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Fermionic quantum carpets: From canals and ridges to solitonlike structures
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We report a formation of sharp, solitonlike structures in an experimentally accessible ultracold Fermi gas, as a
quantum carpet solution is analyzed in a many-body system. The effect is perfectly coherent in a noninteracting
gas, but in the presence of repulsive interaction in a two-component system, the structures vanish at a finite time.
As they disappear, the system enters a dynamical equilibrium, in which kinetic energies of atoms tend to the
same average value.
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I. INTRODUCTION

In 1836, Henry Fox Talbot, the father of photography,
reported an unexpected result—a diffraction grating he was
observing through a magnifying lens was reappearing repeat-
edly in focus as he was moving away [1]. This phenomenon,
now dubbed the Talbot effect, was later explained by Lord
Rayleigh in 1881 by means of Fresnel integrals describing
near-field diffraction [2]. It was forgotten for a long time,
but nowadays its optical applications have proved to be a dy-
namically developing branch of physics, involving numerous
realizations [3,4].

The Talbot effect is a consequence of an interference of
highly coherent waves and it is not surprising that its quantum
counterpart exists. Quantum revivals [5], quantum fractals
[6,7], quantum echoes [8], quantum Talbot effect [9], and
quantum scars [10,11] are all closely connected manifesta-
tions of the time evolution of wave packets [12].

In this paper, we focus on aesthetically appealing quan-
tum carpets—spatiotemporal representations of a probability
density of a quantum particle in a box. Firstly observed by
Kinzel [13], then named and heavily studied by Schleich and
coworkers [14–18], they stand out because of characteristic
structures, called canals and ridges [see Fig. 1(a)]. These
patterns do not follow classical trajectories and originate only
from interference terms. They have been studied from various
perspectives, including Wigner representation [16,19], degen-
eracy in intermode traces [14–16,19,20], traveling wave de-
composition [21], spin chains [22–28], and fractional revivals
[29], which emphasizes their deep links to number theory
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[18], quantum computing [30,31], decoherence effects [32],
and factorization of numbers through Gauss sums [33–35].

The experimental realizations of self-reviving systems by
means of spatial Talbot interferometry are numerous—they
span from atoms [36–38] and molecules [39,40], through
electrons [41,42] and light [43] to Bose-Einstein condensates
[44]. Their temporal counterpart, closer to the quantum carpet
situation, has also been investigated—examples include ultra-
cold bosonic gases [45,46], Rydberg states [47], and nuclear
wave packets [48].

However, quantum carpets were discussed almost ex-
clusively in bosonic systems, whether it was light or a
Bose-Einstein condensate [49,50]. The interest in many-body
fermionic systems was scarce [51], mostly due to the difficulty
of considering highly correlated particles. Nonetheless, we
show that even in the limit of an ideal gas of polarized
fermions in an infinite well, some interesting phenomena
arise.

We show that degenerate Fermi gas that is initially trapped
in a box and then released into a bigger one exhibits soli-
tonlike structures that move analogously to canals and ridges
from the one-particle problem [see Fig. 1(b)]. These structures
are characterized by a constant relative depth in density as
a number of atoms grows, effectively making them more
pronounced in larger systems. This feature is, however, absent
when different initial trapping potentials (e.g., harmonic one)
are considered. Moreover, we show that this phenomenon is
not destroyed by temperature and should be available in a gas
of distinguishable particles. Despite the fact that our starting
point is a one-dimensional gas, a three-dimensional scenario
is also explored, revealing access to experimentally achievable
regimes.

As a next step of our considerations, we investigate two-
component repulsive Fermi gas that interact via s-wave col-
lisions [52–60]. If both components are initially trapped in
different parts of the box and then released, solitonlike struc-
tures are present in both species separately. However, due to
the repulsive interspecies interaction, they start to diminish
in time—the faster, the stronger the repulsion is—until they
ultimately vanish.
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FIG. 1. Radially integrated probability density plots for one atom (a) and 5000 atoms (b) initially confined to a box with the width of
D/L = 0.21 and a perpendicular harmonic trap. In contrast to the usual one-atom situation in which blurry canals and ridges emerge, scenarios
involving larger number of particles are characterized by much sharper features. These structures become solitonlike—thin, localized, and
shape preserving.

