(a,μ,−),(b,ν,−) − 〈Q〉(a,μ,−),(b,ν,+) − 〈Q〉(a,μ,+),(b,ν,−). (23)
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(a)

(b)

FIG. 2. Quantum circuit to evaluate ∂

∂θa

∂

∂θb

∂

∂θc
E (θ∗(x), x). For the definition of the notations, refer to Fig. 1. (a) Ancilla-based approach.

See Eq. (25) for detailed procedure. (b) Low-depth version of (a). See Eq. (26) for detailed procedure.

Notice that the low-depth version doubles the number of the circuit runs, and therefore, if the device can execute the circuit in
Fig. 1(a) while maintaining sufficient overall fidelity, it is advantageous to utilize Fig. 1(a) and Eq. (22). Otherwise the low-depth
version should be used to obtain meaningful result.

D. Evaluation of ∂
∂θa

∂
∂θb

∂E
∂θc

Here, we show how to evaluate ∂
∂θa

∂
∂θb

∂E
∂θc

. It should be clear how one can extend the method to the order higher than the third.
∂

∂θa

∂
∂θb

∂E
∂θc

can be written down as

∂

∂θa

∂

∂θb

∂E (θ∗(x), x)

∂θc

= 2
∑
μ,ν,ρ

∑
Q∈P

hQ(x)ga,μgb,νgc,ρRe[〈φ(a,μ),(b,ν),(c,ρ)(θ
∗(x))|Q|ψ (θ∗(x))〉 + 〈φ(a,μ),(b,ν)(θ

∗(x))|Q|φ(c,ρ)(θ
∗(x))〉

+ 〈φ(a,μ),(c,ρ)(θ
∗(x))|Q|φ(b,ν)(θ

∗(x))〉 + 〈φ(b,ν),(c,ρ)(θ
∗(x))|Q|φ(a,μ)(θ

∗(x))〉]. (24)

Each term can be evaluated with the circuit in Fig. 2(a):

Re[〈φ(a,μ),(b,ν),(c,ρ)(θ
∗(x))|Q|ψ (θ∗(x))〉] = 〈ZancQ〉(a,μ,0),(b,ν,0),(c,ρ,0),

Re[〈φ(a,μ),(b,ν)(θ
∗(x))|Q|φ(c,ρ)(θ

∗(x))〉] = 〈ZancQ〉(a,μ,0),(b,ν,0),(c,ρ,1),

Re[〈φ(a,μ),(c,ρ)(θ
∗(x))|Q|φ(b,ν)(θ

∗(x))〉] = 〈ZancQ〉(a,μ,0),(b,ν,1),(c,ρ,0),

Re[〈φ(b,ν),(c,ρ)(θ
∗(x))|Q|φ(a,μ)(θ

∗(x))〉] = 〈ZancQ〉(a,μ,1),(b,ν,0),(c,ρ,0). (25)

The circuits can also be reduced to the low-depth version using the same strategy [45]. The low-depth circuit for ∂
∂θa

∂
∂θb

∂E
∂θc

is
shown in Fig. 2(b). The circuit can evaluate each term of the summation by the following formula:

−2Re[〈φ(a,μ),(b,ν),(c,ρ)(θ
∗(x))|Q|ψ (θ∗(x))〉 + 〈φ(a,μ),(b,ν)(θ

∗(x))|Q|φ(c,ρ)(θ
∗(x))〉

+ 〈φ(a,μ),(c,ρ)(θ
∗(x))|Q|φ(b,ν)(θ

∗(x))〉 + 〈φ(b,ν),(c,ρ)(θ
∗(x))|Q|φ(a,μ)(θ

∗(x))〉]
= 〈Q〉(a,μ,+),(b,ν,+),(c,ρ,+) − 〈Q〉(a,μ,−),(b,ν,−),(c,ρ,−) + 〈Q〉(a,μ,−),(b,ν,−),(c,ρ,+) + 〈Q〉(a,μ,−),(b,ν,+),(c,ρ,−)

+〈Q〉(a,μ,+),(b,ν,−),(c,ρ,−) − 〈Q〉(a,μ,−),(b,ν,+),(c,ρ,+) − 〈Q〉(a,μ,+),(b,ν,−),(c,ρ,+) − 〈Q〉(a,μ,+),(b,ν,+),(c,ρ,−). (26)

Notice the pattern in the signs associating
〈Q〉(a,μ,±),(b,ν,±),(c,ρ,±), that is, the signs are determined
in the parity of ± appearing in the subscript. Higher-order
derivatives of E with respect to θ can be evaluated by
following the strategy described in this and the previous
section.

Similar to the previous case, the low-depth version doubles
the number of the circuit runs, and therefore, the same argu-
ment about the tradeoff between the noise and the number of
the circuit runs also applies in this case.

E. Evaluation of ∂
∂θa

∂
∂θb

· · · ∂
∂θc

∂E
∂xi

∂
∂θa

∂
∂θb

· · · ∂
∂θc

∂E
∂xi

can be measured with the same protocol
as described in the previous sections; one can substitute hQ

with ∂hQ

∂xi
. With this substitution, Eqs. (21) and (24) give us the

analytical formula for ∂
∂θa

∂
∂θb

· · · ∂
∂θc

∂E
∂xi

, where each term in the
summation can be evaluated with the same procedure. Also,
∂

∂θa

∂
∂xi

∂E
∂xk

, which appears in Eq. (9), can be measured using the
same strategy.

