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Thermal creep induced by cooling a superconducting vortex lattice
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A perturbed system relaxes towards an equilibrium given by a minimum in the potential-energy landscape.
This often occurs by thermally activated jumps over metastable states. The corresponding dynamics is called
creep and follows Arrhenius’ law. Here we consider the situation where the equilibrium position itself depends
on temperature. We show that this effect occurs in the vortex lattice of the anisotropic superconductor 2H-NbSe2

when the magnetic field is tilted away from the principal axes, and that it leads to the peculiar appearance of creep
when cooling the sample. Temperature determines the system’s equilibrium state and at the same time brings the
system back to equilibrium, playing a dual and antagonistic role. We expect that cooling-induced creep occurs in
correlated systems with many degrees of freedom, allowing one to tune the equilibrium state via heat treatment.
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I. INTRODUCTION

Superconducting vortices are lines of quantized magnetic
flux �0 =hc/2e where the superconducting order parameter is
depressed at a length scale of the order of the superconducting
coherence length ξ and circular supercurrents are flowing at a
length scale of the order of the penetration depth λ. Vortices
arrange in a lattice, which can be triangular, square, or disor-
dered due to the interactions of vortices with the crystalline
environment [1–5]. Vortices tend to be pinned on material
defects or inclusions consisting of places where superconduc-
tivity is depressed on length scales of the order of ξ . When
varying the applied magnetic field, its strength, or direction,
vortices enter or exit the sample [1–3]. This produces vortex
motion, which is often counteracted by pinning. The action of
the pinning landscape results in long-lived out-of-equilibrium
vortex distributions that relax through thermal creep over a
manifold of barriers [1–3,6–10]. The phenomenon of creep
has been observed in interacting systems of particles, such as
colloids, polymers, solids consisting of mixtures, or in lattices
of entities formed through electronic interactions (domain
walls or skyrmions) [11–15]. To study pinning and creep vor-
tex lattices are often considered as a model system [15–18].
Most efforts to understand vortex creep have focused on trying
to immobilize vortices and thereby increase the critical current
jc for applications [19]. But the interaction between vortices
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and the underlying superconducting material is very rich and
can produce counterintuitive phenomena. Here we find that
the equilibrium state towards which the system creeps can
be modified with the temperature, leading to a phenomenon
that we term self-imposed creep; see Fig. 1. We study vortex
creep in the superconductor 2H-NbSe2 and observe that after

FIG. 1. Schematic response of a particle confined in a potential
subject to random disorder. The disorder potential is characterized
by local maxima of size U0 and over a length scale ξ (the super-
conducting coherence length in the case of vortices in superconduc-
tors). Upon warming, the particle rapidly moves to a newly defined
minimum as the disorder is thermally smeared out [indicated by
effectively smaller wells (red)]. When cooling, the potential changes
and the particle now occupies a metastable state relative to the new
global minimum. As the motion is impeded by pinning barriers
(blue), the particle creeps by thermal relaxation towards the new
minimum.
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reaching the equilibrium state by warming, the creep motion
of the vortex lattice reappears upon cooling. We capture this
phenomenon within a model for creep in disordered systems.

The disappearance and reappearance of vortex creep in
2H-NbSe2 is discussed and quantified in Sec. II. In Sec. III,
we propose a generic model to describe the phenomenon
of self-imposed creep. Section IV places in perspective the
theoretical predictions with the experimental observations.

II. VORTEX CREEP IN 2H-NbSe2

The layered compound 2H-NbSe2 shows weak pinning
and small creep rates [20,21]. Due to the material anisotropy,
the properties of vortex creep depend on the field orientation
relative to the crystallographic c axis. To quantify this effect,
we tilt the field angle (after cooling the system in a field
H =0.85 T) by θH = 70◦ away from the c axis.