II. IDEAL FERMI GAS

We start our considerations with an ideal polarized
Fermi gas. We assume that at the beginning of
the evolution, the many-body wave function of N
indistinguishable fermionic atoms is given by the single
Slater determinant: �(x1, . . . , xN ) = 1√

N!
det (φ1, . . . , φN ),

where φi(x), i = 1, . . . denote different, orthonormal
orbitals. The gas is then released to evolve freely
in a box trap with the length of L. Eigenfunctions
of such a box potential are standing waves: ϕk (x) =√

2/L sin (kπx/L)θ (x)θ (L − x), k = 1, 2, . . . , where θ (x)
is a Heaviside step function and eigenenergies read
Ek = k2π2h̄2/2mL2. Let us introduce overlaps between initial
orbitals and box trap eigenfunctions, λ(n, k) ≡ (ϕk, φn).
We consider noninteracting gas, so there is no mixing
between different orbitals as they undergo a unitary evolution,
φn(x, t ) = ∑∞

k=1 λ(n, k)ϕk (x) exp (−iEkt/h̄). We can write
down the time evolution of the orbitals squared, separating
contributions moving with different velocities:

|φn(x, t )|2

≈
∞∑

k=1

λ2(n, k)ϕ2
k −

∑
p

∞∑
k=1

1

L
λ(n, k)λ(n, k + |p|)

× cos
(

(2k + |p|)π
L

(x − pv0t )
)
, (1)

where v0 = π h̄/2mL is the characteristic velocity of the
box that is connected to time of the system’s revival Trev =
2L/v0 = 4L2m/π h̄. As we can see, we can fully describe such
a system in terms of traveling contributions that move with
the velocities that are multiples of v0. p ∈ Z \ {0} will denote
each of these terms.

The first term in Eq. (1) is independent of time and
constitutes a background for a time evolution. Therefore, a
formula for pth contribution in the system of N fermions

reads

np(x, t ) ≈ −
N∑

n=1

∞∑
k=1

1

L
λ(n, k)λ(n, k + |p|)

× cos
(

(2k + |p|)π
L

(x − pv0t )
)
. (2)

We note that for each orbital, the pth contribution is peaked
at x0 = pv0t for a right-moving one (p > 0) and at x0 = L +
pv0t for a left-moving one (p < 0). Such a behavior manifests
itself as canals and ridges in the one-particle problem and
can be explained by the interference terms in the Wigner
representation. Therefore, we evaluate these contributions at
appropriate peaks and introduce relative depth of each one:

dp = np(x0, t )

n
= σ (p)

1

N

N∑
n=1

∞∑
k=1

λ(n, k)λ(n, k + |p|),

σ (p) =
{−1, p > 0,

(−1)mod(|p|,2)+1, p < 0
(3)

where n = N/L is the average density of the fermionic cloud.
Following the calculation featured in Appendix A, we can

write the whole pth relative depth as

dp = −σ (p)

√
2

π

1

N
F c{n(x, 0)}

( |p|π
L

)
, (4)

where F c{n(x, 0)} is a cosine Fourier transform of the initial
one-particle density of the fermionic gas. To evaluate it in
the limit of a large N , we can use local density approxima-
tion. By v(x) we will denote a potential that initially traps
fermions and therefore implies initial orbitals φn. The one-
particle density of such a gas in the Thomas-Fermi approxi-
mation reads n(x) = √

2m/π h̄
√

μ − v(x)θ [μ − v(x)], where
μ is a chemical potential. Therefore, the relative depth dp

has an approximate dependence on N , dp ∼ √
μ(N )/N . Here,

we assume that initially the whole cloud lies within the
box trap with the length of L—it is approximately satisfied
whenever classical turning points of potential v(x) for a
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particle of Fermi energy lie within the box. The N de-
pendence can be obtained through the normalization con-
dition, N = ∫ L

0 dx̃ñ(x̃) → μ(N ). It is helpful to note the
connection of this dependence to the energy levels of the
initial fermionic cloud. For a general potential v(x), we
can approximate generated energy levels by the Wentzel–
Kramers–Brillouin (WKB) quantization condition, n + C =√

2m/π h̄
∫ ∞
−∞ dx

√
En − v(x)θ [En − v(x)], where C is a con-

stant depending on the boundary conditions in turning points.
This equation has the exactly same form as the normalization
condition, so it yields the same results—the dependence of the
WKB energy spectrum on the quantum number n is identical
to N dependence of the chemical potential of the fermionic
cloud.