V. COMPUTATIONAL COST

Here, we give a comparison between the presented algo-
rithm and the numerical differentiation to take dth energy
derivatives. We specifically discuss the cost for each step
in the overall algorithm presented in Sec. IV B for quantum
chemistry problem, where a problem Hamiltonian and its
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derivatives always has O(n4) terms as expressed by Eq. (14),
as it is the main target of the proposed algorithm. This analysis
should be easy to be extended to more general cases. We
assume that classical computational cost involved in algo-
rithms is much smaller than the quantum ones and thus can
be ignored. The classical computation required to perform the
proposed protocol is to calculate the derivative of the Hamilto-
nian (and the Hamiltonian itself) which formally takes O(n5)
computational time [9,36] for each ∂H

∂xi
, ∂

∂xi

∂H
∂x j

, · · · . Note that,
if we are only interested in evaluating analytical derivative of
the Hartree-Fock energy, which is not the case considering our
algorithm, it can be reduced to O(n2) [46]. We believe that,
although the time required to estimate the expectation value
of the Hamiltonian by repeatedly running the NISQ devices
takes the order of O(n4), the classical computation performed
at the level of some tens or hundreds of qubits is much faster
than the time used by the NISQ device by a large constant
prefactor ignored in the order notation.

First, we ignore the cost of performing the VQE (step 1),
since both of the numerical differentiation and the presented
algorithm need this step. Steps 2, 5, and 6 is merely classical,
and therefore, we also ignore the cost for this part. Step
3 of the presented algorithm requires us to run a quantum
computer O(n4/ε2) times to estimate each term up to an addi-
tional error of ε. For step 4, it takes O(n4∑d−1

k=0 (Nd−k
θ )/ε2) =

O(n4Nd
θ /ε2) runs. Note that even for the calculation of the

terms involving x- and θ -differentiation a the same time,
such as ∂

∂θa

∂E
∂xi

, we only need to perform measurement of the

θ -derivatives of each term, such as ∂
∂θa

〈ψ (θ )|c†
i c†

j ckcl |ψ (θ )〉,
in the Hamiltonian on the quantum device and then com-
bine them by

∑
i jkl

∂hi jkl (x)
∂x

∂
∂θa

〈ψ (θ )|c†
i c†

j ckcl |ψ (θ )〉 where x-
differentiated h(x) is computed classically. Therefore Nx does
not appear in the number of NISQ runs. Overall, the cost for
the quantum part of the computation scales as O(n4Nd

θ /ε2).
In this simplified analysis, we ignored the cost caused by
the condition number of the Hessian matrix, { ∂E

∂θa∂θb
}, which

depends highly on the ansatz circuit. See Appendix C for a
detailed analysis of the error.

Let us compare this cost against the numerical differentia-
tion. More specifically, we consider the case of evaluating the
second derivative by the formula,

∂2E∗(x)

∂x2
i

≈ E∗(x + h) + E∗(x − h) − 2E∗(x)

h2
, (27)

where h > 0. Let Ẽ∗(x) be the estimate of E∗(x) obtained by
measuring the state |ψ (θ∗(x))〉. If |Ẽ∗(x) − E∗(x)| � εE , the
precision of Eq. (27) is

∣∣∣∣∂2E∗(x)

∂x2
i

− Ẽ∗(x + h) + Ẽ∗(x − h) − 2Ẽ∗(x)

h2

∣∣∣∣
� O

(
h2

∣∣∣∣∂4E

∂x4
i

∣∣∣∣)+ O(εE/h2). (28)

See Appendix C 2 for a detailed analysis. For classical com-
putation where the source of εE is mainly the round-off error,
the second term of the right-hand side is usually negligibly

small for a decent h. On the other hand, for the VQE, this
term is the leading factor for the precision, since Ẽ∗(x) has to
be calculated by sampling. To achieve |Ẽ∗(x) − E∗(x)| � εE

with high probability, we need to run the quantum computer
for O[(

∑
P |hP|)2

/ε2
E ] times (Appendix C). Therefore, if we

want to achieve the precision of ε at least for O(εE/h2) term,
we need O[(

∑
P |hP|)2

/(ε2h4)] samples from |ψ (θ∗(x))〉, and
overall cost is O[n4N2

x (
∑

P |hP|)2
/(ε2h4)]. h4 factor, which

is not present in the analytical differentiation, makes the
scaling of the finite different approach worse. Furthermore,
O(h2| ∂4E

∂x4
i
|) term makes the computation somewhat unreliable,

since we do not know the value of ∂4E
∂x4

i
a priori. In practice,

we would be forced to try some different h to certify that the
computation is correct. On the other hand, in the analytical
differentiation approach, we can estimate the error bounds
from the measured terms, for example, by estimating the
condition number of the hessian matrix, { ∂E

∂θa∂θb
}.

VI. DERIVATIVES OF EXCITED STATE ENERGY

The generation of excited states can be a powerful applica-
tion of the VQE, because the classical computation, despite
the recent significant improvement in the theory and the
computational power, still suffers in the calculation of them
[47]. Among the several proposals [2–5] to generate excited
states with the VQE, we adopt the one proposed in Refs. [3,4]
to compute the derivatives of the excited state energy.

The algorithm [3,4] works as follows. First, we find the
ground state of the given Hamiltonian H0(x), which we denote
by |ψ (0)(θ (0)(x))〉, where θ (0)(x) is the optimal parameter for
the ground state (θ∗(x) in the previous sections). Then, we
iteratively define a Hamiltonian Hr (x) for r = 1, 2, . . . as

Hr (x) := H0(x) +
r−1∑
s=0

βs|ψ (s)(θ (s)(x))〉〈ψ (s)(θ (s)(x))|,

(29)

where |ψ (r)(θ (r)(x))〉 is the ground state of Hr (x). If βs is
sufficiently large, each Hr (x) has rth excited state of the
original Hamiltonian, H0(x), as its ground state. Therefore,
by finding the ground state of each Hr (x), one can generate
the series of excited states of H0(x). We assume |ψ (r)(θ )〉 =
U (r)(θ )|0〉, where U (r)(θ ) has the same structure as U (θ )
in previous sections In this algorithm, it is also assumed
that we have a device which can measure the magnitude of
overlap between |ψ (r)(θ )〉 and |ψ (s)(ϕ)〉, that is, we assume
we can measure |〈ψ (r)(θ )|ψ (s)(ϕ)〉|2. Let the expectation
value of Hr (x) with respect to the state |ψ (r)(θ )〉 be Er (θ, x);
Er (θ, x) = 〈ψ (r)(θ )|Hr (x)|ψ (r)(θ )〉. We define the optimal en-
ergy by E∗

r (x) = Er (θ (r)(x), x).