2H-NbSe2 is an anisotropic superconductor, with the upper
critical field varying as a function of the field direction and
quantified by the anisotropy ε ≡ Hc2,ab/Hc2,c ≈ 1/3. This
leads to a distortion of the vortex lattice, discussed in detail in
Refs. [22–29], which can be neglected for our purposes. A ro-
tation of the magnetic field to the field angle θH induces creep,
as the modification in the flux direction is counteracted by
disorder present in the system. In isotropic systems, vortices
would creep towards θH ; see Fig. 2. However, in anisotropic
systems, the superconducting anisotropy modifies the angle
for the equilibrium configuration of the vortex lattice to θB.
Minimization of the free energy yields [2,30–32]

sin(θB − θH ) = Hc1

H

(1 − ε2) sin θB cos θB

(ε2 sin2 θB + cos2 θB)1/2
, (1)

up to a logarithmic correction of the order of unity. In
2H-NbSe2, using Hc1(T =0)≈200 G for the lower critical
field, we find θB − θH ≈0.8◦, i.e., vortices are more inclined
towards the ab plane than the external field; see Fig. 2(a).
In the regime where pinning is weak, i.e., where the Bean
length [33] �B ≈cB/4π jc is larger than the sample width w

and thickness d � w, vortices in the critical state [33,34] are
straight and oriented along the angle θ c

B =θB−(w/2�B ) sin θB <

θB; see Fig. 2(a). With jc ∼ 103 A/cm2, this critical angle
deviates from the equilibrium angle θB as θB−θ c

B ≈ 0.5◦. We
further notice that θB(T ) dominantly depends on the current
distribution via the penetration depth λ(T ) and is reflected
in the above equation through Hc1(T ). For small temperature
changes Hc1(T ) = Hc1(T0) + δHc1, large fields H � Hc1, and
a tilt angle θB away from 0 or π/2, the angle changes to
θB(T ) = θB(T0) − δθB, with

δθB ≈ −[θB(T0) − θH ] δHc1/Hc1(T0). (2)

The magnitude of this effect can be estimated using the
Ginzburg-Landau scaling Hc1(T ) ≈ Hc1(0)(1 − T/Tc), which
provides a relative change in Hc1 between the experiment’s
low (T0 = 150 mK) and high (T = 2 K) temperatures of
δHc1/Hc1 ≈ −0.29, and hence δθB ≈ 0.3◦.

To investigate vortex creep in this system, we use a
dilution-refrigerator scanning tunneling microscope (STM)
in a three-axis vector magnet [35]. The cleaved 2H-NbSe2

sample (∼1 × 1 × 0.2 mm3)—grown with iodine vapor
deposition—is studied with a gold tip, sharpened and cleaned

FIG. 2. (a) Schematic vortex alignment for an anisotropic super-
conductor in a tilted magnetic field (θH , black). The T -dependent
current patterns—indicated as rings—define different equilibrium
orientations θB at low (T0, blue) and higher (T >T0, red) temperature.
When tilting the magnetic field to θH , vortices creep towards the
equilibrium angle θ c

B <θB(T0) (yellow). (b) Vortex positions extracted
from individual STM images (points) recorded at fixed temperature.
Each vortex (core size ξ ≈ 7 nm) is identified by a color and the
lines join the position between two consecutive images. At low T ,
out-of-equilibrium vortices move between subsequent frames. The
motion stops upon warming to 2 K. At this temperature, vortices
are fixed in a lattice. When cooling, motion reappears again and the
average image shows that vortices do not stay at the same position in
subsequent steps. (c) Time average of the series of STM images used
in (b).

in situ [36]. At the field strength H = 0.85 T (H‖c), the mag-
netization is practically reversible so that no vortex motion
is measured within days. Vortex motion only appears when
rotating the field towards the layers (after field cooling to
the base temperature T0 = 150 mK with the magnetic field
directed along the c axis).

While specific vortex positions can be identified from an
individual STM image (taking 23 minutes to record), consec-
utive images allow one to measure vortex motion over time.
Figures 2(b) and 2(c) show the evolution of vortex positions at
three fixed temperatures and the corresponding time-averaged
STM image, respectively. It highlights the presence of vortex
creep at low temperature, its disappearance upon warming,
and its reappearance upon cooling. Note that vortices always
move along the direction of the component of the magnetic
field within the layers. In agreement with earlier reports
[20,37–39], we observe a weak modulation of the vortex
velocity when vortices travel by a distance of the order of
the intervortex separation. The overall vortex displacement
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FIG. 3. (a) Schematic mean creep velocity (black arrow) and
jitter motion (green cloud) for different temperatures. (b) Average
creep velocity of vortices in 2H-NbSe2 at tilted field and fixed tem-
perature, recorded on a warming (red) and cooling (blue). (c) Stan-
dard deviation of the vortex jitter motion upon warming (orange) and
cooling (light blue). The behavior agrees with the phenomenology of
self-imposed creep.

translates to an average angular velocity θ̇B ≈ 10−3 deg/h of
vortices tilting to new equilibrium positions [see Fig. 2(a)] and
the apparent absence of a measurable decay time within the
observation window (∼5 h) is consistent with the lower bound
|θB − θ c

B |/θ̇B � 100 h provided by the angular misalignment
discussed above.