We look for situations in which at least one of the moving
contributions np has a constant shape in space and preserves
its depth with a growing number of atoms in the system.
One of the necessary conditions to satisfy the latter is for
dp ∼ √

μ(N )/N to be constant in the limit N → ∞. However,
it does not mean that every such initial wave packet would
behave as needed—it only guarantees that contribution from
every orbital is of the same magnitude.

It also shows why initial harmonic confinement would not
generate distinct solitonlike contributions—their depth would
scale like 1/

√
N , making them disappear for a large number

of atoms. We will focus on the simplest system that at the
beginning has a quadratic spectrum—ideal Fermi gas confined
to a box trap. At first, atoms are trapped in an infinite well with
the length of D that is smaller than the box to which they are
released, D < L. Both traps share one of the walls.

First, we find the pth relative depth for each orbital, dn
p , by

performing explicitly Fourier transform:

dn
p = σ (p) sinc (D|p|π/L)

4n2π2

(2nπ )2 − (D|p|π/L)2 . (5)

As we can see, for large N , each of these contributions is the
same, meaning that absolute depth of the moving terms grows
linearly with N . The relative depth is therefore

dp = σ (p) sinc (D|p|π/L). (6)

It is also interesting to note that we get the same result
by inserting an appropriate Thomas-Fermi profile into (4).
Moreover, we also reproduce it by numerical evaluation of the
exact expression (1), using exact overlaps between considered
modes.

First, we will make sure that our candidate for a stable time
evolution indeed preserves its shape during the evolution. In
Figs. 1(a) and 1(b), we compare density plots for one fermion
and 5000 of them, but with additional perpendicular trapping.
For the one-atom case, canals and ridges are clearly visible.
In the second case, they are visible as well; however, they
have become much sharper—thinner and more pronounced.
Each of the moving contributions is now a sharply peaked
solitonlike structure that preserves its shape during evolution
and is characterized by a constant velocity. In Fig. 2, we
plot relative depths of such structures, both for right- and
left-moving contributions.

FIG. 2. Relative depths of solitonlike structures, both for right
and left movers.

III. THREE-DIMENSIONAL SETUP

To explore experimental accessibility of fermionic quan-
tum carpets, we now proceed to consider three-dimensional
geometry. The trapping in the x axis remains unchanged
as compared to the one-dimensional (1D) scenario, but in
perpendicular directions we assume arbitrary confinement.
In Appendix B, we find the approximate formula for a pth
contribution to the one-particle density integrated over per-
pendicular degrees of freedom in T = 0:

np ≈ ndp sinc (ηkF (x − pv0t )), (7)

where kF is a Fermi wave vector of the gas in the initial
confinement and η is a parameter that is found numerically
for each type of perpendicular trapping. This approximation
works well close to x0, as far as |x − x0| ∼ π/ηkF , and it gives
a very good estimation of the width of the structure, that is the
same for each of contributions:

w = wp = w0/ηkF , (8)

where w0 ≈ 3.79. In the case of 1D systems, the approxima-
tion is almost exact, with η = 2 and kF = πN/D. Such a scal-
ing means that the structures become extremely thin and op-
erationally unreachable by standard imaging in the quasi-1D
systems. However, full 3D system is much more promising—
e.g., for the perpendicular trapping with the oscillator length
of a⊥, the Fermi wave vector reads (15πND−1a−4

⊥ )
1/5

, η ≈
1.3, and the structures are characterized by the width of
several microns in experimentally accessible systems.

Moreover, we check what happens to considered soliton-
like structures in the presence of nonzero temperature by
taking the Fermi-Dirac distribution into account. It is easy
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FIG. 3. Comparison between the spatiotemporal density evolu-
tion of 12 + 12 atoms initiated in a separated state for different values
of contact interaction: g = 16 (a) and g = 32 (b) in one dimension.
The solitonlike structures are characterized by a finite lifetime in the
presence of the interaction.

to analytically show that their depth is unaffected and we
numerically confirm that they become thinner by up to 50%
in T = 4TF . The existence of these structures even in high
temperatures suggests that the considered effect should be
visible even for a gas that is governed by classical, Boltzmann
distribution, but in the quantum system with a quantized
spectrum.