The task is to compute the derivatives such as ∂2E∗
r

∂xi∂x j
. Since

E∗
r is the ground-state energy for Hr , Eqs. (7)–(9) can be

adapted for this task. The only difference from that of the
actual ground state is that the derivative of the Hamiltonian,
such as ∂2Hr

∂xi∂x j
, cannot be computed classically. For example,
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the expression of the first derivative of the Hamiltonian is

∂Hr

∂xi
(x) = ∂H0

∂xi
(x) +

r−1∑
s=0

βs

(
∂|ψ (s)(θ (s)(x))〉

∂xi
〈ψ (s)(θ (s)(x))| + H.c.

)

= ∂H0

∂xi
(x) +

r−1∑
s=0

∑
a

βs
∂θ (s)

a

∂xi
(x)(|∂aψ

(s)(θ (s)(x))〉〈ψ (s)(θ (s)(x))| + H.c.). (30)

In the analytical expression for ∂E∗
r

∂xi
[Eq. (7)], ∂Hr

∂xi
(x) appears

as the expectation value with respect to |ψ (r)(θ (r)(x))〉;
〈ψ (r)(θ (r)(x))| ∂Hr

∂xi
(x)|ψ (r)(θ (r)(x))〉. On the other hand,

in the expression of ∂2E∗
r

∂xi∂x j
[Eq. (8)], it appears as

Re[〈ψ (r)(θ (r)(x))| ∂Hr
∂xi

(x)|∂aψ
(r)(θ (r)(x))〉]. The quantities

that cannot be computed classically in Eqs. (7) to (9) are the
terms which involves the inner product between the states,
such as Re[〈ψ (r)(θ (r)(x))|∂aψ

(s)(θ (s)(x))〉〈ψ (s)(θ (s)(x))|ψ (r)

(θ (r)(x))〉]. However, notice that if the condition
〈ψ (r)(θ (r)(x))|ψ (s)(θ (s)(x))〉 = 0 holds for all x, which we
naturally expect at the optimal parameter, we obtain by differ-
entiating with respect to x the both hand side of the equation,

∑
a

∂θ (s)
a

∂xi
(x)Re[〈ψ (r)(θ (r)(x))|∂aψ

(s)(θ (s)(x))〉

× 〈ψ (s)(θ (s)(x))|ψ (r)(θ (r)(x))〉] = 0. (31)

We can therefore ignore the inner-product terms for the
evaluation of derivatives of excited state energy and utilize
the same procedure as the ground-state energy in this
case. Likewise, the inner-product terms that appear in
the higher-order derivatives can also be ignored when the
orthogonality condition 〈ψ (r)(θ (r)(x))|ψ (s)(θ (s)(x))〉 = 0 is
satisfied. The so-called subspace search VQE method [2],
which guarantees the orthogonality condition of the resultant
states, can be advantageous to fulfill such condition.

VII. NUMERICAL SIMULATION

We provide proof-of-principle numerical simulations using
the electronic Hamiltonian of the hydrogen molecule. The
Hamiltonians are calculated with the open source library
PYSCF [48] and OPENFERMION [49]. The simulation of quan-
tum circuits are performed with QULACS [50].

FIG. 3. Ansatz used in simulations. Rx and Ry is single-qubit x
and y rotation gate, respectively. The parameters θ are implemented
as rotation angles of Rx and Ry.

A. Approximation of the potential energy surface

First, we perform a simulation of the VQE and the methods
described in Sec. IV with the Hamiltonian of a hydrogen
molecule, calculated with the STO-3G basis set, at the bond-
ing distance r = 0.735 Å. We use the ansatz circuit shown in
Fig. 3, which is a variant of so-called hardware efficient circuit
[41]. The result of the simulation is shown as Fig. 4. The
ansatz used in this simulation could achieve the exact ground
state, which is called full configuration interaction (Full-CI)
state in the context of chemistry, and therefore, we could draw
the harmonic and the third-order approximation of the Full-CI
energy as shown in Fig. 4. The harmonic approximation can
be used to calculate the vibrational spectra of a molecule,
and the third-order approximation can be utilized for more
accurate description of the vibration.

B. Continuous determination of the optimal parameter

The response equation, Eq. (10), can be used to determine
the optimal paramter θ∗(x) from the one at the slightly differ-
ent system parameter, θ∗(x + δx), that is, to the first order,

θ∗(x + δx) ≈ θ∗(x) + ∂θ∗

∂x
(x)δx, (32)

holds up to the additive error of O(δx2). One can iteratively
use the equation above, which resembles the Euler method,
to obtain the optimal parameter θEuler (x) ≈ θ∗(x) from some
θ∗(x0) in a range of x around x0 where the error term is
sufficiently small.

FIG. 4. The harmonic and third-order approximation of the en-
ergy curve of the hydrogen molecule at the bonding distance, deter-
mined by the simulation of the VQE and the proposed method.
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FIG. 5. The evolution of the energy expectation value when the
circuit parameters are evolved according to Eq. (32), starting from
the optimized parameter at interatomic distance of 1.5 Å.

We demonstrate this parameter update in Fig. 5, by plotting
the energy expectation value of |ψ (θEuler (r))〉 where θEuler (r)
is determined with the iterative use of Eq. (32), starting from
the optimal parameter at r = 1.5 Å with the step size δr =
0.02 Å. Equation (32) resembles the Euler method, therefore
we refer to the update of θ according to Eq. (32) as so in Fig. 5.
It can be seen that in the range where r is sufficiently close
to the optimized point, r = 1.5 Å, the parameter determined
from Eq. (32) is almost optimal, but as r goes far from the
optimized point, they deviate fast from the optima. This is
because, as the error of the each update accumulates, the state
becomes a nonvariational state, that is, ∂E

∂θ

= 0, which results

in the breakdown of the response equation, Eq. (10), where we
assumed ∂E

∂θ
= 0. This method should be useful for drawing

potential energy surfaces using the VQE, because it can
reduce the time for the optimization of the circuit parameter
by predicting the optimal parameter from the one determined
with the slightly different system. We believe it can also be
combined with the parameter interpolation approach proposed
in Ref. [51].