Without reinitializing the vortex state, imaging is repeated
at different temperatures, while the system is kept at finite
field strength and angle. Thus, temperature determines the
preparation of the vortex state, as in Refs. [40–42]. Figure 3(a)
schematically shows how the vortex displacement and jitter
motion evolve upon changing temperature. In Figs. 3(b) and
3(c), the evolution of the average creep velocity v(T ) and
jitter motion 
x(T ) is shown for a warming (red) and cooling
(blue) cycle. Each data point is obtained from a series of STM
frames. To find v(T ), we determine the position ri

j of vortex
j in frame i and evaluate the average displacement for each
vortex per frame, given by δr j = |rn j

j −r1
j |/(n j−1), where n j

denotes the number of frames where the jth vortex appears.
Averaging over all Nv vortices for a given temperature, we ar-
rive at the average creep velocity v(T ) = (tfNv )−1 ∑Nv

j=1 δr j ,
with tf the time for measuring one frame. To quantify the
jitter motion, we evaluate the average jitter displacement δs j =
( 1

n j−1

∑n j

i=2 |δri
j |)−δr j , with |δri

j | the vortex displacement

between two subsequent frames i−1 and i. The average over
all frames at a fixed temperature now provides the jitter
motion, 
x(T ) = N−1

v

∑Nv

j=1 δs j .
The average creep velocity decreases upon warming and

vanishes above 2 K. Upon cooling, however, a finite veloc-
ity reappears. If the vortices were to reach a temperature-
independent minimum upon warming, the jitter motion would
decrease upon cooling without a reappearance of creep mo-
tion. The reversible directed vortex motion upon thermal
cycling is therefore a clear signature of self-imposed creep.

III. MODEL FOR SELF-IMPOSED CREEP

To capture the main observations, we discuss a simple,
yet quite generic model for creep in disordered landscapes.
First, let us note that motion is driven by thermal fluctuations,
through an Arrhenius-type activation process across the pin-
ning barriers. Then, the timescale t ∼τ exp(U0/kBT ) for ther-
mal activation is determined by (i) the temperature T , (ii) the
energy barrier U0, and (iii) a microscopic timescale τ =ω−1

(ω is an attempt frequency to overcome the barrier). Creep is
observed when the timescale of the experiment is such that
U0 ∼kBT ln(ωt ). To see the consequences of modifying the
equilibrium, let us consider the problem of a particle confined
in a one-dimensional parabolic trap V0(x) = kx2/2 and subject
to a driving force Vd (x)=−Fx. To map the results of our
simple model to a many-body system, we associate x to a
macroscopic observable, such as the position (or angle) of the
vortex lattice for a given field direction. The force produces a
drive towards the equilibrium position x̄ = F/k. In addition,
we consider a disorder landscape Vp(x) characterized by a
typical depth U0 and width ξ , with kξ 2/U0 �1; see Fig. 1. We
approximate the bare potential between neighboring minima
x± =x ± ξ by Vp(x+δ)≈ [1 − (δ/ξ )2]U0. The overall poten-
tial V (x)=V0 + Vd + Vp features local minima in the range
x̄ − 2U0/kξ < x < x̄ + 2U0/kξ , and the position-dependent
activation barrier Ub(x) to move from x− to x+ (we assume
x < x̄) is

Ub(x) = [(x − x̄)kξ ]2/4U0 + U0 + (x − x̄)kξ . (3)

The thermally activated motion in the opposite direction,
i.e., from x+ to x−, is penalized by an additional energy
−2(x − x̄)kξ > 0. A particle initially far from the minimum
x̄ will glide down the potential until reaching x̄ − 2U0/kξ

from where it will be thermally activated across ever-growing
barriers. After a time t , the particle has reached a position xT

satisfying Arrhenius’ condition

Ub(xT ) = kBT ln(ωt ), (4)

as smaller barriers have been overcome in exponentially
shorter activation times. Inserting Eq. (3) into the condition
(4), we obtain

xT = x̄ − (2U0/kξ )[1 −
√

(kBT/U0) ln(ωt )]. (5)

If xT is still far from x̄ in the sense x̄ − xT �kBT ln(ωt )/kξ

[translating to T �Tb ≡ (U0/kB )/ ln(ωt )], the particle moves
with an average velocity v ≈ 2ξ/t . If, however, the particle
has relaxed in the vicinity of the global minimum, the thermal
activation becomes almost equally probable in both directions.