IV. TWO-COMPONENT REPULSIVE FERMI GAS

We now proceed to consider a repulsive two-component
Fermi gas. We stick to the simple description of the single-
determinant Hartree Fock ansatz for the wave function. Such
a description misses quantum corrections due to interspecies
correlations, but it captures qualitatively one-body behavior
in a weakly interacting regime that we consider (see, e.g.,
Ref. [56]). As the gas has now two components, two according
spin states are introduced. φn(x) now denote not orbitals, but
orthonormal spin orbitals and x comprise both spatial and spin
degrees of freedom. We assume that spin-dependent part of
φn(x) is twofold and the same numbers of atoms occupy each
spin state.

FIG. 4. Kinetic energies for consecutive spin orbitals of one of
the species as a function of time for different values of interaction
strength. After some critical time, the dynamical equilibrium is
reached—there is no distinguished ordering of the orbitals as their
kinetic energies fluctuate around a common average value. Time-
averaged distribution of the kinetic energies proves to be positively
skew (see the histogram for g = 32 in the inset). The time needed
to achieve equilibrium is of the same order as the lifetime of the
solitonlike structures visible in the one-particle density of the gas.

In this description, atoms in each spin state can be con-
sidered a noninteracting Fermi gas with the only interaction
present being an interspecies one. We model this interaction
by a repulsive contact potential, characterized by a non-
negative coupling constant g � 0. The dynamics of such a
system is provided by the means of time-dependent Hartree-
Fock equations [61] (see more in Appendix C).

We analyze a situation in which two species are initially
separated by a thin barrier in the middle of a box potential
that traps both of them. Then, gas is released from within these
initial walls to evolve freely in a larger box. For no interaction,
two fermionic quantum carpets unfold symmetrically with an
infinite lifetime and infinite full revivals. As the interaction
is turned on, the lifetime of coherent evolution becomes finite
and the solitonlike structures eventually disappear (see Fig. 3).
The fadeout of the structures occurs when the system enters
a dynamical equilibrium, as the kinetic energies of the spin
orbitals become roughly equal during the evolution in time
(see Fig. 4).

FIG. 5. The power-law scaling for the mean kinetic energy μT (a) and the kinetic energy variance 
2
T (b) as a function of the number of

atoms in the system. Fitted power-law curves are included.
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FIG. 6. The modules of first-order correlation function, |g(1)| for a fermionic quantum carpet of two-component gas presented in the main
text. In each of the figures, rectangle-shaped structures in off-diagonal terms are clearly visible. Each of the single-particle density solitonlike
structure has its counterpart in such a representation. It is most distinguishably seen in the top left figure, in which several such rectangle-shaped
structures are present. The visibility of each of the structures is proportional to the relative depth of associated solitonlike structure. We present
their behavior with changing time, number of particles in the system, and interaction. In the top row, from left to right, consecutive instances
of time evolution are shown (t = {0.031, 0.086, 0.14}Trev with N = 24 + 24, g = 24 kept constant). Taking the most pronounced structure as
a reference point, one can see that each structure evolves in time, changing shape, but keeping the slope and overall perimeter constant, giving
the impression of “breathing.” In an ideal gas, such an evolution is infinite as the coherence is not lost. However, in a finite interaction situation,
the structures get dimmer through time evolution. In the central row, different numbers of atoms are presented (N = {8 + 8, 24 + 24, 96 + 96}
with g = 24, t = 0.1Trev kept constant). With growing N , the structures get thinner and the background becomes less fluctuating. Finally,
in the bottom row, the effect of interaction is shown—the stronger the interaction is, the faster the structures vanish (g = {2, 16, 32} with
N = 12 + 12, t = 0.071Trev kept constant).

Equilibration in such a system has not been thoroughly
studied. However, systems that are solvable by Bethe ansatz
(and this system is one of those [62]) usually equilibrate (but
not necessarily thermalize) under the so-called weak eigen-
state thermalization hypothesis (ETH) [63–68]. This feature

was rigorously shown for the translationally invariant systems
[69,70], but as in our system such an invariance is not present,
it is not immediately clear whether this is the case. However,
the equilibrated state is observed and we can characterize its
finite-size scaling, in the spirit of the usual ETH analysis [71].
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FIG. 7. [(a), (b)] The coherence measure G as a function of time for different number of atoms in the system for a constant coupling
constant g = 24. (c) Time of decoherence tdec extracted from two other figures with a fitted curve.