VIII. CONCLUSION

We have described a methodology for computing the
derivatives of the ground state and the excited state energy.
We have shown the straight-forwardly constructed quantum
circuit to measure the quantities necessary for the calculation
of energy derivatives, and also the low-depth version of the
circuit. The low-depth protocol for the measurement makes
them suitable for the use in NISQ devices. We also performed
numerical simulations of the proposed method, which vali-
dates the correctness. This work enables to extract the physical
properties of the quantum system under investigation, thus
widening the application range of the NISQ devices.

Note added. During the final revision of this paper, we have
become aware of recent article [52] which also describes a
methodology for evaluating energy derivatives. Their work
is based on perturbative sum-over-state approach and differs
from our methods which provides a way to evaluate analytic
derivatives.
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APPENDIX A: DERIVATIVE OF THE OPTIMAL
PARAMETER

We derive the expression for the derivatives of the optimal
parameter, such as ∂θ∗

a (x)
∂xi

, by Taylor expansion. Assume that
at x = α, we know the optimal parameter θ∗(α). We perform
Taylor expansion of |ψ (θ∗(x))〉 and H (x) around α. For H (x),
we obtain

H (α + x) = H (α) +
∑

i

∂H (α)

∂xi
xi + 1

2

∑
i

∂

∂xi

∂H (α)

∂x j
xix j

+ · · · . (A1)

For |ψ (θ∗(x))〉, we can expand it as follows:

|ψ (θ∗(α + x))〉 =
∣∣∣∣∣ψ
(

θ∗(α) +
∑

i

∂θ∗(α)

∂xi
xi + 1

2

∑
i, j

∂

∂xi

∂θ∗(α)

∂x j
xix j + · · ·

)〉

= |ψ (θ∗(α))〉 +
∑

a

|∂aψ (θ∗(α))〉
⎡⎣∑

i

∂θ∗
a (α)

∂xi
xi + 1

2

∑
i, j

∂

∂xi

∂θ∗
a (α)

∂x j
xix j + · · ·

⎤⎦
+ 1

2

∑
a,b

|∂a∂bψ (θ∗(α))〉
⎡⎣∑

i

∂θ∗
a (α)

∂xi
xi + 1

2

∑
i, j

∂

∂xi

∂θ∗
a (α)

∂x j
xix j + · · ·

⎤⎦
×
⎡⎣∑

i

∂θ∗
b (α)

∂xi
xi + 1

2

∑
i, j

∂

∂xi

∂θ∗
b (α)

∂x j
xix j + · · ·

⎤⎦+ · · · .

013129-8



THEORY OF ANALYTICAL ENERGY DERIVATIVES … PHYSICAL REVIEW RESEARCH 2, 013129 (2020)

When grouped by the order of x,

|ψ (θ∗(α + x))〉 = |ψ (θ∗(α))〉 +
∑
a,i

∂θ∗
a (α)

∂xi
|∂aψ (θ∗(α))〉xi + 1

2

∑
i, j

⎡⎣∑
a

∂

∂xi

∂θ∗
a (α)

∂x j
|∂aψ (θ∗(α))〉

+
∑
a,b

∂θ∗
a (α)

∂xi

∂θ∗
b (α)

∂x j
|∂a∂bψ (θ∗(α))〉

⎤⎦xix j + 1

6

∑
i, j,k

⎡⎣∑
a

∂

∂xi

∂

∂x j

∂θ∗
a (α)

∂xk
|∂aψ (θ∗(α))〉

+ 3
∑
a,b

∂

∂xi

∂θ∗
a (α)

∂x j

∂θ∗
b (α)

∂x j
|∂a∂bψ (θ∗(α))〉 +

∑
a,b,c

∂θ∗
a (α)

∂x j

∂θ∗
b (α)

∂x j

∂θ∗
c (α)

∂xk
|∂a∂b∂cψ (θ∗(α))〉

⎤⎦xix jxk + · · · .

(A2)

We can derive a similar expression for |∂aψ (θ∗(α + x))〉. Now, we use the condition of Eq. (1) to derive the expression of the
derivatives of θ∗(α). Plugging Eqs. (A1) and (A2) into Eq. (1) and imposing the coefficient of each order in x to be zero, we get
the analytical expression for the derivatives of θ∗(α). In the following two sections, we derive the expression for the first and
second derivatives of θ∗(α).

1. First derivative

For the first order in x, we get

Re

[∑
a

(〈∂bψ (θ∗(α))|H (α)|∂aψ (θ∗(α))〉 + 〈ψ (θ∗(α))|H (α)|∂b∂aψ (θ∗(α))〉)
∂θ∗

a (α)

∂xi
+ 〈∂bψ (θ∗(α))|∂H (α)

∂xi
|ψ (θ∗(α))〉

]
= 0.

(A3)

Note that the first term of Eq. (A3) includes the Hessian of E (θ, x), that is,

∂

∂θb

∂E (θ∗(α), α)

∂θa
= 2Re[(〈∂bψ (θ∗(α))|H (α)|∂aψ (θ∗(α))〉 + 〈ψ (θ∗(α))|H (α)|∂b∂aψ (θ∗(α))〉)]. (A4)

Also, notice that

∂

∂θb

∂E (θ, x)

∂xi
= 2Re

[
〈∂bψ (θ )|∂H

∂xi
(x)|ψ (θ )〉

]
. (A5)

We define ∇d
θ

∂E
∂xi

likewise. Finally, we obtain∑
a

∂

∂θb

∂E (θ∗(α), α)

∂θa

∂θ∗
a (α)

∂xi
= − ∂

∂θb

∂E (θ∗(x), x)

∂xi
, (A6)

which is Eq. (10) of the main text. Note that we expect the matrix ∂
∂θb

∂E (θ∗(α),α)
∂θa

to be positive definite because θ∗(α) is a local

minimum, and thus Eq. (A6) is solvable to obtain ∂θ∗
a (α)
∂xi

.