013125-3



ROLAND WILLA et al. PHYSICAL REVIEW RESEARCH 2, 013125 (2020)

FIG. 4. (a) Average creep velocity v (in units of 2ξ/t) as a
function of temperature [see Eq. (6)] for different timescales ωt .
When temperature affects both the activation dynamics and the
global potential minimum (see Fig. 1), the velocity profile is traced
reversibly upon warming and cooling. (b) Standard deviation 
x
of the mean particle displacement, quantifying the isotropic thermal
motion, or jitter; see Eq. (7).

Accounting for this bidirectional, yet asymmetric motion, we
find a net average creep velocity

v ≈ 2ξ

t

(
1 − exp

{
−4U0

kBT
[1 −

√
kBT ln(ωt )/U0]

})
. (6)

The temperature dependence of v is shown in Fig. 4(a) for
different values ωt . It is interesting to note that although the
thermal activation energy increases upon warming, the creep
velocity decreases. The validity of the above result is limited
to temperatures T < Tb. For larger temperatures, the disorder
landscape becomes irrelevant, as the particle relaxes to the
global minimum within a time ∼ω−1.

The directed relaxation via creep [Eq. (6)] is blurred by
an isotropic contribution, or jitter motion with zero mean and
amplitude (standard deviation) given by


x ∼ ξ
√

ωt exp

{
−2U0

kBT
[1 −

√
kBT ln(ωt )/U0]

}
. (7)

This result is obtained by describing the (forward-backward)
activation across the barriers as a stochastic process (random-
walk motion), where the variance (
x)2 = ξ 2ωrwt of the
displacement grows linearly in time and is determined
by the random-walk attempt frequency ωrw = ω exp[2(xT −
x̄)kξ/kBT ]. The exponent only depends on the difference
between the barrier heights for forward and backward motion.
This jitter motion persists beyond the disappearance of creep
motion and reaches a similar magnitude when kBT ln(ωt ) ∼
U0, as shown in Fig. 4(b).

When changing temperature, one has two distinguishable
cases: one where the global minimum x̄ is constant, and one
where x̄(T ) depends on T through a temperature-dependent
force F (T ). In the first case, the average creep velocity is
given by the local disorder landscape seen by the particle and
hence follows Eq. (6). For T >Tb, the system is fully relaxed
and the particle reaches x̄. Meanwhile, the magnitude of the
jitter motion continuously increases; see Fig. 4(b). Subsequent
cooling lowers the thermal energy and the particle’s motion
freezes in place at x̄. This is the conventional response ex-
pected for creep. In the second case, when x̄ depends on T
through a temperature-dependent force F (T ), the situation
is drastically different. A temperature change 
T imposes
a shift x̄(T + 
T ) − x̄(T ) � ξ of the global equilibrium
position. Upon warming, the velocity and jitter motion are
similar to the previous case. However, the values of x(t ) are
different and, upon cooling, triggers particle motion tracing
back (in magnitude) the warming curve, as schematically
shown in Fig. 1. The appearance of creep upon cooling is
caused by the two antagonistic roles of temperature—defining
a T -dependent minimum and dictating the thermal relaxation
towards it—and presents the most prominent manifestation of
self-induced creep.