A. Analysis of the statistical properties of the equilibrated state

We perform analysis of the distribution of the kinetic
energies of the spin orbitals after gas enters the equilibrated
state. In Fig. 5, we plot dependence of the mean kinetic energy
μT and the variance 
2

T on the number of atoms in the system.
The analysis is performed for different values of interaction
strength. The scalings read μT ∼ N2 for the mean and 
2

T ∼
N3.4−3.9 for the variance. Such a scaling of the mean is well
retrieved for all checked values of the interaction. In the case
of the variances, the power-law behavior is retrieved; however,
quality of the fit is not as good due to finite length of time
evolution analyzed. For smaller values of the interaction, the
scaling law tends to be higher (up to ≈N3.9) and for stronger
interaction it is closer to ≈N3.4.

Dependence of the mean kinetic energy μT and the vari-
ance 
2

T on the interaction strength can be analogously stud-
ied. Again, the power-law fit is better for the mean than it
is for the variance. However, scaling laws can be relatively
unambiguously determined as μT ∼ −g and 
2

T ∼ g−0.5.

B. Analysis of the coherence in the system

It is worth noting that even for very small number of
atoms (3 + 3), each scaling can be retrieved. Moreover, it
is important to underline the fact that these results are not
intrinsic for the analyzed Hamiltonian, as the evolution in
Hilbert space is restricted by the choice of single-Slater ansatz
for the wave function.

Initially, existence of macroscopic structures is due to
strong coherence present in the system. Their fadeout during
the evolution can be explained and quantitatively described

by the progressive loss of coherence. To analyze this loss, we
propose a measure of coherence that aims to quantify their
dimming during the time evolution. The starting point of our
considerations is normalized first-order correlation function
for one of the species:

g(1)(x, y, t ) = g(1)
+ (x, y, t ) = 〈�̂†

+(x, t )�̂+(y, t )〉√
n+(x, t )

√
n+(y, t )

. (9)

We only consider one of the species, as the initial condition
implies time evolution of the second component to be sym-
metric with respect to the center of the trap. The function
g(1) is normalized such that its value is 1 on the diagonal. In
Fig. 6, we present the results of calculations of this first order
of coherence as a function of different parameters. The caption
below this figure fully addresses the explanation of the results
and the introduction of the rectangular structures in the g(1).

It can be shown that the height of each of the rectangular
structures is roughly equal to the relative depth dp of the as-
sociated solitonlike stucture. However, due to intrinsic fractal
behavior of these structures and the following relatively large
fluctuations, we have chosen to use modulus of g(1) function
averaged over the whole first rectangular-shaped structure as
a measure of coherence:

G(t ) ≡
∫ x0(t )

−L/2
dx|g(1)(x,−x − L/2 + x0(t ))|

+
∫ L/2

x0(t )
dx|g(1)(x, x − L/2 − x0(t ))|, (10)

FIG. 8. [(a), (b)] The coherence measure G as a function of time for different values of interaction with a constant number of particles:
N = 12 + 12 and N = 18 + 18. The visible spikes in coherence occur every half the revival time due to reducing of integration path of G to
the diagonal. (c) Time of decoherence tdec extracted from two other figures with fitted curves.
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where x0(t ) is an vertex of the rectangle at y = −L/2, and is
equal to

x0(t ) =
{

L/2 − 2t/Trev + �2t/Trev if �2t/Trev is odd

−L/2 + 2t/Trev − �2t/Trev if �2t/Trev is even
.

(11)

The structures are characterized by a constant velocity of
“breathing” in the noninteracting case, and this velocity is
almost not affected in the interacting one. However, small
fluctuations of this velocity happen. It is completely negligible
in smaller systems for which the width of the structures is
relatively big; nonetheless, for larger numbers of atoms, as the
structures get thinner, some more precise treatment in order to
find a maximum of coherence peak is needed. To deal with this
problem, we evaluate correlation function at couple of points
near the expected trajectory and include the biggest one into
the integral. This way, we can effectively follow the maxima
of coherence for a given time.