2. Second derivative

The second derivative, ∂
∂xi

∂θa
∂x j

, is derived from the second order in x of Eq. (1). We have, from Eq. (1), for all i, j, and c,

Re

⎡⎣1

2

∑
a,b

∂θ∗
a (α)

∂xi

∂θ∗
b (α)

∂x j
(〈∂cψ (θ∗(α))|H (α)|∂a∂bψ (θ∗(α))〉 + 〈∂a∂b∂cψ (θ∗(α))|H (α)|ψ (θ∗(α))〉

+ 〈∂a∂cψ (θ∗(α))|H (α)|∂bψ (θ∗(α))〉 + 〈∂b∂cψ (θ∗(α))|H (α)|∂aψ (θ∗(α))〉)

+ 1

2

∑
a

∂

∂xi

∂θ∗
a (α)

∂x j
(〈∂cψ (θ∗(α))|H (α)|∂aψ (θ∗(α))〉 + 〈∂a∂cψ (θ∗(α))|H (α)|ψ (θ∗(α))〉)

+
∑

a

∂θ∗
a (α)

∂x j

(
〈∂cψ (θ∗(α))|∂H (α)

∂x j
|∂aψ (θ∗(α))〉 + 〈∂a∂cψ (θ∗(α))|∂H (α)

∂x j
|ψ (θ∗(α))〉

)

+ 1

2
〈∂cψ (θ∗(α))| ∂

∂xi

∂H (α)

∂x j
|ψ (θ∗(α))〉

⎤⎦ = 0. (A7)
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∂
∂θa

∂
∂θb

∂E
∂θc

, ∂
∂θa

∂E
∂θb

can be used to greatly simplify the above equation, which gives us

1

4

∑
a,b

∂θ∗
a (α)

∂xi

∂θ∗
b (α)

∂x j

∂

∂θc

∂

∂θa

∂E (θ∗(α), α)

∂θb
+ 1

4

∑
a

∂

∂xi

∂θ∗
a (α)

∂x j

∂

∂θc

∂E (θ∗(α), α)

∂θa

+ 1

2

∑
a

∂θ∗
a (α)

∂xi

∂

∂θc

∂

∂θa

∂E (θ∗(α), α)

∂x j
+ 1

2
Re

[
〈∂cψ (θ∗(α))| ∂

∂xi

∂H (α)

∂x j
|ψ (θ∗(α))〉

]
= 0. (A8)

This is equivalent to Eq. (11).

APPENDIX B: DERIVATIVES OF THE GROUND-STATE ENERGY

1. First derivative

The first derivative of the energy is calculated as

∂E∗

∂xi
(x) = ∂

∂xi
〈ψ (θ∗(x))|H (x)|ψ (θ∗(x))〉,

= 2Re

[
〈ψ (θ∗(x))|H (x)

∂|ψ (θ∗(x))〉
∂xi

]
+ 〈ψ (θ∗(x))|∂H

∂xi
(x)|ψ (θ∗(x))〉,

= 2
∑

a

∂θ∗
a (x)

∂xi
Re[〈ψ (θ∗(x))|H (x)|∂aψ (θ∗(x))〉] + 〈ψ (θ∗(x))|∂H

∂xi
(x)|ψ (θ∗(x))〉,

and first term of the above equation vanishes by Eq. (1) of the main text. Thus we get

∂E∗

∂xi
(x) = 〈ψ (θ∗(x), x)|∂H

∂xi
(x)|ψ (θ∗(x), x)〉, (B1)

which is Eq. (7) of the main text.

2. Second derivative

Here, we derive the expression for the second derivative:

∂

∂xi

∂E∗

∂x j
(x) = ∂

∂xi
〈ψ (θ∗(x))|∂H

∂x j
(x)|ψ (θ∗(x))〉

= 2Re

[
〈ψ (θ∗(x))|∂H

∂x j
(x)

∂|ψ (θ∗(x))〉
∂xi

]
+ 〈ψ (θ∗(x))| ∂

∂xi

∂H

∂x j
(x)|ψ (θ∗(x))〉

= 2
∑

a

Re

[
〈ψ (θ∗(x))|∂H

∂x j
(x)|∂aψ (θ∗(x))〉

]
∂θ∗

a

∂xi
(x) + 〈ψ (θ∗(x))| ∂

∂xi

∂H

∂x j
(x)|ψ (θ∗(x))〉

=
∑

a

∂θ∗
a

∂xi
(x)

∂

∂θa

∂E

∂x j
(θ∗(x), x) + 〈ψ (θ∗(x))| ∂

∂xi

∂H

∂x j
(x)|ψ (θ∗(x))〉. (B2)

This is Eq. (8) of the main text.

3. Third derivative

Third derivative can be calculated as follows:

∂

∂xi

∂

∂x j

∂E∗

∂xk
(x) = ∂

∂xi

(∑
a

∂θ∗
a

∂x j
(x)

∂

∂θa

∂E

∂xk
(θ∗(x), x) + 〈ψ (θ∗(x))| ∂

∂x j

∂H

∂xk
(x)|ψ (θ∗(x))〉

)

=
∑

a

∂

∂xi

∂θ∗
a

∂x j
(x)

∂

∂θa

∂E

∂xk
(θ∗(x), x) +

∑
a

∂θ∗
a

∂x j
(x)

∂

∂xi

(
∂

∂θa

∂E

∂xk
(θ∗(x), x)

)

+ 2Re

[
∂〈ψ (θ∗(x))|

∂xi

∂

∂x j

∂H

∂xk
(x)|ψ (θ∗(x))〉

]
+ 〈ψ (θ∗(x))| ∂

∂xi

∂

∂x j

∂H

∂xk
(x)|ψ (θ∗(x))〉

=
∑

a

∂

∂xi

∂θ∗
a

∂x j
(x)