IV. DISCUSSION

We compare our observations in 2H-NbSe2 with the
above model. The typical barrier to overcome during pinning
by thermal fluctuations is given by Arrhenius’ law U0 =
kBT ln(ωt ). To observe both the equilibrium phase at high
temperature and reentrant creep at low temperature, it is
important that the temperature of the experiment is of the
order of (U0/kB )/ ln(ωt ). In contrast to the pinning energy of
one defect site, here U0 denotes the energy barrier for vortex
creep [43,44]. Weak collective pinning theory [1,2,45] pro-
vides the estimate U0 ∼kBTc[( jc/ jdp)(B/Hc1)3/Gi]1/2ν, with
the depairing current jdp =c�0/12

√
3π2λ2ξ , the Ginzburg-

Levanyuk [46,47] number Gi ∼ [Tc/Hc(0)2ξ 3]2, the conden-
sation energy Hc(0)2ξ 3 =�2

0ξ/8π2λ2, and ν ∼ 10−3 a small
numerical number. From Refs. [48–53], we infer jc/ jdp ∼
10−6 and Gi ∼ 8 × 10−7 and obtain U0 ∼ 5kBTc. This order-
of-magnitude estimate is compatible with U0�kBTc ln(ωt ),
provided ωt ≈ 103−104, which is slightly larger than the
values considered above (Fig. 4). Finally, the temperature-
dependent current pattern in the layered superconductor nat-
urally provides the necessary force F (T ) to induce creep
upon cooling a tilted vortex lattice. Given the simplicity of
the one-dimensional model, the agreement is remarkable. All
important features predicted by the model—the disappearance
and reappearance of the directed motion, together with the
temperature evolution of the jitter motion [behaviors of v(T )
and 
x(T ), shown in Figs. 3(b) and 3(c) and in Figs. 4(a) and
4(b)]—are found in the experiment.

Given that the experimental timescale spans several min-
utes, our observation ωt ≈ 103−104 suggest a value for ω

of the order of one Hz. While a route for accurate determi-
nation of this attempt frequency is still lacking, the estimate
ω=αL/η for a single vortex depends on the vortex viscosity
η and on the Labusch parameter [54] αL (which in turn
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relates to the averaged potential curvature [55]). An analysis
assuming vibrations with large k vectors reports frequency
values in the range 106−1010 Hz [56]. In our case however,
vortices are not isolated, but rather interact nonlocally with
many vortices [2,3,57–59]. Low k vectors, or wavelengths
comparable to the sample size, lead to highly dispersive elastic
moduli which modify the attempt frequency by orders of
magnitude [58–60]. Similar to our observation, previous mea-
surements of slow vortex dynamics have reported [61,62] very
low-frequency values for thermal motion and creep. Creep
rates observed in layered cuprate superconductors involve ex-
tremely large timescales, indicating the relevance of collective
creep [2,3,58,60]. Thus, even if the attempt rate of individual
vortices is large, the dynamics as a lattice involves rates
that are many orders of magnitude smaller. The temperature
is far from melting, thus favoring collective rather than a
single-vortex dynamics [63,64]. It is this near-equilibrium
configuration with ultrasmall collective dynamics that allows
for the observed cooling-imposed creep in our experiments.

The creep discussed here is very slow and the vortex
velocity does not decay within our experimental time. How-
ever, the creep rate S = d ln( j)/d ln(t ) can assume a sizeable
value compatible with the suggested lower bound [21] S >

(T/Tc)Gi1/2. Actually, 2H-NbSe2 is among the materials with
the lowest creep rates, close to MgB2 [21]. Creep between
metastable vortex states that occur near the order-disorder
transition of the vortex lattice in 2H-NbSe2 or related to
domain formation of lattices with different orientations in
MgB2 has been reported [65–67]. Motion then appears when
modifying the relative strength of competing interactions, and
it might well occur that the equilibrium configuration at some
particular locations is influenced by temperature. Collective
motion is also found in the stochastic behavior of particle
arrangements [11]. Depending on particle interactions, the
dynamics transits from individual random motion to flocking.
The timescale related to flocking motion shows a divergent
behavior with increasing interaction. Other long-term dynam-
ical behavior should appear in thermal effects and might

lead to self-imposed creep whenever there are two or more
parameters influencing the behavior of the system. Mixtures,
such as alloys, concrete or rocks [68], liquids resolidifying
under stress [12], steel under stress [13], colloidal stems,
and magnetic domain walls or skyrmions [15] are cases of
complex systems where self-imposed creep may be induced
from temperature-dependent interactions.

The model of self-imposed creep explains the critical state
dynamics in 2H-NbSe2 at tilted magnetic fields; in particular,
the commonly unexpected appearance of vortex motion when
cooling. Likely, the balanced thermal activation dynamics and
the temperature-dependent equilibrium could be matched in
other complex systems.
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