It is worth noting that in the noninteracting case, G is
almost a constant function of time that equals d1. In a case
analyzed here, we use initial width of the cloud to be D/L =
0.5, so G0 = d1 = 2/π . We use this measure to evaluate time
of decoherence for which the structures effectively die off. In
Fig. 7, the results of the analysis are presented in the case
in which the number of atoms in the system is increased.
For every case, after the system equilibrates, the value of G
saturates at some value. It is likely due to the finite size of
the system—the saturated value always decreases with the
size of the system. For small number of atoms, the curve
strongly fluctuates, and as this number gets larger, the fluctu-
ations get smaller, making the curve almost smooth. We made
calculations up to N = 96 + 96 atoms in the system (keeping
interaction g constant) and it seems that time of decoherence
initially grows with the number of atoms and then saturates at
some value. The curve that fits best to these results has a form
of tdec ∼ 1 − exp(−cN ), with c being some positive constant.

In Fig. 8, the dependence on the interaction is presented.
While keeping number of atoms constant, time dependence
of G is plotted for different values of the coupling constant
g. The stronger the interaction is, the faster the decoherence
happens—it scales like tdec ∼ g−1.2.

V. SUMMARY

To summarize, we have found previously unobserved
phenomenon, closely connected to the quantum carpet
spatiotemporal profile. In a large system consisting of
ultracold fermions, very sharp, solitonlike structures appear
for which we find analytical description of their velocities,
depths, and widths. We stress that the connection to the
solitons known from nonlinear equations is only due to its
apparent behavior—e.g., the constant shape and velocity.
The underlying mechanism of creation of these structures is
fundamentally different and does not guarantee the robustness
under small perturbations, unlike in the classically known
soliton. Furthermore, we analyze the effect of repulsive
interaction between two spin species of Fermi gas on the
presence of this phenomenon. We study the decoherence
of the solitonlike structures due to interactions and their
disappearance for a stronger repulsion. As a future line of

work, it is worth further analyzing equilibration in such a
system, with a potentially interesting additions of random
fields or different geometries. Another potential route would
involve studying systems that map onto noninteracting
fermions, e.g., strongly interacting bosons.
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APPENDIX A: DERIVATION OF pTH CONTRIBUTION

Let us focus on the pth contribution coming from each
orbital:

dn
p = σ (p)

∞∑
k=1

λ(n, k)λ(n, k + |p|). (A1)

First, we recall the Fourier transform

f̂ (k) = 1√
2π

∫ ∞

−∞
f (x)eikxdx, (A2)

and assuming that we will consider only real functions, we
introduce sine and cosine transforms:

f̂ s(k) = I f̂ (k), f̂ c(k) = R f̂ (k). (A3)

We can immediately see that f̂ s(k) = − f̂ s(−k). Let us evalu-
ate overlaps between initial orbitals and box eigenmodes:

λ(n, k) =
∫ ∞

−∞
dx ϕ�

k (x)φk (x)

=
√

2

L

∫ ∞

−∞
dxφn(x) sin

(
kπ

L
x

)
=

√
4π

L
φ̂n

s
(

kπ

L

)
,

(A4)

where φn(x) = φn(x)θ (x)θ (L − x) is meant to be truncated
into the box with the width of L. Therefore, we can write

dn
p = σ (p)

∞∑
k=1

4π

L
φ̂n

s
(

kπ

L

)
φ̂n

s
(

(k + |p|)π
L

)

−→ 2σ (p)
∫ ∞

−∞
dk̃φ̂n

s
(k̃)φ̂n

s
( |p|π

L
− k̃

)

= 2σ (p) φ̂n
s
� φ̂n

s
( |p|π

L

)
, (A5)

where � denotes usual convolution that in our case takes form

f̂ s � ĝs(l ) = 1

2π

∫ ∞

−∞
dk

∫ ∞

−∞
dx

×
∫ ∞

−∞
dy f (x) sin(kx)g(y) sin[(l − k)y]

= −1

2

∫ ∞

−∞
dx f (x)g(x) cos(lx)

+ 1

2

∫ ∞

−∞
dx f (x)g(−x) cos(lx). (A6)
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However, we consider only functions that vanish outside
x ∈ [0, L], so the above expression can be simplified into

f̂ s � ĝs(l ) = −π

2
f̂ g

c
(l ). (A7)

We arrive at the compact form for the pth relative depth for a
given orbital:

dn
p = 2σ (p) φ̂n

s
� φ̂n

s
( |p|π

L

)
= −σ (p)

√
2

π
φ̂2

n

c
( |p|π

L

)
.