∂

∂θa

∂E

∂xk
(θ∗(x), x) +

∑
a,b

∂θ∗
a

∂x j
(x)

∂θ∗
b

∂xi
(x)

(
∂

∂θb

∂

∂θa

∂E

∂xk
(θ∗(x), x)

)

013129-10
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+ 2
∑

a

∂θ∗
a

∂x j
(x)Re

[
〈∂aψ (θ∗(x))| ∂

∂xi

∂H

∂xk
|ψ (θ∗(x))〉

]

+ 2
∑

a

∂θ∗
a

∂xi
(x)Re

[
〈∂aψ (θ∗(x))| ∂

∂x j

∂H

∂xk
(x)|ψ (θ∗(x))〉

]
+ 〈ψ (θ∗(x))| ∂

∂xi

∂

∂x j

∂H

∂xk
(x)|ψ (θ∗(x))〉. (B3)

This expression [Eq. (B3)] can be simplified so as to avoid the explicit calculation of ∂
∂xi

∂θ∗
a

∂x j
. By multiplying ∂θa

∂xk
to Eq. (10) and

∂
∂xi

∂θa
∂x j

to Eq. (11), and combining them, we obtain

∂

∂xi

∂θa

∂x j

∂

∂θa

∂E

∂xk
=
∑
b,c

∂

∂θa

∂

∂θb

∂E

∂θc

∂θa

∂xk

∂θb

∂xi

∂θc

∂x j
+ 2

∑
b

∂

∂θa

∂

∂θb

∂E

∂x j

∂θb

∂xi

∂θa

∂xk
+ 2Re

[
〈∂aψ | ∂

∂xi

∂H

∂x j
|ψ〉
]
∂θa

∂xk
. (B4)

This yields

∂

∂xi

∂

∂x j

∂E∗

∂xk
(x) =

∑
a,b,c

∂

∂θa

∂

∂θb

∂E

∂θc
(θ∗(x), x)

∂θa

∂xi
(x)

∂θb

∂x j
(x)

∂θc

∂xk
(x) + 〈ψ (θ∗(x))| ∂

∂xi

∂

∂x j

∂H

∂xk
(x)|ψ (θ∗(x))〉

+
∑
a,b

[
∂θ∗

a

∂xi
(x)

∂θ∗
b

∂x j
(x)

∂

∂θb

∂

∂θa

∂E

∂xk
(θ∗(x), x) + ∂θ∗

a

∂xk
(x)

∂θ∗
b

∂xi
(x)

∂

∂θb

∂

∂θa

∂E

∂x j
(θ∗(x), x)

+ ∂θ∗
a

∂x j
(x)

∂θ∗
b

∂xk
(x)

∂

∂θb

∂

∂θa

∂E

∂xi
(θ∗(x), x)

]
+ 2

∑
a

[
∂θ∗

a

∂xi
(x)Re

[
〈∂aψ (θ∗(x))| ∂

∂x j

∂H

∂xk
(x)|ψ (θ∗(x))〉

]

+ ∂θ∗
a

∂xk
(x)Re

[
〈∂aψ (θ∗(x))| ∂

∂xi

∂H

∂x j
(x)|ψ (θ∗(x))〉

]
+ ∂θ∗

a

∂x j
(x)Re

[
〈∂aψ (θ∗(x))| ∂

∂xk

∂H

∂xi
(x)|ψ (θ∗(x))〉

]]
,

(B5)

which is Eq. (9) of the main text.

APPENDIX C: COMPARISON OF THE COST WITH THE FINITE-DIFFERENCE METHOD

1. Cost in estimating the second derivative with the proposed method for quantum chemistry problem

First, we give a simple analysis of the cost of the proposed method in the case of computing the second derivative. We assume
that the derivatives of the given Hamiltonian, ∂d H

∂xd , are decomposed into a sum of NPauli = O(n4) Pauli operators like Eq. (13) by
the use of the Jordan-Wigner transformation. The expectation values are taken by evaluating every Pauli operator with Nsample

samples independently for simplicity.

a. Errors in reduced density matrices

The evaluation of O(n4) Pauli operators provides us single-particle and two-particle reduced density matrix (1,2-RDM), that
is, {c†

i c j}n
i, j=1 and {c†

i c†
j ckcl}n

i, j,k,l=1. By the Hoeffding’s bound, the estimated expectation values of each Pauli operators, 〈̂P〉,
satisfies

|〈̂P〉 − 〈P〉| � εPauli (C1)

with probability at least 1 − exp(−Nsampleε
2
Pauli/2). Under the Jordan-Wigner transformation, c†

i c†
j ckcl is decomposed into sum of

16 Pauli operators, each with coefficient of 1/16. The probability of all such 16 Pauli operators being estimated within the error
of εPauli is at least 1 − 16 exp(−Nsampleε

2
Pauli/2) by the union bound, which implies that each element of 2-RDM are estimated

within an error of ε2RDM = εPauli with at least this probability. Since the 2-RDM has n4 elements, the probability that all of the
estimated value of elements of 2-RDM is accurate up to ε2RDM is at least 1 − 16n4 exp(−Nsampleε

2
Pauli/2). Therefore, to achieve

the error of ε2RDM for each of the term with probability 1 − δ, we can take Nsample = O(log(n/δ)/ε2
2RDM).

By evaluating parameter-shifted expectation values of the Pauli operators, such as 〈Q〉(a,μ,±),(b,ν,±), we obtain the derivative
of the RDMs, such as ∂

∂θa

∂
∂θb

〈ψ (θ )|c†
i c†

j ckcl |ψ (θ )〉. Here, we assume for simplicity that each unitary Ua(θa) in the ansatz has the
form of Ua(θa) = exp(iθaPa/2). To obtain the second derivative, this requires us to evaluate 4N2

θ expectation values for each Pauli
operator appearing in the Hamiltonian. We combine them according to Eq. (23) and then Eq. (21). By denoting the estimated

value of θ -derivatives of each Pauli operators as ∂̂2〈P〉
∂θaθb

, we can again state by the Hoeffdings bound and the union bound,∣∣∣∣∣ ̂∂2〈P〉
∂θaθb

− ∂2〈P〉
∂θaθb

∣∣∣∣∣ � εPauli,2 (C2)
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with probability at least 1 − 4 exp(−Nsampleε
2
Pauli,2/2). Likewise to the above discussion, 16 θ derivatives of Pauli operators

contribute to one element of the 2-RDM derivative. This implies that, by the union bound, the estimation of each element is
within the error of ε2RDM,2 = εPauli,2 with probability at least 1 − 64 exp(−Nsampleε

2
Pauli,2/2). Hence the probability that all of the

element of the 2-RDM derivative is within the error of ε2RDM,2 is at least 1 − 64n4N2
θ exp(−Nsampleε

2
Pauli,2/2). Therefore, also in

this case, Nsample = O(log(nNθ /δ)/ε2
2RDM,2) suffices to obtain the accuracy bounded by ε2RDM,2 with probability 1 − δ. The same

bound also holds for the estimated value of 1-RDM and its derivatives.

b. Error in the solution of response equation

For simplicity, we denote each element of 1,2-RDM by Cα , that is, Cα ∈ {c†
i c j, c†

i c†
j ckcl}n

i, j,k,l=1, and corresponding

coefficients as hα ∈ {hi j, hi jkl}n
i, j,k,l=1 Here, we analyze the error in ∂

∂θa

∂E (θ∗(x),x)
∂x j

. This term is evaluated by solving the response
equation

∂

∂θa

∂E (θ∗(x), x)

∂x j
=
∑

α

∂hα (x)

∂x j

∂〈Cα〉
∂θa

. (C3)

Taking Nsample = O(log(nNθ /δ)/ε′2),∣∣∣∣∣ ̂∂

∂θa

∂E (θ∗(x), x)

∂x j
− ∂

∂θa

∂E (θ∗(x), x)

∂x j

∣∣∣∣∣ � ε′∑
α

∣∣∣∣∂hα (x)

∂x j

∣∣∣∣, (C4)

holds for all a ∈ {1, · · · , Nθ } with the high probability 1 − δ. It also follows that

Nθ∑
a=1

∣∣∣∣∣ ̂∂

∂θa

∂E (θ∗(x), x)

∂x j
− ∂

∂θa

∂E (θ∗(x), x)

∂x j

∣∣∣∣∣
2

� Nθ ε
′2
(∑

α

∣∣∣∣∂hα (x)

∂x j

∣∣∣∣
)2

. (C5)

Similarly,

Nθ∑
a=1

Nθ∑
b=1

∣∣∣∣∣ ̂∂2E (θ∗(x), x)

∂θa∂θb
− ∂2E (θ∗(x), x)

∂θa∂θb

∣∣∣∣∣
2

� N2
θ ε′2

(∑
α

|hα (x)|
)2

. (C6)

∂θ∗
a (x)
∂xi

is computed on a classical computer by solving Eq. (10). To bound the error in ∂θ∗
a (x)
∂xi

which originates in the error in ∂2E
∂θa∂θb

and ∂
∂θa

∂E
∂xi

, we use the following lemma [53].
Lemma 1. Let A and b be a matrix and a vector, respectively. Let �A and �b be their errors. Suppose y and ŷ are vectors

satisfying Ay = b and (A + �A)̂y = b + �b. Then,

‖̂y − y‖2

‖y‖2
� κ (A)

1 − κ (A) ‖�A‖F

‖A‖F

(‖�b‖2

‖b‖2
+ ‖�A‖F

‖A‖F

)
, (C7)

holds under the condition that ‖A−1‖F‖�A‖F < 1, where ‖ · ‖2 is the vector 2-norm, ‖ · ‖F is the Frobenius norm, and κ (A) =
‖A−1‖F‖A‖F is the condition number of A.

This can be utilized to state,∥∥ ∂̂θ∗(x)
∂xi

− ∂θ∗(x)
∂xi

∥∥∥∥ ∂θ∗(x)
∂xi

∥∥ � κ

1 − κ
Nθ ε′∑

α |hα (x)|
‖{ ∂2E

∂θa∂θb
}‖F

(
N1/2

θ ε′∑
α

∣∣ ∂hα

∂xi

∣∣∥∥{ ∂
∂θa

∂E
∂xi

}∥∥ + Nθ ε
′∑

α |hα (x)|∥∥{ ∂2E
∂θa∂θb

}∥∥
F

)
, (C8)

where κ is the condition number of ∂2E (θ∗(x),x)
∂θa∂θb

.

c. Overall error

The last term in Eq. (8), ∂2E (θ∗(x),x)
∂xi∂x j

, is evaluated by

∂2E (θ∗(x), x)

∂xi∂x j
=
∑

α

∂2hα (x)

∂xi∂x j
〈Cα〉. (C9)

By taking Nsample = O(log(n/δ)/ε′2) for some ε′ > 0, the error in each expectation value is at most ε′ with a high probability
1 − δ. This implies that the error in the estimation is∣∣∣∣∣ ̂∂2E (θ∗(x), x)

∂xi∂x j
− ∂2E (θ∗(x), x)

∂xi∂x j

∣∣∣∣∣ � ε′∑
α

∣∣∣∣ ∂2hα

∂xi∂x j

∣∣∣∣. (C10)
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The error in the first term in Eq. (8),
∑

a
∂θ∗

a
∂xi

∂
∂θa

∂E
∂x j

, can be evaluated as follows:∣∣∣∣∣∑
a

∂θ∗
a

∂xi

∂

∂θa

∂E

∂x j
−
∑

a

∂̂θ∗
a

∂xi

̂∂

∂θa

∂E

∂x j

∣∣∣∣∣ =
∣∣∣∣∣∑

a

(
∂θ∗

a

∂xi
− ∂̂θ∗

a

∂xi

)
̂∂

∂θa

∂E

∂x j
+
∑

a

∂θ∗
a

∂xi

(
∂

∂θa

∂E

∂x j
−

̂∂

∂θa

∂E

∂x j

)∣∣∣∣∣
�
∥∥∥∥∥∂θ∗

∂xi
− ∂̂θ∗

∂xi

∥∥∥∥∥
2

∥∥∥∥∥
{

̂∂

∂θa

∂E

∂x j

}∥∥∥∥∥
2

+
∥∥∥∥∂θ∗

∂xi

∥∥∥∥
2

∥∥∥∥∥
{

∂

∂θa

∂E

∂x j
−

̂∂

∂θa

∂E

∂x j

}∥∥∥∥∥
2

.