(A8)

We can therefore write the whole pth relative depth as

dp = −σ (p)
1

N

N∑
n=1

√
2

π
φ̂2

n

c
( |p|π

L

)

= −σ (p)

√
2

π

1

N

N̂∑
n=1

φ2
n

c( |p|π
L

)

= −σ (p)

√
2

π

1

N
̂n(x, 0)

c
( |p|π

L

)
, (A9)

where n(x, 0) is the initial one-particle density of the
fermionic gas.

APPENDIX B: DERIVATION OF WIDTHS OF THE
STRUCTURES

In three dimensions, atoms are trapped in a box in the x
direction and in an arbitrary perpendicular confinement:

V (x, y, z) = Box(x) + Vy(y) + Vz(z). (B1)

As such, orbitals are now characterized by three independent
quantum numbers, n = (nx, ny, nz ). Analogously to 1D case,
we consider single-particle density, but integrated over per-

pendicular degrees of freedom:

|φn(x, t )|2 =
∫

dz
∫

dy|φn(x, y, z, t )|2

=
∣∣∣∣∣

∞∑
k=1

λ(nx, k)ϕk (x)e−iEkt/h̄

∣∣∣∣∣
2

. (B2)

Expression (B2) differs from its one-dimensional counterpart
by changing n to nx inside a sum. Again, we introduce the pth
contribution:

np(x, t ) ≈ −
N∑

n=1

∞∑
k=1

1

L
λ(nx, k)λ(nx, k + |p|)

× cos
(

(2k + |p|)π
L

(x − pv0t )
)
, (B3)

but this time we can use explicit expressions for overlaps, as
we have been considering a box potential in the x axis:

λ(n, k) =

⎧⎪⎨
⎪⎩

2
π

√
D
L (−1)n+1 sin

(
kπD

L

)
n

n2−( kD
L )2 , nL �= kD,√

D
L , nL = kD.

(B4)

One can explicitly check that multiplication of functions λ in
(B3) can be approximated by

λ(nx, k)λ(nx, k + |p|)

≈ D

L
sinc

(
kπD

L
− nxπ

)
sinc

[
(k + |p|)πD

L
− nxπ

]
,

(B5)

and is centered around

k0 = nxL

D
− |p|

2
. (B6)

As a next step, we stick to region close to the structure’s
peaks, working with variables describing distance from them,
xp = (x − pv0t ) − xp

0 . Then, we identify slowly varying parts
of the pth contribution in this region:

np(x, t ) ≈ −
N∑

n=1

∞∑
k=1

1

L

D

L
sinc

(
kπD

L
− nxπ

)
sinc

[
(k + |p|)πD

L
− nxπ

]
cos

[
(2k + |p|)π

L
(x − pv0t )

]

≈ −
N∑

n=1

1

L
cos

[
(2k0 + |p|)π

L
xp

] ∞∑
k=1

D

L
sinc

(
kπD

L
− nxπ

)
sinc

[
(k + |p|)πD

L
− nxπ

]
. (B7)

Sum over k in (B7) can be turned into an integral that can be readily estimated:∫
dk

D

L
sinc

(
kπD

L
− nxπ

)
sinc

[
(k + |p|)πD

L
− nxπ

]
= sinc

(
πD

L
|p|

)
. (B8)

Within these approximations, we are left with expression for pth contribution to the single-particle density:

np(xp, t ) ≈ −
N∑

n=1

1

L
cos

[
(2k0 + |p|)π

L
xp

]
sinc

(
πD

L
|p|

)
= − 1

L
sinc

(
πD

L
|p|

) N∑
n=1

cos
(

2nxπ
xp

D

)
. (B9)

An expression

N∑
n=1

cos
(

2nxπ
xp

D

)
(B10)
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can be readily calculated in one dimension, where

nx(n) = n, nmax = N. (B11)

In this case, it is called Langrange formula and yields

N∑
n=1

cos
(

2nπ
xp

D

)
= −1

2
+ sin

[(
N + 1

2

)
2π

xp

D

]
2 sin

(πxp

D

)
≈ −Nσ (p) sinc(2kF xp), (B12)

where kF is the initial Fermi wave vector of the gas:

kF = πN

D
. (B13)

Therefore, the pth contribution can be invoked in form

np(xp) ≈ N

L
σ (p) sinc

(
πD

L
|p|

)
sinc(2kF xp)

= N

L
dp sinc(2kF xp). (B14)

However, a sum (B10) cannot be explicitly calculated in the
three-dimensional case, but we find out that the pth contribu-
tion can be numerically approximated by

np(xp) ≈ N

L
dp sinc(ηkF xp), (B15)

where η is a constant that depends on the character of perpen-
dicular trapping. The approximation is reasonably accurate for
xp up to

|xp| ∼ π

ηkF
. (B16)

With this approximation of the shape, we can calculate widths
of the half maximum for each solitonlike structure:

w = w0

ηkF
, w0 = 3.79098. (B17)

For different types of trappings, we have differents values of
kF and η. For a box trap with the length of Dy in the y direction
and box trap with the length of Dz in the z direction,

kF =
(

3

4
π2 N

DDyDz

)1/3

, η ∼ 3.2. (B18)

For a harmonic trap with the length of ay =
√

h̄
mωy

in the y
direction and box trap with the length of Dz in the z direction,

kF =
(

16π
mωy

h̄

N

DDz

)1/4

, η ∼ 1.4. (B19)

For a harmonic trap with the length of ay =
√

h̄
mωy

in the y

direction and a harmonic trap with the length of az =
√

h̄
mωz

in
the z direction,

kF =
(

15π
mωy

h̄

mωz

h̄

N

D

)1/5

, η ∼ 1.3. (B20)

APPENDIX C: NUMERICAL METHOD

In order to study a repulsive two-component Fermi gas in a
one-dimensional space, we approximate the many-body wave

function of the system of N indistinguishable fermionic atoms
by the single Slater determinant:

�(x1, ..., xN ) = 1√
N!

∣∣∣∣∣∣∣∣∣

φ1(x1) . . . φ1(xN )
. .

. .

. .

φN (x1) . . . φN (xN )

∣∣∣∣∣∣∣∣∣
.

(C1)

The coordinates xn (n = 1, . . . , N) of atoms include both
spatial and spin variables and φn(x) (n = 1, . . . , N ) mean
the orthonormal spin orbitals. Since we consider a two-
component Fermi gas, the spin-dependent part of the spin
orbitals is twofold. We further assume that equal number of
atoms occupy each spin state.

Atoms occupying the same spin state are considered as
a noninteracting Fermi gas. The only interaction present in
the system is the one between different spin atoms. It is
described by the contact potential with the coupling constant
equal to g. For such spin-dependent interactions, the time-
dependent Hartree-Fock equations for the spatial parts of the
spin-orbitas, φ+

n (x, t ) and φ−
n (x, t ), can be written as

ih̄
∂

∂t
φ+

n (x, t )

=
[
− h̄2

2m

∂2

∂x2
+ Vtr (x) + gn−(x, t )

]
φ+

n (x, t ),

ih̄
∂

∂t
φ−

n (x, t )

=
[
− h̄2

2m

∂2

∂x2
+ Vtr (x) + gn+(x, t )

]
φ−

n (x, t ), (C2)

for n = 1, . . . , N/2. The atomic densities of components (nor-
malized to the number of atoms), n+(x, t ) and n−(x, t ), are
defined as follows:

n+(x, t ) =
N/2∑
j=1

|φ+
j (x, t )|2,

n−(x, t ) =
N/2∑
j=1

|φ−
j (x, t )|2 . (C3)

Initially, N atoms occupy the lowest energy states of one-
dimensional boxes, positioned side by side, each of length
L/2. At t = 0, the internal wall is removed and the dy-
namics starts. We use the split-operator method to solve
Eqs. (C2) [61]. The spatial step of the numerical grid is 
x =
0.0025L and we choose the time step as 
t = 10−7 mL2/h̄.
Equations (C2) have two constants of motion; both the total
number of atoms and the total energy of the system (E )
are preserved. We monitor these quantities while solving the
evolution equations (C2). They are both conserved to very
high accuracy, namely 
N/N < 10−8 and 
E/E < 10−5 at
the end of calculations.
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