Therefore overall error is∣∣∣∣∣ ̂∂2E∗

∂xi∂x j
− ∂2E∗

∂xi∂x j

∣∣∣∣∣ �
∥∥∥∥∥∂θ∗

a

∂xi
− ∂̂θ∗

a

∂xi

∥∥∥∥∥
2

∥∥∥∥∥ ̂∂

∂θa

∂E

∂x j

∥∥∥∥∥
2

+
∥∥∥∥∂θ∗

a

∂xi

∥∥∥∥
2

∥∥∥∥∥ ∂

∂θa

∂E

∂x j
−

̂∂

∂θa

∂E

∂x j

∥∥∥∥∥
2

+ ε′∑
α

∣∣∣∣ ∂2hα

∂xi∂x j

∣∣∣∣
� ε′

⎧⎪⎨⎪⎩
∥∥∥∥∂θ∗

a

∂xi

∥∥∥∥
2

⎡⎢⎣ κN1/2
θ

∑
α

∣∣ ∂hα

∂x j

∣∣
1 − κ · Nθ

∑
α |hα (x)|

‖{ ∂2E
∂θa∂θb

}‖F

(
N1/2

θ

∑
α

∣∣ ∂hα

∂xi

∣∣∥∥{ ∂
∂θa

∂E
∂xi

}∥∥ + Nθ

∑
α |hα|∥∥{ ∂2E

∂θa∂θb

}∥∥
F

)
+ N1/2

θ

∑
α

∣∣∣∣∂hα

∂x j

∣∣∣∣
⎤⎥⎦+

∑
α

∣∣∣∣ ∂2hα

∂xi∂x j

∣∣∣∣
⎫⎪⎬⎪⎭.

To upper-bound this error by ε, we want ε′ to satisfy

ε = ε′

⎧⎪⎨⎪⎩
∥∥∥∥∂θ∗

a

∂xi

∥∥∥∥
2

⎡⎢⎣ κN1/2
θ

∑
α

∣∣ ∂hα

∂x j

∣∣
1 − κ · Nθ

∑
α |hα (x)|

‖{ ∂2E
∂θa∂θb

}‖F

(
N1/2

θ

∑
α

∣∣ ∂hα

∂xi

∣∣∥∥{ ∂
∂θa

∂E
∂xi

}∥∥ + Nθ

∑
α |hα|∥∥{ ∂2E

∂θa∂θb

}∥∥
F

)
+ N1/2

θ

∑
α

∣∣∣∣∂hα

∂x j

∣∣∣∣
⎤⎥⎦+

∑
α

∣∣∣∣ ∂2hα

∂xi∂x j

∣∣∣∣
⎫⎪⎬⎪⎭. (C11)

The number of samples per measurement we need to achieve this bound with probability 1 − δ is Nsample = O(log(n/δ)/ε′2).
Therefore, in total, the number of measurement required for our protocol is

N tot
sample = O

(
N2

θ n4/ε′2 log(n/δ)
)
. (C12)

Note that κ should not be too big for a good ansatz, because it implies the VQE would suffer in the optimization of the parameter.

2. Cost in estimating the second derivative with the finite difference

Here, we analyze the cost of the finite difference approach where we use the formula,

̂∂2E∗(x)

∂x2
i

= (
̂E∗(x + hei ) + ̂E∗(x − he2

i

)− 2̂E∗(x)
)/

h2, (C13)

with some step size h. ei is a unit vector with an entry 1 in the ith element. The following lemma, which helps to bound the error,
can easily be shown with simple arithmetics.

Lemma 2. For a function f : R → R, a step size h, and an approximated value of the function f̂ (y) at a point y ∈ R, such that
| f̂ (y) − f (y)| � ε′, the following inequality holds:∣∣∣∣∣ f ′′(y) −

̂f (y + h) + ̂f (y − h) − 2 f̂ (y)

h2

∣∣∣∣∣ � h2

12
max

z∈[y−h,y+h]
| f (4)(z)| + 4ε′

h2
. (C14)

Taking Nsample = O(log(n/δ)/ε′′2) bounds the error in the estimation of E∗(x) to |̂E∗(x) − E∗(x)| � ε′′∑
α |hα| with

probability 1 − δ. Assume that we want to suppress the error of the second derivative to ε, that is, | ∂̂2E∗(x)
∂x2

i
− ∂2E∗(x)

∂x2
i

| � ε. To
achieve this, we need

h2

12
max

[xi−h,xi+h]

∣∣∣∣∂4E∗

∂x4
i

∣∣∣∣+ 4ε′′

h2

∑
α

|hα| = ε, (C15)

from which we find

ε′′ = h2ε

4
∑

α |hα| − h4

48
∑

α |hα| max
[xi−h,xi+h]

∣∣∣∣∂4E∗

∂x4
i

∣∣∣∣. (C16)

Therefore, the total number of NISQ runs to achieve the error of ε can be written as

N tot
sample = O

⎡⎣N2
x n4 log(n/δ)(

h2ε∑
α |hα | − h4

12
∑

α |hα | max[xi−h,xi+h]

∣∣ ∂4E∗
∂x4

i

∣∣)2

⎤⎦. (C17)
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